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Joint Detection and Localization of an Unknown
Number of Sources Using the Algebraic

Structure of the Noise Subspace
Matthew W. Morency , Student Member, IEEE, Sergiy A. Vorobyov , Fellow, IEEE, and Geert Leus, Fellow, IEEE

Abstract—Source localization and spectral estimation are among
the most fundamental problems in statistical and array signal pro-
cessing. Methods that rely on the orthogonality of the signal and
noise subspaces, such as Pisarenko’s method, MUSIC, and root-
MUSIC, are some of the most widely used algorithms to solve these
problems. As a common feature, these methods require both a pri-
ori knowledge of the number of sources and an estimate of the
noise subspace. Both requirements are complicating factors to the
practical implementation of the algorithms and, when not satisfied
exactly, can potentially lead to severe errors. In this paper, we pro-
pose a new localization criterion based on the algebraic structure
of the noise subspace that is described for the first time to the best
of our knowledge. Using this criterion and the relationship between
the source localization problem and the problem of computing the
greatest common divisor (GCD), or more practically approximate
GCD, for polynomials, we propose two algorithms, which adap-
tively learn the number of sources and estimate their locations. Sim-
ulation results show a significant improvement over root-MUSIC in
challenging scenarios such as closely located sources, both in terms
of detection of the number of sources and their localization over a
broad and practical range of signal-to-noise ratios. Furthermore,
no performance sacrifice in simple scenarios is observed.

Index Terms—Algebraic geometry, approximate greatest com-
mon devisor, direction-of-arrival estimation, noise subspace, poly-
nomial ideals, source localization, spectral estimation.

I. INTRODUCTION

THE problems of source localization and spectral esti-
mation in a noisy environment are among the most
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fundamental problems in array processing [1] and spectral anal-
ysis [2]. Among the algorithms devised to solve these prob-
lems, subspace-based algorithms such as Pisarenko’s method,
MUSIC, and root-MUSIC have become ubiquitous [3]–[7].
Subspace-based methods require two steps. First, the signal and
noise subspaces must be estimated. Second, given the estimates
of the signal and noise subspaces, the source locations or fre-
quency estimates are derived with respect to some criterion, e.g.
minimization of a cost function - spectral function or maximum
likelihood function [1], or spectral peak-finding. The tasks of
detecting the number of sources, and estimating their locations
is a fundamental one in telecommunications and radar as well as
many other engineering, statistics, and scientific applications. In
telecommunications, for example, it is often required to identify
sources of interference and their locations in order to maintain
the functioning of a system at a desired level of performance. In
radar, the task of detection of the number of sources is of utmost
importance. In military applications, for example, strategies to
evade radar systems attempt to induce either overestimation
(deployment of chaff), or underestimation (stealth) of the num-
ber of targets (sources). Most subspace-based methods differ
only in how to approach the second step. For example, MU-
SIC and root-MUSIC differ only in the criterion used to derive
the source locations. However, it has been argued that the first
step-estimating the signal and noise subspace - the most crucial
[5]. As such, substantial research efforts have been invested into
providing robust estimates of signal and noise subspaces in a
variety of challenging scenarios [5]–[7]. This is typically done
through the eigen-decomposition of the autocorrelation matrix
of a set of observations. Subspace estimation is thus reduced to
a selection problem such as the root selection problem in the
case of, for example, root-MUSIC [5]–[7]. However, as vec-
tor spaces, the signal and noise subspaces have a dimension
which is either assumed to be known a-priori, or, perhaps more
practically, must first be estimated.

While the estimate of the signal and noise subspaces is taken
from the eigenvectors of the observation autocorrelation ma-
trix, the dimension of the signal subspace is typically inferred
from the distribution of the eigenvalues[7]–[11]. Typically, the
dimension of the signal subspace is taken to be the number of
“dominant” eigenvalues. However, other statistical criteria such
as the Akaike information criterion (AIC) and minimum de-
scription length (MDL) can be used as well drawing a parallel
to model order selection [8]. In recent work [11], the estimation
of the number of sources has been considered as a multiple hy-
pothesis test on the equality of eigenvalues. In order to perform
the hypothesis testing, multiple instances of the observation
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autocorrelation matrix must be generated, and multiple eigen-
decompositions performed. The assumption which underlies all
of these methods, though, is that information about the number
of sources is contained in the eigenvalues, while the eigenvectors
themselves are ignored.

