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Stable Spinning Deployment Control of a Triangle
Tethered Formation System

Fan Zhang , Member, IEEE, He Zhou, Panfeng Huang , Senior Member, IEEE, and Jian Guo

Abstract—The tethered formation system has been widely stud-
ied due to its extensive use in aerospace engineering, such as
Earth observation, orbital location, and deep space exploration.
The deployment of such a multitethered system is a problem
because of the oscillations and complex formation maintenance
caused by the space tether’s elasticity and flexibility. In this arti-
cle, a triangle tethered formation system is modeled, and an
exact stable condition for the system’s maintaining is carefully
analyzed, which is given as the desired trajectories; then, a new
control scheme is designed for its spinning deployment and sta-
ble maintenance. In the proposed scheme, a novel second-order
sliding mode controller is given with a designed nonsingular
sliding-variable. Based on the theoretical proof, the addressed
sliding variable from the arbitrary initial condition can converge
to the manifold in finite time, and then sliding to the equilibrium
in finite time as well. The simulation results show that compared
with classic second sliding-mode control, the proposed scheme
can speed up the convergence of the states and sliding variables.

Index Terms—Stable and spinning deployment, tethered satel-
lites system, triangle formation.

I. INTRODUCTION

EVER since Tsiolkovsky addressed a bold idea that a
flexible tether is used to carry out space missions

in 1895, space tether has been always considered as an
extended application of the traditional rigid connected space-
craft. Tether is extendable, flexible, and can be stored in
a very small size before launch. Thus, space tether has been
addressed for space orbital transfer, satellite attitude stabi-
lization, momentum transfer, etc. Based on several space
experiments (TSS-1, 1992; SEDS-1, 1993), the material and
the deployment/retrieval mechanism of tether in space had
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Fig. 1. Schematic of the NASA-SPECS.

been practically verified, which gave great confidence to the
researchers and engineers [1].

Besides the applications of single space tether, multiteth-
ers in space (as shown in Fig. 1) is another research focus
of further space missions, such as artificial-gravity space
station, Earth observation, deep space exploration [2], [3],
etc. Compared to the traditional multisatellites formation,
the connected tether between adjacent satellites provides a
more precise orbital position, relative attitude, and less fuel
consumption.

Thus, there have been many publications of space multi-
tethered formation system. For different missions, different
tethered formations have been addressed, such as the trian-
gle formation, double-pyramid, hub-spoke formation, etc. As a
classic formation of space observation, a triangle tethered for-
mation system has been considered as a practicable structure
due to its easy expandability and spatial-orientation stability
in spinning case. Misra and Modi [2] and Modi et al. [4] had
summarized early studies on dynamics and control of space
tether. Kim and Hall [5] used the variable tether length to
control the triangle formation. Nakaya used a PID controller
based on a virtual structure dynamics to study the deployment
and retrieval of the formation. Besides the theoretical study,
they also built the ground experimental system with air bearing
table [6]. The deployment and retrieval of the formation in an
elliptic orbit is studied by Kumar and Yasaka, while it was only
an open-loop controller [7]. Topal and Daybelge [8] studied
the numerical solutions of a triangular formation in a circular
orbit and discussed the stability of attitude motion. Flexibility
of tether is considered by Williams et al. [9], [10]. Based on
the bead model, tethers’ flexibility is involved, and the optimal
control scheme is utilized to solve the deployment problem.
Based on the theoretical research, the practical applications of
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Fig. 2. System description.

triangle formation have been addressed by NASA [11], which
is called the submillimeter probe of the evolution of cosmic
structure mission (SPECS), and its ground experiment of the
deployment was done by MIT [12].

Although the triangle formation has been studied a lot, there
are still some problems. Most of the research is based on
a rigid and inelastic tether model, which has greatly reduced
the difficulty of the controller design. The longitudinal oscil-
lation due to the elasticity of the tether, along with the lateral
oscillation of the space tether caused by the Coriolis force,
makes the control problem complex. Williams built the motion
equations based on the bead model, which can represent the
flexibility of tether [9], [10]. But the model is too complex to
perform real-time calculation, and which is solved by optimal
control. Guang et al. [13] proposed a disturbance observer-
based controller to exactly estimate the the disturbance during
deployment. In [13], different deployment strategies of the
spinning rate and tether length are studied. Qi and Misra [15]
proposed open-loop charge control strategies based on the ana-
lyzed static equilibrium. Kim and Hall studied triangle tethered
formation based on input-state feedback linearization in [5],
but have not considered the perturbation effects. Besides the
centralized control scheme, decentralised fault-tolerant con-
trol is proposed by Zhang et al. [16]. Based on the previous
research, it is found that the connected tethers in triangle for-
mation can be considered as a rigid elastic link during the entire
deployment, because of the centripetal force caused by spin-
ning. According to the motion characteristics of the system, the
principal requirements of the formation’s deployment are quick-
ness, stability, and consistency. In consequence, the system can
quickly achieve the stable spinning condition (will be discussed
in Section III) and maintain in the desired formation. Besides,
a tethered formation system is too complex to build a totally
precise dynamics model. In this case, a controller with strong
robustness is necessary for system deployment.