In this paper, we argue that under certain assumptions, the
algebraic structure of the eigenvectors themselves contains a
great deal of information about the number of sources, as well
as their locations. Specifically, the noise eigenvectors are argued
to lie in a univariate polynomial ideal generated by a single
element in the univariate polynomial ring. The degree of this
generator then corresponds to the number of sources and the
roots of the generator correspond to their locations.

To exploit the above described algebraic structure of the noise
subspace we propose two algorithms, the first of which does not
need to estimate the noise subspace (however, it can use any
estimate of the noise subspace), and the second of which uses
the structure of the noise eigenvectors to provide the subspace
estimate. The first algorithm uses hierarchical clustering to first
locate clusters of roots which are tightly located. An estimate of
the source location is then based on the phase information of all
the roots in the cluster. The second method uses the method of
Lagrange multipliers proposed in [12] to produce an estimate of
the greatest common divisor of the noise eigenvectors (which
are viewed as polynomials) in an optimal way. This method
proceeds in two steps: an initial estimate of the source locations
(and number of sources), followed by a root “refining” Gauss-
Newton iteration. The root-refinement produces a certificate
of a necessary condition of optimality of the estimate of the
approximate greatest common devisor (GCD), and can be used
with any initial estimate, including that of the proposed root-
clustering algorithm.

This paper contains several contributions.1
� The first is a thorough analysis of the noise subspace of the

observed signal covariance matrix, and a description of its
algebraic structure.

� Based on this algebraic structure, we formulate a new noise
subspace selection criterion that allows for accurate noise
subspace estimation by simply computing the GCD be-
tween two randomly selected eigenvectors of the signal
covariance matrix.

� We show that in practice for small sample size and other
imperfections, the source localization problem is equiva-
lent to the approximate GCD problem, and thus amenable
to solution via techniques for finding approximate GCDs.

� We prove that the formation of the root-MUSIC polyno-
mial is optimal with respect to a measure of the perturba-
tion of the observed noise eigenvectors. To our knowledge,
this result has not been reported previously in the signal
processing literature.

� We provide a certificate to verify the optimality of any
subspace based localization algorithm.

� We develop practical algorithms for joint detection and
localization of an unknown number of sources using the
algebraic structure of the noise subspace, which are based
on the approximate GCD calculation.

� Via simulations, we show that the proposed algorithms
sacrifice no performance in simple scenarios, while pro-
viding a tangible benefit in challenging scenarios such as

1Some preliminary results have been reported in the conference publication
[13].

closely located sources in moderate signal-to-noise ratio
(SNR) conditions.

Notation: Throughout this paper bold upper-case letters de-
note matrices, bold lower-case letters stand for vectors, upper-
case letters are constants, and lower-case letters are variables.
The N × N identity matrix is denoted as IN , while 0 stands
for the vector of zeros and 0N ×M is the matrix of zeros of
size N × M . The complex Gaussian distribution of a random
vector with zero mean and covariance matrix C is denoted as
CN (0,C). Real and imaginary parts of a complex number are
denoted as Re(·) and Im(·), respectively, and j �

√−1. The no-
tation range(·) is used for the operator that returns the column
space of its matrix argument, while (·)H , (·)T , (·)∗, (·)†, ‖ · ‖,
and deg(·) denote respectively the Hermitian transpose, trans-
pose, conjugate of a complex number, Moore-Penrose pseudo-
inverse, Euclidean norm of a vector, and degree of a polynomial.
In addition, K stands for a base field and K[x1 , · · · , xn ] denotes
the polynomial ring with coefficients in K in n-variates. A com-
mutative ring is defined as a set that is closed under two different
operations, namely addition and subtraction. In addition to being
commutative, commutative rings are associative, left and right
distributive, and contain identity elements for both the addition
and multiplication operation (denoted as 0 and 1).

The paper is organized as follows. The data model and basics
of subspace-based localization algorithms are given in Section
II together with the problem description. The algebraic structure
of the noise subspace is derived in Section III. In this section, the
new noise subspace selection criterion is also formulated and
the main theoretical results for the paper relating the localization
problem of an unknown number of sources to the approximate
GCD calculation are also given. We propose algorithms which
leverage the algebraic structure of the noise subspace and ad-
dress the corresponding approximate GCD problem in Section
IV. Simulation results follow in Section V. The paper is con-
cluded in Section VI, and some technical derivations are given
in Appendix.

II. DATA MODEL, SUBSPACE-BASED METHODS AND

THE PROBLEM

A. Data Model

Consider L independent narrow-band Gaussian sources in the
far-field impinging upon a uniform linear array (ULA)2 of N
antenna elements with inter-element spacing λc/2, where λc is
the carrier wavelength. The signal observed at the antenna array
at time t can be written as

x(t) = As(t) + n(t) (1)

where A� [a(θ1), · · · ,a(θL )], [a(θ)]n� αn−1 , α� ejπ sin(θl ) ,
θl is the direction-of-arrival (DOA) of the l-th source, s(t) is
an L × 1 vector of source signals, which can be assumed inde-
pendent deterministic or stochastic idependently and identically
destributed (i.i.d.) Gaussian, i.e., s(t) ∼ CN (0,S) with S being
a diagonal matrix, for example, S = σ2

s IL if the source signals

2The ULA assumption can be relaxed by applying the results of [19] as shown
in the Section VI, but for convenience we develop the fundamental results here
for ULA.
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are equal power, σ2
s is the source power, n(t) ∼ CN (0, σ2

nIN ) is
the N × 1 Gaussian sensor noise vector, σ2

n is the noise power.3

Collecting T observations x(t), the sample covariance matrix
(SCM) can be computed as

R̂xx � 1
T

T∑

t=1

x(t)xH (t)

≈ ASAH + σ2
nIN � Rxx (2)

where Rxx is the true covariance matrix. The approximate
equality holds for a sufficiently large sample size T and fol-
lows after substituting (1) in the first row of (2).

For signal model (1), R̂xx has full rank almost surely if
T ≥ N . Since the true covariance matrix Rxx is Hermitian by
definition, it has a full set of real eigenvalues, and an eigenba-
sis, allowing us to write the eigenvalue decomposition for the
estimate R̂xx as

R̂xx = QΛQH

= QsΛsQH
s + QnΛnQH

n (3)

where Qs , Λs , and Qn , Λn are the matrices of eigenvectors and
eigenvalues for the signal and noise subspaces, respectively,
with Λs and Λn being diagonal matrices.

A major difficulty with subspace based source localization
methods introduced next is that we only have access to the
matrix Q and must choose which columns belong to Qs and
which belong to Qn . In other words, the dimension of the signal
subspace is not known in general.

B. Subspace Based Methods

Using the property of the decomposition (3), we have
Qs ⊥ Qn . Further, as T → ∞, L can be exactly estimated and
range(Qs) = range(A), which implies that QH

n a(θl) = 0, ∀l,
where θl is the l-th source DOA. It is this property which is ex-
ploited by subspace based methods such as Pisarenko’s method,
MUSIC, and root-MUSIC.