The sliding-mode control has been extensively applied in
practical engineering due to its effective achievement, and
strong robustness to the uncertainties [17], [18]. The advan-
tages of sliding-mode control can solve the problems of
the tethered formation system. But the chattering output and
asymptotic stability are two weak points of sliding-mode
control. To fill the gap of finite-time convergence, terminal
sliding-mode control (TSMC) [19] and second-order (specifi-
cally super-twisting) sliding-mode control (STSMC) [20], [21]
have been proposed. In recent years, both the TSMC and

STSMC have been continuously improved. The robustness of
STSMC has been improved through adaptive gains [22], [23]
and disturbance suppression [24], [25]. The sliding variable of
TSMC has also been improved, and different nonlinear sliding
variables are addressed [26], [27]. Each of the two controllers
has its merit and demerit. STSMC can attenuate the chattering,
but the finite-time convergence on the sliding manifold cannot
be guaranteed. TSMC can achieve the finite-time convergence
of the states to equilibrium points, but the chattering problem
is not solved. To solve the above problems of tethered for-
mation, finite-time convergence and continuous control output
should be figured out simultaneously.

Therefore, in this article, an effective deployment control
scheme of a tethered triangle formation system is proposed,
by using a second-order sliding-mode control with a nonsin-
gular sliding manifold, which can achieve the desired stable
spinning quickly and symmetrically, and suppress the tethers’
oscillation as well. Because the transition process from the ini-
tial state to the desired state is not stable, the desired spinning
rate should be achieved as soon as possible. In the existing
papers, it generally uses half orbits to reach a stable spinning
condition. Under the proposed second-order sliding-mode con-
troller with a nonsingular sliding variable, the stable spinning
rate can be achieved within 0.2 orbits, and during the entire
process of deployment, the formation is nicely symmetrical.

The remainder of this article is organized as follows.
Section II introduces the dynamics modeling of the tethered
triangle formation system in detail. In Section III, the derived
equations of motion have been carefully analyzed, and the
stable spinning conditions are derived. The proposed second-
order sliding-mode controller with a nonlinear sliding variable
is designed and verified in Section IV. In Section V, the
proposed scheme is verified by numerical simulation, includ-
ing the presentations of each state and the formation during the
entire deployment process. Finally, Section V concludes with
a summary of this article and a few suggestions for future
research.

II. DYNAMICS MODELING

The system consists of three satellites that are connected
via flexible tethers, and the entire system is a closed triangle.
The exact mission scenario, including the deployment phase,
stable spinning phase, and retrieval phase, has been introduced
in [1]. A detailed description of the triangle formation system
has been given in Fig. 2.

The assumptions used in this article are given as follows.
A1: The satellites in the formation system are treated

as mass points due to their relatively small sizes
compared to the connected tether’s length.

A2: The flexibly connected tether has been simplified as a
massless rigid noncompressed link because the tether
is tight during the entire spinning deployment.

A3: The system is assumed to be on the Keplerian circular
orbit, and the constant orbital velocity is �.

A4: The system rotates about the system centroid in an
orbit plane.

Similar to the dynamics modeling in [1], the equations of
motion are derived from the Lagrangian mechanics. The initial

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2021 at 16:37:42 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: STABLE SPINNING DEPLOYMENT CONTROL 3

frame (E−XYZ) and orbit frame (o−xyz) are defined in Fig. 2.
The system energy is given as

Tt = 1

2

3∑

i=1

miv2
i = 1

2

3∑

i=1

mi
(
Ṙ0 + ṙi

)2

= 1

2
mω2R2

0 + 1

6
m

3∑

i=1

ṙ2
i (1)

where mi is the satellite’s mass, m = m1 + m2 + m3 is the
total mass of the system, R0 denotes the position vector of the
system centroid with respect to the Earth center, ri(i = 1, 2, 3)

denotes the position vector with respect to orbit frame, and ω

is a constant rate of true normally angle τ .
The length of each connected tether is defined as li (i =

1, 2, 3), and the definitions of angles θ1 and θ2 are given in
Fig. 2. With the geometrical relationship, we can obtain

⎧
⎪⎪⎨

⎪⎪⎩

x2 = x1 + l1 cos θ1
y2 = y1 + l1 sin θ1
x3 = x2 + l2 cos θ2
y3 = y2 + l2 sin θ2

(2)

where ( xi yi zi )
T(i = 1, 2, 3) represents the position vector

ri(i = 1, 2, 3).
The potential energy of the system is formulated as

Vt1 = −1

3
m

3∑

i=1

μ

|Ri| = −1

3
m

3∑

i=1

μ

|R0 + ri| (3)

where

1/|Ri| = 1/|R0 + ri| =
(

1 + 2R0ri/R2
0 + r2

i /R2
0

)− 1
2
/

R0

≈
[
1 − xi/R0 +

(
2x2

i − y2
i

)
/2R2

0

]
/R0. (4)

The tension of the connected tether does not compress.
According to Hooke’s law of the elastic tethers, the elastic
potential energy of the system can be expressed as

Vt2 = 1

2

EA

l0

[
(l1 − l0)

2e1 + (l2 − l0)
2e2 + (l3 − l0)

2e3

]
(5)

where EA is the elastic coefficient that is decided by the
tether’s material; l0 is the nature length of each tether, and

parameter ei(i = 1, 2, 3) =
{

1, li > l0
0, li ≤ l0

is represented to the

tether’s real length. Based on the cosine law, l3 in (5) can be
exactly presented as l3 = [l21 + l22 + 2l1l2 cos(θ1 − θ2)](1/2).

The lengths of tether l1 and l2, angles between tethers,
and coordinates θ1 and θ2 are defined as generalized coordi-
nates. The equations with respect to time change with respect
to orbit, and the dimensional tether length changes to the
nondimensional one, which is detailedly written as

{ d(·)
dt = d(·)

dτ
dτ
dt = (·)′ω

li = �iLri
(6)

where Lri is reference length of tether, and �i ∈ (0, 1] denotes
the nondimensional length of tether li. To further simplify the
system, it is generally assumed that each mass of the satellite
is the same and, similarly, the reference length of tether is the
same with each other.