As was mentioned in the introduction, MUSIC and root-
MUSIC differ only in how the DOAs are retrieved from the
subspace estimates. Given an estimate of the number of sources
L̂ and a corresponding estimate of the noise subspace Qn , both
algorithms derive their estimates from the function

J(θ) = aH (θ)QnQH
n a(θ). (4)

The MUSIC algorithm takes the L̂ largest peaks of the spectral
function J−1(θ) as θ is varied across the entire angular sector.
The root-MUSIC algorithm for ULAs first treats each column
of Qn as the vector of coefficients of a polynomial in the field
defined by this vector, convolves it with its flipped and conju-
gated version, and then sums all of these polynomials into a
single polynomial. Then, the L̂ roots of this polynomial which
are closest to the unit circle are taken to be the roots which
correspond to the sources. Specifically, the L̂ roots are found as
the points z ∈ C minimizing

J(z) = dH (z)QnQH
n d(z) (5)

3We assume Gaussianity in order to justify the use of the sample covariance
matrix estimate R̂xx .

Fig. 1. Eigenvalues for one instance of R̂xx . ULA of N = 10 elements,
T = 100 snapshots, 10 dB SNR, two sources located at 31◦ and 32◦.

where [d(z)]n = zn . The difference between the definitions of
a(θ) and d(z) are the domains. The domain of d(z) is the field of
complex numbers, whereas a(θ) accepts arguments only from
the range [0, 2π) corresponding to the unit circle. This is the
reasoning behind the root selection criterion of root-MUSIC.

C. Problem Description

Clearly, knowledge of the number of sources is required in
the algorithms discussed above. This knowledge is typically
based on the distribution of the eigenvalues of R̂xx . Information-
theoretic criteria such as the Akaike information criterion (AIC)
or minimum description length (MDL) can, for instance, be
used to identify the number of sources in drawing a parallel
to model order selection [8]. MDL was shown to be a consis-
tent estimator, and returns the correct number of sources in the
infinite sample regime, while AIC is not even consistent [9].
Indeed, AIC is well known to overestimate the model order.
It was demonstrated in [10], however, that the methods based
on the distribution of the eigenvalues of R̂xx , such as AIC,
and MDL, quickly break down in non-ideal scenarios, such as
model mismatch or closely located sources. In non-ideal scenar-
ios, all aforementioned methods can lead to model order under-
and overestimation. We demonstrate this through the following
example.

Illustrative Example 1: Fig. 1 shows the eigenvalue distri-
bution of a single instance of R̂xx corresponding to a ULA of
N = 10 elements, at 10 dB signal-to-noise ratio (SNR), with
T = 100 snapshots, and two closely located sources impinging
from 31o and 32o . The difference between the second eigenvalue
and the last eigenvalue is 0.1396, while the first eigenvalue is
over 100 times larger than the second eigenvalue. Thus, in the
non-ideal scenario of closely located sources, it would be diffi-
cult to conclude that there is more than one source on the basis
of the eigenvalues alone. However, AIC estimates the presence
of between 2 and 5 sources, while MDL estimates the presence
of between 1 and 4 sources. We propose a method to estimate
the dimension of the signal subspace which, in practice, never
over-estimates the number of sources even in such a challeng-
ing scenario. Under-estimation is sometimes unavoidable due
to source merging.
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The phenomenon depicted in Fig. 1 is referred to as the
“breakdown” of the detector [10]. Thus, it can be concluded
that the distribution of the eigenvalues alone may be unreliable
for the model order estimation especially when the angular sep-
aration is small and/or the sample size is small [7], but even in
the case of infinite sample size under some non-idealities in the
model. As a way around of the aforementioned “breakdown”
phenomenon, the eigenvectors themselves will be considered in
this paper. Interestingly, the authors of [10] presented an alterna-
tive to using only eigenvalue information, which also considers
the eigenvectors themselves, and develop a statistic based on the
average projection (taken over all angles) of the array steering
vector on the null-space defined by the eigenvectors currently
being tested. Moreover, a similar test was presented in [1], where
the source DOAs are assumed to be known approximately. Sig-
nal eigenvectors are then chosen to be the eigenvectors onto
which the presumed steering vector has drastically larger pro-
jections. In contrast with these methods, our methods in this
paper assume no knowledge and make no use of the steering
vector and its projections. Instead, our methods make use of the
algebraic structure present in the noise eigenvectors, which we
derive and explain for the first time, under the data model in
Section II-A.