According to the Lagrangian mechanics (d/dt)(∂T/∂ q̇i) −
(∂T/∂qi)+ (∂V/∂qi) = 0, the motion equations governing the
system is derived as

M(q)q′′ + C
(
q, q′)q′ + G(q) + P(q) = Q (7)

where q = [ �1 �2 θ1 θ2 ]T is the nondi-
mensional generalized coordinate vector, and
Q = [1/(mω2l0)][ Ql1 Ql2

Qθ1/l0
Qθ2/l0 ]T is the corre-

sponding generalized control force vector. The other matrices
in (7) are

M = 1

9

⎡

⎢⎢⎢⎢⎣

2 ˜̃
θ 0 �2θ̃

˜̃
θ 2 −�1θ̃ 0

0 −�1θ̃ 2�2
1 �1�2

˜̃
θ

�2θ̃ 0 �1�2
˜̃
θ 2�2

2

⎤

⎥⎥⎥⎥⎦

C = 1

9

⎡

⎢⎢⎢⎢⎣

0 θ̃ ′
2θ̃ −2�1θ̃

′
1 −�2θ̃

′
2
˜̃
θ + �′

2θ̃

−θ̃ ′
1θ̃ 0 −�1θ̃

′
1
˜̃
θ − �′

1θ̃ −2�2θ̃
′
2

2�1θ̃
′
1 �1θ̃

′
2
˜̃
θ 2�1�

′
1 �1�2θ̃ θ̃ ′

2 + �1�
′
2
˜̃
θ

�2θ̃
′
1
˜̃
θ 2�2θ̃

′
2 −�1�2θ̃

′
1θ̃ + �′

1�2
˜̃
θ 2�2�

′
2

⎤

⎥⎥⎥⎥⎦

G = 1

3

⎡

⎢⎢⎢⎣

−(2�1 cos θ1 + �2 cos θ2) cos θ1

−(�1 cos θ1 + 2�2 cos θ2) cos θ2

�1(2�1 cos θ1 + �2 cos θ2) sin θ1

�2(�1 cos θ1 + 2�2 cos θ2) sin θ2

⎤

⎥⎥⎥⎦

P = EA

mω2l0

⎡

⎢⎢⎢⎢⎢⎣

(�1 − 1)e1 + �3−1
�3

e3

[
�1 + �2

˜̃
θ
]

(�2 − 1)e2 + �3−1
�3

e3

[
�2 + �1

˜̃
θ
]

−(�3 − 1)e3
�1�2
�3

θ̃

(�3 − 1)e3
�1�2
�3

θ̃

⎤

⎥⎥⎥⎥⎥⎦
(8)

where θ̃ = sin(θ1 − θ2),
˜̃
θ = cos(θ1 − θ2), θ̃1 = θ1 + 2, and

θ̃2 = θ2+2. The matrix M is a symmetric positive semidefinite
matrix, which satisfies Ṁ − 2C.

III. DYNAMICS ANALYSIS

A. Dynamics Analysis

In the stable spinning phase, although all the tethers in the
formation system are constant, tethers are in different tension
with different rotation angles. Consequently, real tether lengths
are different. For example, tether l1 is in the maximum ten-
sion when it rotates to the radial direction with respect to the
Earth, and in the minimum tension when it rotates to the tan-
gential direction. In this section, the dynamics in (7) and (8)
are discussed to acquire the desired rotation velocity.

To simplify the dynamics equations of the system, the length
rate of the tether is supposed to be 0, and the tethered forma-
tion system is in a constant angular rotation. In this case, the
states are given as

l̈1 = l̈2 = 0, l̇1 = l̇2 = 0

θ̈1 = θ̈2 = 0, θ̇1 = θ̇2 = θ̇ . (9)

As previously mentioned, the tether tension in radial (θ1 =
0(rad)) and tangential [θ1 = (π/2)(rad)] direction can reach
the extremum value. Accordingly, the elastic deformation εi
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of tether is derived as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε1|θ1=0 = l0

[(
θ̇
ω

+ 1
)2 + 7

2

]/{
9EA

mω2l0
−

[(
θ̇
ω

+ 1
)2 + 7

2

]}

ε2|θ1=0 = ε3|θ1=0

= l0

[(
θ̇
ω

+ 1
)2 − 1

]/{
9EA

mω2l0
−

[(
θ̇
ω

+ 1
)2 − 1

]}

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε1|θ1= π
2

= l0

[(
θ̇
ω

+ 1
)2 − 5/2

]/{
9EA

mω2l0
−

[(
θ̇
ω

+ 1
)2 − 5/2

]}

ε2|θ1= π
2

= ε3|θ1= π
2

=
{
l0

[(
θ̇
ω

+ 1
)2 + 2

]/
9EA

mω2l0
−

[(
θ̇
ω

+ 1
)2 + 2

]}
.

(10)

According to the extremum values of the tether’s elastic
deformations, (10) can be further reformulated as

l0

[(
θ̇
ω

+ 1
)2 − 5

2

]

9EA
mω2l0

−
[(

θ̇
ω

+ 1
)2 − 5

2

] ≤ ε ≤
l0

[(
θ̇
ω

+ 1
)2 + 7

2

]

9EA
mω2l0

−
[(

θ̇
ω

+ 1
)2 + 7

2

] .

(11)

Due to the centripetal force caused by the rotation, all
the tethers in the tethered formation system are in the ten-
sion, namely, ε > 0. Because [(9EA)/(mω2l0)] � [([θ̇/ω] +
1)2−(5/2)], an exact nondimensional condition of the rotation
velocity is derived

θ ′ >

(√
5

2
− 1

)
or θ ′ < −

(√
5

2
+ 1

)
. (12)

Remark 1: The negative sign in (12) represents the opposite
rotation direction of the Earth. Therefore, if the rotation direc-
tion of the tethered formation system is in accordance with the
Earth, the system’s rotation angular velocity should be larger
than

√
5/2 − 1 times of the orbital angular velocity. Inversely,

if the rotation direction is opposite of the Earth’s rotation,
the scalar of the system’s rotation angular velocity should be
larger than

√
5/2 + 1 times the orbital angular velocity.

B. Simulations

To verify the results in (12), numerical simulation is
given with the system dynamics in (7) and (8). The
generalized control force Q is 0, and the initial condi-
tion (�1 �2 �′

1 �′
2 �′′

1 �′′
2 θ1 θ2 θ ′

1 θ ′
2 θ ′′

1 θ ′′
2 )T |0 is

( 1 1 0 0 0 0 π/6 5π/6 θ ′ θ ′ 0 0 )T , where the rotation
velocity θ ′ is given different values to verify the results derived
in (12). The other system parameters are given in Table I.

The simulation results of the system’s rotation with different
rotation velocities θ ′ = 0.5 and θ ′ = 1 are given in Figs. 3
and 4, respectively. According to the result in (12), it is known
that θ ′ = 0.5 does not satisfy the stable rotation condition,
while θ ′ = 1 satisfies. The direction of the system’s rotation is
according to the Earth’s rotation. It is obvious that the system
formation of θ ′ = 1 is stable during the rotation, while the
case θ ′ = 0.5 is unstable. Each tether in the formation can
be kept in tiny tension during the rotation when θ ′ = 1, and
the rotation velocity can be stably kept in the initial condition

Fig. 3. System formation when θ ′ = 0.5.

Fig. 4. System formation when θ ′ = 1.

TABLE I
SYSTEM PARAMETERS

without any generalized control force. All the results verify
that the conditions of stable rotation given in (12) are correct,
and the results will be used in the controller design of the
system’s deployment.

Besides, two given certain values of rotation velocity, the
relationship between the rotation velocity and elastic deforma-
tion has also been given in Fig. 5. According to the analytic
conclusions given in (12), the rotation velocity in region
θ ′ ∈ [−√

5/2−1,
√

5/2−1] will result in unstable formation.
In the dash-line box of Fig. 5, both ε2 and ε3 are not posi-
tive, which mean tethers l2 and l3 are slack. The slack tethers
cannot maintain a stable rotating formation. The simulation
results agree to the analytic conclusions in (12).

IV. CONTROL SCHEME DESIGN

Based on the dynamics analysis, a set of desired rotation
velocity is acquired for the deployment controller design. From
the previous knowledge of the single tether’s deployment [25],
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Fig. 5. Relationship between θ ′ and ε.

it is known that the deployment/retrieval of the tether in space
will cause oscillations due to the orbital Coriolis forces. For
this proposed triangle tethered formation system, the unsta-
ble spinning rotation during the deployment complicates the
problem. To suppress the disturbance caused by oscillation and
deploy the desired spinning rate exactly and quickly, a new
control scheme is proposed, which can enforce the general-
ized coordinates to converge to the desired states under the
desired strategy in finite time. A new second-order sliding-
mode control with a nonsingular sliding manifold is designed
in this section.

A. Problem Formulation

For controller design and concise expression, the dynamics
equations in (7) and (8) are reformulated by considering the
space environment perturbation as

{
x′

i1 = xi2
x′

i2 = fi(x) + gi(x)ui + di
(13)

where functions fi(x) and gi(x)ui are, respectively, derived
equal to {−M−1[C(q, q′)q′+G(q)+P(q)]}i and [M−1Q]i with
i = �1,�2, θ1, θ2, which corresponds to the generalized coor-
dinates q = [ �1 �2 θ1 θ2 ]T given in (7). The system state
vector is a smooth nonlinear function, ui ∈ R denotes the
control input, and di ∈ R is the uncertainty due to orbital per-
turbation, such as aerodynamic drag, solar radiation pressure,
and the oscillation of the connected tether.

Because of the simplifications used in Section II, system
dynamics fi(x) should be further formulated as

fi(x) := f̄i(x) + 
fi(x) (14)

where f̄i(x) denotes the nominal function and 
fi(x) denotes
the dynamics uncertainties that are bounded.

B. Preliminary

Based on [25] and [26], a nonlinear sliding variable σi(xi, t)
for each generalized coordinate is designed as

σi(xi, t) := xi2 +
∫ [

κ1|xi1|λ1−1xi1 + κ2|xi2|λ2−1xi2

]
dτ (15)

where κi is a positive constant and λi satisfies 0 < λi < 1
with i = 1, 2. The derivative of σi(xi, t) with respect to the
orbit is given as

σ ′
i (xi, t) = x′

i2 + κ1|xi1|λ1−1xi1 + κ2|xi2|λ2−1xi2. (16)

According to (13) and (14), (16) can be expressed as

σ ′
i (xi, t) = f̄i(x) + gi(x)ui + κ1|xi1|λ1−1xi1 + κ2|xi2|λ2−1xi2

+
fi(x) + di︸ ︷︷ ︸
φi(xi,t)

(17)

where φi(xi, t) = 
fi(x) + di denotes the uncertainties [21].
Assumption 1: The given uncertainties φi(xi, t) ∈ R should

satisfy |φi(xi, t)| ≤ δ̃i1(|σi(xi, t)|), where δi1 is continuous and
will be designed later [24].