More generally, it is known that even if the root-MUSIC
algorithm is provided with the correct number of sources, in
challenging scenarios such as the one depicted in Fig. 1 or,
if the sample size is small, the performance of the algorithm
is generally quite poor. This is because of a deficiency in the
classic root-selection criterion, which, as we argue in the next
section, should be replaced by a new criterion based on the
algebraic structure of the noise subspace. It will be then shown
that methods developed based on the new criterion overcome
the aforementioned problem and lead to better performance in
challenging scenarios.

III. ALGEBRAIC STRUCTURE OF THE NOISE SUBSPACE

Let us first assume that the number of sources L is known.
Then for known L we aim at explaining the algebraic structure
of the noise subspace for the data model (1). Pursuant to the
discussions in the previous section, the assumption of a known
L will later be dropped, as we introduce methods to estimate
the number of sources.

As was described in the previous section, subspace based
methods leverage the orthogonality of the noise subspace es-
timate, i.e., Qn , and the steering vector corresponding to the
DOAs of the sources. Specifically, when T → ∞, the condition
that

AH Qn = 0L×N −L (6)

must hold. In other words, the column space of Qn is entirely
contained in the null-space of AH .

To explain the algebraic structure of the noise subspace Qn ,
we will need (6) and we will also make use of some basic
concepts from algebraic geometry. Since algebraic geometry
is not yet a common tool in signal processing we introduce
the concepts that we need to aid in the understanding of the
following contents. Algebraic geometry is concerned with the
relations between sets of polynomials called ideals (algebraic
objects) and their associated zero loci called varieties (geometric
objects) [14].

Definition 3.1: An ideal I in K[x1 , · · · , xN ] is a sub-
group of K[x1 , · · · , xN ] with the property that ∀ a ∈ I, r ∈
K[x1 , · · · , xN ], a · r ∈ I.

As an example, take the commutative ring of univariate poly-
nomials over C, written C[x], and as a subset, take the set of all
polynomials with a common root at α ∈ C [15].

Definition 3.2: An algebraic variety given an ideal I ∈ K
[x1 , · · · , xN ] is a subset of KN such that V (I) � {p ∈ KN |
f(p) = 0, ∀f ∈ I ⊂ K[x1 , · · · , xn ]}.

Thus, an algebraic variety is described by the polynomials
vanishing on it. One can similarly describe an ideal by the set
on which every member vanishes [14].

Definition 3.3: A polynomial ideal given a variety V ∈ KN

is a set of polynomials with the property that I(V ) = {f ∈
K[x1 , · · · , xN ] | f(p) = 0, ∀p ∈ V }.

For example, take the variety consisting of two points on the
real line V = {1, 2}. The ideal corresponding to this variety is
the set of polynomials with at least one root at each of x = 1
and x = 2.

Ideals are generated by elements contained within them, much
the same way that a vector space is spanned by linearly indepen-
dent vectors contained in the space [15], [16]. An ideal which
is generated by a single element is a principal ideal [14].

Definition 3.4: The principal polynomial ideal generated by
f , denoted as 〈f〉, is the set {h |h = f · g, g ∈ K[x1 , · · · , xN ]}.

All univariate polynomial ideals are principal and can thus be
generated by a single element of K[x] which is the GCD of all
the polynomials in the ideal I.

Now we observe that dH (z)qi is simply the evaluation of
a polynomial with coefficients defined by the entries of the
column qi of Q at z. Since each column of the noise subspace
Qn must lie in the null-space of AH according to (6), we can
use Definition 3.3 to assert that the columns of Qn must lie in a
univariate polynomial ideal I(V ) where V = {α1 , · · · , αn} are
the generators of the columns of A. Pursuant to Definition 3.4,
this implies that the columns of Qn be generated by a single
element Q(x) ∈ C[x]. This generator being, specifically,

Q(x) =
L∏

l=1

(x − αl). (7)

where αl , ∀l are complex numbers whose phase arguments cor-
respond to the source locations.