Remark 2: Due to the definition of the states in (7), it can
be obtained that xi ∈ L∞ and ‖xi‖∞ = sup |xi| < ∞. The
main disturbance of a tethered formation system is the oscil-
lations of connected tethers between the satellites, and orbital
perturbations. By the comparison, tether oscillations that are
caused by the Coriolis force play a major role. It is studied
that tether’s oscillation is damped amplitude oscillations [25].
Therefore, φi(xi, t) in the proposed application is boundary
and unknown.

Remark 3: The upper bound δ̃i1 ∈ R
+ is the maximum

of δi1. Because δi1(|σi(xi, t)|) is defined as a function of the
sliding variable, it vanishes as the sliding manifold σi(xi, t) =
0 is approached.

C. Controller Development and Stability Analysis

Design the control input ui as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui = g−1
i

[−f̄i − κ1|xi1|λ1−1xi1 − κ2|xi2|λ2−1xi2 + v
]

vi = −μi1δi1(σi) + wi + φi(xi, t)
w′

i = −μi2δi2(σi)

δi1 := ηi(|σi|)sgn(σi)

δi2 := ηi(|σi|)η′
i(|σi|)sgn(σi)

(18)

where ηi is a nonlinear function of the absolute sliding vari-
able, and η′

i is its derivative with respect to orbit, and μi1 > 0
and μi2 > 0 denotes the constant gains of the controller.

Based on (16)–(18), the closed system dynamics with
respect to the sliding variable can be derived as

σ ′
i (xi, t) = −μi1δi1(σi) +

∫
−μi2δi2(σi)dτ + φi(xi, t). (19)

To guarantee a finite-time convergence of the proposed
closed system (19), an absolutely continuous positive-definite
Lyapunov function Vi[σi(δi1, δi2)] should be found. The func-
tion should be the solution of the following partial differential
inequality:

〈∇δi1Vδi1 , δi1
〉 + 〈∇δi2Vδi2 , δi2

〉 ≤ −pVq
i (20)

where ∇ denotes the partial derivative, 〈·, ·〉 denotes the
scalar product with respect to an Euclidian space, and
both p and q are certain positive constants. According
to the Lyapunov stability, it is evident that the closed-
loop system (19) can converge within finite time treach ≤
V1−p

i [σi(0)]/q(1 − p) in the case p < 1; while in the
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case p ≥ 1, (19) can only achieve an asymptotic
convergence.

Theorem 1: Assume that Assumption 1 is globally
satisfied. With the definition of a symmetric positive-
definite matrix [which is composed by the controller

gains in (18)] P :=
(

μ2
i1 + 2μi2 − μi1 −(μi1 − 1)

−(μi1 − 1) 2

)

and the initial condition σ ′
i (xi1|t=0, xi2|t=0), the sliding

manifold σi(xi) = 0 can be reached in finite time
tr ≤ [(

√
λmin(P)λmax(P))/(min{λmin(Qi)})]V(1/2)

i (0) (will be
defined below) under the variable controller (18) with the gains
μi1 > 1 and μi2 > [(μi1 + 1)/(2(μi1 − 1))]2 + 1. The terms
δi1 and δi2 in (18) are given as

⎧
⎨

⎩
δi1(σi) =

[
ρi1|σi| 1

2 + ρi2|σi|
]
sgn(σi)

δi2(σi) =
[

1
2ρ2

i1 + 3
2ρi1ρi2|σi| 1

2 + ρ2
i2|σi|

]
sgn(σi)

. (21)

Proof: Consider a transferred vector ζ i composed by the
nonlinear terms δi1 and δi2, which is expressed as

ζ i =
(

ζi1
ζi2

)
=

(
ηi(|σi|)sgn(σi)∫

ηi(|σi|)η′
i(|σi|)sgn(σi)dτ

)
. (22)

The derivative of ζ i with respect to time is derived as

ζ ′
i =

(
ζ ′

i1
ζ ′

i2

)
= η′

i(|σi|)Ai[ϑi(ηi, t)]ζ i (23)

where Ai[ϑi(ηi, t)] =
[−μi1 + ϑi(ηi, t) 1

−μi2 0

]
with ϑi(ηi, t) =

[(φi(xi, t))/(ηi(|σi|))]sgn(σi). According to Assumption 1, it
is clear that |ϑi(ηi, t)| ≤ 1.

The determinant of P is det(P) = μ2
i1 + 4μi2 − 1. Based

on the condition μi2 > [(μi1 + 1)/(2(μi1 − 1))]2 + 1, it
is proved that P is absolutely positive definite. With the
derivative of a positive definite P and the condition μi2 >

[(μi1 + 1)/(2(μi1 − 1))]2+1, it can be obtained that μi2 > 1/4.
The Lyapunov candidate function [21] is selected as

Vi :=
(
μ2

i1 + 2μi2 − μi1

)
‖ηi‖2

2

− 2(μi1 − 1)ηi(|σi|)sgn(σi)wi + 2‖wi‖2
2 (24)

where ‖‖2 denotes the Euclidean norm.
According to the definition of the designed transferred

vector ζ i in (22), (24) can be reformulated as

Vi := ζ T
i Pζ i. (25)

Then, we have λmin(P)‖ζ i‖2
2 ≤ Vi = ζ T

i Pζ i ≤
λmax(P)‖ζ i‖2

2. Due to the derivative of ζ i in (23), the derivative
of Vi with respect to the orbit is

V ′
i := η′

i(|σi|)ζ T
i

(
AT

i P + PAi
)
ζ i. (26)

With the definition Qi := −(AT
i P + PAi), (26) is

V ′
i = −η′

i(|σi|)ζ T
i Qiζ i. (27)

Define λ̄i := min{λmin(Qi)}. If λ̄i is positive, the sliding
variable can converge to the manifold asymptotically. Using
the definition of ζ i, we obtain ‖ζ i‖2