This extends trivially to the root-MUSIC polynomial
dH (z)QnQH

n d(z) as it is merely the Euclidean norm of the in-
ner product dH (z)Qn . Specifically, the polynomial ideal which
describes the noise subspace is a function of the source loca-
tions, parametrized by αl , ∀l.

A. Noise Subspace Selection Criterion

Based on the algebraic structure of the noise subspace, the
new noise subspace selection criterion can be formulated as
follows.

Criterion: Given N polynomials whose coefficients are de-
scribed by the N eigenvectors of R̂xx , select the largest subset
which lies in a polynomial ideal. The cardinality of this set is
N − L̂, where L̂ is the degree of the generator of the polynomial
ideal. Its factors are injectively related to the source locations.

This criterion describes the essential difference between our
approach, and the dominant approach of source estimation based
on eigenvalues, and estimation based on eigenvectors. We aim
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TABLE I
EIGENVALUES OF THE SCM CORRESPONDING TO ILLUSTRATIVE EXAMPLE 1

to estimate a single object, the maximal degree GCD, of a subset
of the observed eigenvectors. The properties of this object are
the solutions to the separate problems. Specifically, the maximal
degree is the number of sources, and the factors themselves are
injectively related to the source locations. Notably, this implies
that for every degree of this GCD, there is a factor which pro-
vides the estimate of the source location. In illustrative example
1, however, it was shown that this is not necessarily true of the
eigenvalue-detection eigenvector-estimation paradigm. Sources
could be localizable based on the observed eigenvectors, but not
detectable on the basis of the eigenvalues alone.

B. Exact R̂xx

In the previous sections, the analysis assumed an infinite
sample size, in which case the estimate R̂xx is almost exact,
that is, R̂xx ≈ Rxx = σ2

s AAH + σ2
nI. In this case, the noise

subspace lies exactly in a polynomial ideal. Moreover, consistent
eigenvalue methods for estimating the number of sources allows
the error free separation of the matrix Q into signal and noise
component matrices.

As discussed in Section II-C, the estimation of the noise sub-
space based on the conventional criteria may be inaccurate if
there exist data model non-idealities. The new subspace selec-
tion criterion allows, in contrast, for accurate noise subspace
estimation in terms of simply computing the greatest common
divisor (GCD) between two randomly selected columns of Q,
where Euclid’s algorithm can be used for computing GCD [12].
Indeed, if two noise eigenvectors are selected, then the GCD is a
polynomial, and its factors, αl , are the complex generators cor-
responding to the source locations. Two things are worth noting
about this selection algorithm. The first is that the maximum
degree of the GCD of the noise eigenvectors cannot exceed
N − L, where L is the true dimension of the signal subspace.
The second is that the signal eigenvectors which are linear com-
binations of polynomials themselves almost surely do not share
roots. These two statements are proven in the following two
lemmas.

Lemma 1: The degree of the largest degree GCD of qL+1 ,
· · · ,qN , where qL+1 , · · · ,qN are the noise eigenvectors of
Rxx , is upper-bounded by L.

Proof: In Section III-A it was shown that the noise eigenvec-
tors of Rxx when interpreted as the coefficients of a univariate
polynomial exist in a univariate polynomial ideal generated by
Q(x) =

∏L
l=1(x − αl).

Let us denote the restriction of this polynomial ideal to poly-
nomials of degree less than or equal to N − 1 as 〈Q(x)〉|N −1 .