2. But for finite-time con-
vergence in (20), some more conditions should be satisfied.
Comparing (20) and (27), it can be known that

V ′
i ≤ −η′

i(|σi|)λmin
(
Qi

)∥∥ζ i

∥∥2
2

≤ −η′
i(|σi|)λ̄i

∥∥ζ i

∥∥2
2

≤ −η′
i(|σi|) λ̄i

λmax(P)
Vi. (28)

The assumption λ̄i > 0 can be equivalent to Qi > 0.
But the assumption min{λmin(Qi)} > 0 does not always
stand up, which depends on its expression. Define p1 :=
μ2

i1 + 2μi2 − μi1 and p2 := (μi1 − 1). Based on the definition

of Ai[ϑi(ηi, t)] :=
[

ai1 1
ai2 0

]
and symmetric positive-definite

matrix P :=
[

p1 −p2
−p2 2

]
, the exact expression of Qi is given

as

Qi =
[ −2p1ai1 + 2p2ai2 �

−p1 + p2ai1 − 2ai2 2p2

]
. (29)

In order to satisfy λ̄i > 0, matrix Qi is discussed.
With the definition of Ai[ϑi(ηi, t)] and the conditions
|ϑi(ηi, t)| ≤ 1 and μi1 > 1, it can be known that
ai1 ∈ [−μi1 − 1,−μi1 + 1] ⊂ (−∞, 0). Analogously, we can
obtain ai2 = −μi2 ⊂ (−∞,−1/4). Accordingly, ai1 and ai2
can only be negative values, and (29) can be derived as

Qi =
[

2p1|ai1| − 2p2|ai2| �
−p1 − p2|ai1| + 2|ai2| 2p2

]
(30)

where |ai1| ⊂ [ min{|μi1 + 1|, |μi1 − 1|},∞) and |ai2| = μi2.
Similarly, it is known that the bottom-right term 2p2 in

matrix Qi is positive due to μi1 > 1. For a necessary condition
det(Qi) > 0, it is acquired from (29) that

det
(
Qi

) = −p2
1 + �1p1 − �0 (31)

where
{

�1 = 2|ai1|(μi1 − 1) + 4|ai2|
�0 = 4|ai2|(μi1 − 1)2 + [|ai1|(μi1 − 1) − 2|ai2|]2 . (32)

Because of the condition μi1 > 1, ai1 ⊂ (−∞, 0), and
ai2 ⊂ (−∞,−1/4), it can be concluded that �1 ⊂ (0,∞)

and �2 ⊂ (0,∞). Similarly, according to the François Viète
theorem [24], the discriminant of det(Qi) is given as


 = �2
1 − 4�0

= 16|ai2|(μi1 − 1)[2|ai1| − (μi1 − 1)]. (33)

With the derivative ai1 ∈ [−μi1−1,−μi1 + 1], it is known
ai1 ∈ [−μi1−1,−μi1 + 1], and 
 > 0. Thus, the roots
of det(Qi) with respect to p1 are always real, which are
expressed as

rp1_1 = 1

2

(
�1 −

√
�2

1 − 4�0

)

rp1_2 = 1

2

(
�1 +

√
�2

1 − 4�0

)
. (34)

With the expression of �1 and �0 in (32), the roots rp1_1
and rp1_2 can be further expressed as

rp1_1 = 1

2

{
2|ai1|(μi1 − 1) + 4|ai2|
−4

√|ai2|(μi1 − 1)[2|ai1| − (μi1 − 1)]

}

rp1_2 = 1

2

{
2|ai1|(μi1 − 1) + 4|ai2|
+4

√|ai2|(μi1 − 1)[2|ai1| − (μi1 − 1)]

}
. (35)
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According to the expression of Ai[ϑi(ηi, t)] and the analysis
of |ai1| and |ai2|, it is known that root rp1_2 can increase with
|ai1| and |ai2|. In other words, root rp1_2 can obtain the lower
limit with the minimum |ai1| and |ai2|. The lower limit of root
rp1_2 is defined as rp1 := min{rp1_2}, which can be acquired as

rp1 = (μi1 − 1)2 + 2μi2 + 2(μi1 − 1)
√

μi2

> (μi1 − 1)2 + 2μi2 + (μi1 − 1)

= μ2
i1 + 2μi2 − μi1. (36)

Similarly, we can obtain

rp1_2 < (μi1 + 1)(μi1 − 1) + 2μi2 − (μi1 − 1) + 2

< μ2
i1 + 2μi2 − μi1. (37)

It can be concluded that rp1_1 < p1 < rp1_2. Thus, λ̄

is positive, and det(Qi) in (31) can be proved to be pos-
itive as well. It is proved that the inequality in (28)V ′

i ≤
−η′

i(|σi|)[λ̄i/(λmax(P))]Vi makes sense. With the definition of
ηi and ζ i, we obtain

ηi − η′
i|σi| = 1

2
ρi1|σi| 1

2 (38)

and

|ζi1| − 2η′
i|σi| = −ρi2|σi|. (39)

Comparing the above two equations, the relations between η′
i

and |ζi1| can be derived as [|ζi1|/(2|σi|)] < η′
i < [|ζi1|/|σi|].

Due to |ζi1| < ‖ζ i‖2 and λmin(P)‖ζ i‖2
2 ≤ Vi = ζ T

i Pζ i ≤
λmax(P)‖ζ i‖2

2, we obtain η′
i > [1/(

√
λmin(P))]V(1/2)

i . Thus,
(28) can be further formulated as

V ′
i ≤ − min

{
λmin

(
Qi

)}
√

λmin(P)λmax(P)
V

1
2

i . (40)

Define p := [(min{λmin(Qi)})/(
√

λmin(P)λmax(P))] and q :=
(1/2), (39) is V ′

i ≤ −pVq
i with are certain positive constants

p and q. Then, the condition of finite-time convergence given
in (20) is satisfied. To acquire the limit time of convergence,
integrate both sides of this equation (39), it is

tr ≤ 2

√
λmin(P)λmax(P)

min
{
λmin

(
Qi

)} V
1
2

i (0). (41)

It is clearly proved that the designed sliding variable σi

can reach the sliding manifold σi → 0 within finite time
(40) t → tr with any initial values σi(0) [28].

Remark 4: According to (18) and (19), it is known that
σi(xi, t) and wi are absolutely continuous with respect to
nondimensional time (NT) due to the differential equation
(19). Thus, the Lyapunov function Vi ∈ R≥0 is also continuous
due to the continuous variable σi(xi, t) and wi.

Remark 5: Based on (40), we obtain Vi[σi(t)] = Vi[σi(0)]+∫ tr
0 V ′

i dτ < Vi[σi(0)] for all t > 0. Because of the mono-
tone decreasing, Vi = 0 when t > tr, and the finite-time
convergence is established. From (41), it is obvious that the
theoretical reaching time of the convergence depends on the
initial conditions σi(xi, t)|t=0. Normally, a large initial state
error leads to a longer convergence time. Compared with a lin-
ear sliding variable, a nonlinear sliding variable designed in
(16) can speed up the convergence time in the reaching phase.

Remark 6: There are some constant gains in the proposed
control scheme and corresponding sliding variable scheme. It
has been noted that the subscript i denotes different general-
ized coordinate. The coordinates �1 and �2 are relevant, and
θ1 and θ2 are relevant. In order to maintain a desired closed
triangle, each set of gain of �1 and �2 should be the same,
and similarly θ1 and θ2. For example, η�1 = η�2 should be
selected in the application.

Remark 7: For practical engineering, the states in (15) can
be replaced by the state errors εi1 = xi1 − xi1_d and εi2 =
xi2 − xi2_d, where xij_d (j = 1, 2) is the desired state value.
After the transformation, the control objective is changed from
equilibrium states to the trajectory tracking εij → 0 (j = 1, 2).

Remark 8: Equation (41) provides a finite reaching time
of the closed dynamics system (19), specifically from σi(0)

to σi = 0. But after the reaching of sliding manifold,
it still takes time to slide to the desired equilibrium state
(εi1 → 0 and εi2 → 0). With the proposed sliding vari-
able in (15), the sliding dynamics on the manifold (εi1 → 0)
is reduced to be ε′

i2 = −κ2|εi2|λ2−1εi2. Thus, on the slid-
ing manifold, εi2 can converge to 0 within a finite time
tc ≤ [(κ−λ2

2 )/(1 − λ2)]|εi2(tr)|1−λ2 . The total time from the
initial condition σi(0) to the equilibrium states εi1 → 0 and
εi2 → 0 is t := tr + tc, which is certainly finite.

V. SIMULATIONS

A. Initial Conditions

As described earlier, the formation system is launched in
a compact formation. The system needs to deploy to a desired
formation, and then can carry out the task, such as Earth obser-
vation. The deployment of a triangle tethered formation system
is numerically simulated in this section. In practical engineer-
ing, all the states are acquired by tether’s releasing/retrieval
mechanism and satellite’s sensors. The basic information of
the system parameters has been given in Table I. The initial
conditions of the system are given as �10 = �20 = 0.005,
�′

10 = �′
20 = 0, �′′

10 = �′′
20 = 0, θ10 = π/6.5, θ20 = 5π/6.5,

θ ′
10 = θ ′

20 = 0.1, and θ ′′
10 = θ ′′

20 = 0. This initial forma-
tion means that the triangular system is in a compact rotation
with low speed. According to the conclusion in Section III, an
appropriate rotation speed is the key for system’s maintaining.
Thus, the desired states are given as qd = [ 1 1 θ1d θ2d ]T

with θ1d = τθ ′
1d and θ2d = τθ ′

2d, q′
d = [ 0 0 3 3 ]T and

q′′
d = [ 0 0 0 0 ]T .

The gains in the proposed control scheme and sliding vari-
able scheme are given. As discussed in Remark 5, in order
to keep the formation stable, the gains for �1 and �2 (or
θ1 and θ2) should be the same. Thus, the gains are, μ1 =
diag[3, 3, 20, 20], μ2 = diag[60, 60, 60, 60], λ1 = λ2 = 0.5,
ρ1 = diag[1, 1, 1, 1], and ρ2 = diag[10, 10, 10, 10]. To mod-
ify the unknown and bounded disturbances in Assumption 1
and Remark 2, a sinusoidal function is used for simulation,
specifically the tether oscillations caused by the Coriolis force.

B. Simulation Results

To show the effectiveness of the proposed schemes, a clas-
sic super-twisting sliding-mode control (STSMC) and an
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Fig. 6. Nondimensional length of the tethers.

Fig. 7. Formation angles.

improved STSMC scheme are used for the simulation com-
parison. All the simulation results are shown in Figs. 6–13,
which will be detailed discussed. The representations of each
scheme for comparison are given as follows.

Scheme 1: The classic STSMC proposed in [19] and [20]
with a linear sliding variable given as σi = ei + ce′

i.
Scheme 2: An improved STSMC given in (21) with a linear

sliding variable given as σi = ei + ce′
i.

Scheme 3: The proposed scheme given in (18) and (21),
namely, an improved STSMC with a nonlinear sliding variable.

Nondimensional lengths of the tethers in triangle formation
are plotted in Fig. 6. The green full lines represent the results
acquired by the proposed scheme (called scheme 3), while the
blue dash-dot lines and brown dash lines denote scheme 1
and scheme 2, respectively. Clearly, all the schemes perform
well. With the proposed scheme, the state convergence is more
quick and stable, and the exact convergence time is compared
and given in Table II. From the table, it is obvious that the
sliding variable under the proposed scheme can achieve the
sliding manifold more quickly compared to schemes 1 and
2. When the sliding manifold is reached, the traditional linear
sliding variable is reduced to ε′

i1 = −cεi1. The convergence on
the sliding manifold is exponent reaching εi1(t) = εi1(0)e−cτ ,

Fig. 8. Rate of the formation angle.

TABLE II
COMPARISON OF THE CONVERGENCE (CASE OF TETHER IN FIG. 6)

specifically an asymptotic stable. For the proposed nonsingu-
lar sliding variable (15), the sliding dynamics on the manifold
(εi1 → 0) ε′

i2 = −κ2|εi2|λ2−1εi2 is finite convergence, which
has been discussed in Remark 7. It notes that trajectories of
the tethers are almost completely overlapped. This high con-
sistency is the first requirement to maintain the formation of
the tethered triangle system. If the convergence of each tether
is not uniform, the formation cannot be stably deployed.

Similarly, for the formation angle θ1 and θ2 in Fig. 7, the
convergence under the proposed scheme is quicker than the
others. There are two notable points of the formation angles.
First, control gains of each dynamics equation should be the
same, and the angles of the formation can keep in a stable
value. Second, due to the expression θi = θi ± 2kπ (i ∈ N

+),
the trajectories of θ1 and θ2 are plotted in the range [−2π, 2π].

According to the dynamic analysis in Section III, it is known
that the angular rate of each tether is important to the forma-
tion keeping. First, the angular rate should satisfy the condition
(12); second, the angle rate of each tether should try to be
consistent during the formation deployment and maintaining;
third, to fulfill condition (12), the angular rate of the forma-
tion should be achieved as quickly as possible. Fig. 8 shows
the angular rate θ ′

1 and θ ′
2 with different schemes. It is obvi-

ous that the proposed control scheme performs better results,
specifically the rapidity and consistency.

The sliding variables σ�i and σθi under the scheme (15) are
plotted in Figs. 9 and 10, respectively. The sliding variable
of nondimensional tether under the proposed scheme can con-
verge to 0 within 0.05 NT, and the formation angle is within
0.1 NT. Similar to the conclusions of Figs. 6 and 7, compared
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Fig. 9. Sliding variables of nondimensional tether.

Fig. 10. Sliding variables of the formation angle.

to schemes 1 and 2, the sliding variables can converge to
sliding manifold more quickly under the proposed scheme.
Besides, from the comparison of Fig. 9 and Fig. 10, it is
shown that the sliding variables of the nondimensional tether
perform better than the formation angle. It stems from the fact
that the desired tether length is a constant, while the forma-
tion angle should track a dynamic trajectory. The generalized
control force of each state is given in Fig. 11. Clearly, the tra-
ditional chattering problem of sliding-mode control has been
improved.

Finally, the integral formation of the tethered triangle system
during the deployment has been plotted in Figs. 12 and 13,
where Fig. 12 is a full print version, and Fig. 13 is a sim-
ple version. In Fig. 12, the process of the deployment can
be completely presented, in which blue, red, and yellow rep-
resent three tethers in the triangle tethered formation. As
explained earlier, a symmetrical formation is very important to
the deployment; while asymmetry may lead to tether’s slack.
Tether’s slack in space is very dangerous because it is uncon-
trollable and twisting. It seems that the formation is kept well
during the entire deployment. To check the exact formation,
a simple version (every 30 plots) of Fig. 12 is given in Fig. 13.

Fig. 11. Generalized control forces.

Fig. 12. Tethered triangle formation in full print version.

Fig. 13. Tethered triangle formation in simple version.

It is shown that when the system is deployed to the desired
formation of a stable condition, the spinning period is about
2.1 NT. Because the result of the centroid trajectory of the
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triangle divided by the angular velocity is not an integer, the
triangle cannot be completely overlapping. It can be seen that
the formation is controlled perfectly during the entire process,
specifically intact, symmetric, and uniformly rotating.

VI. CONCLUSION

In this article, a triangle tethered formation system for
space observation was fully studied, including the dynam-
ics modeling, analysis, and controller design of the spin-
ning deployment. According to the dynamic analysis without
any external control force, a natural stable spinning con-
dition was acquired. The numerical simulation proved that
the triangle system can keep in a symmetrical formation
of the derived condition. The proposed scheme consists of
a nonsingular nonlinear sliding variable and a second-order
sliding-mode controller, which can guarantee both the speed
of convergence and alleviation of the chattering problem. The
finite converge time was estimated based on the Lyapunov
proof and a detailed discussion of the convergence condi-
tions. The proposed scheme was comprehensively compared
with the classic super-twisting sliding-mode controller, and
an improved super-twisting sliding-mode controller but with-
out a nonsingular sliding variable. The effects of improved
STSMC and the nonsingular sliding variable have been dis-
cussed. All the results showed that the states under the
proposed scheme can converge more quickly, specifically to
the manifold and on the manifold. Besides the single state
analysis, the entire formation during the deployment has been
given at last. It shows that the formation is kept perfect during
the entire process.

In future work, different tethered formation systems will
be studied, specifically the stereoscopic configuration, such
as a double-pyramids formation. For a stereoscopic configura-
tion, more complex dynamics and strong coupled in-plane and
out-of-plane formation angles make the control problem more
complicated. All the problems will be studied in further work.
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