Using Viète’s formulas we can produce a vector of coefficients
of Q(x) denoted as q, which allows us to write a basis for the
noise subspace in Toeplitz form as

B �

⎡

⎢⎢⎣

q 0 · · · 0

0 q
... 0

... 0
. . . q

⎤

⎥⎥⎦. (8)

The noise eigenvector matrix can then be written as Qn =
BC where C is some invertible matrix. Assume that the dimen-
sion of the signal subspace is L, and that the noise eigenvectors
have a maximal degree GCD of degree L + 1. The dimension of
B must then necessarily be N × (N − L − 1) since the length
of q must be L + 2. However this is a contradiction to the as-
sumption that Rxx is full-rank and Hermitian, and thus has a
complete orthogonal eigenbasis, which proves the claim made
in the lemma. �

We note here that B is known as a convolution matrix having
the property that an m degree polynomial f(x) = q(x)u(x) can
be represented as a vector in Cm+1 as f = Bu where q and u
are the vector representations of q(x) and u(x).

Lemma 2: The signal eigenvectors of Rxx , i.e., q1 , · · · ,qL ,
almost surely have a constant GCD.

Proof: From (1) we can write Qs as AP where P is some
invertible matrix. Then the columns of Qs share a root if and
only if

QH
s d(z) = PH AH

⎡

⎢⎢⎣

1
z
...

zN −1

⎤

⎥⎥⎦ = 0 (9)

for some z ∈ C. Since P is invertible, the above equation
has a solution only if AH d(z) = 0. That is the polynomials
fl(z) = 1 + αlz + α2

l z
2 + · · · + αN −1zN −1 are all equal to 0

simultaneously.
Considering α to be a variable (since we do not know the αl

in question) the polynomial fl(z) becomes a multivariate poly-
nomial f(α, z) whose zero locus is a set of maximal dimension
1 in the affine space C2 . This alone suffices to prove the almost
sure claim made in the lemma. �

In addition, it is worthwhile to consider from the mathematical
viewpoint whether the zero locus of the multivariate polynomial
f(α, z) has multiple solutions α on the unit circle for a given z
at all, or in how many places. However, this is unnecessary for
the preceding claims and we thus leave it as an open problem.

C. ε-Ideal and Approximate GCD

In practice, the sample size T is finite and typically small. As a
result, the noise eigenvectors are perturbed from being exactly in
a univariate ideal, which complicates the application of the new
noise subspace selection criterion and GCD-based algorithm
explained in the previous subsection. Indeed, the perturbed noise
eigenvectors no longer precisely lie in an ideal, but rather lie in
an ε-ideal [21].

The ε-ideal structure of Qn implies that each noise eigenvec-
tor has, as a factor, the perturbed generator

Q(x) =
L∏

l=1

(x − αl + εl) (10)

where εl are small random perturbations [3]. Then, the problem
of finding an approximate GCD can be seen as finding α̂l , ∀l
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such that

Q̂(x) =
L∏

l=1

(x − α̂l) (11)

is as “close” to (10) as possible, in some appropriate sense.
What we know are the coefficients of the columns of the

matrix Q. There are two competing notions of “closeness” for
approximate GCDs in computer algebra. The first is based on the
perturbations of the coefficients themselves, while the second is
based on the perturbations of the roots of the polynomials. The
algorithms that we present in Section IV use both these notions
of “closeness.” Moreover, we investigate the consequences using
the two notions and the performance of their corresponding
algorithms in the simulation section.

In the following derivation, we investigate “closeness” for ap-
proximate GCD with respect to the perturbations of the polyno-
mial coefficients, and relate it to the root-MUSIC cost function.

We start with the case of two polynomials. Polynomials
are taken from C[z] with complex valued arguments and co-
efficients. Let us assume that the two polynomials f(z) =∑N

i=0 fiz
i and g(z) =

∑N
i=0 giz

i do not have a non-trivial
GCD, but have an approximate GCD of the form (10). Given
these two polynomials f(z) and g(z) which “almost” share a
root, the goal is to perturb the coefficients of the polynomials
f(z) and g(z) so that it will result in polynomials f̂(z) and ĝ(z)
such that

f̂(α) = ĝ(α) = 0 (12)

for some α ∈ C, where f̂i = fi + λi and ĝi = gi + μi, λi, μi

∈ C. Then x − α is the GCD of f̂(z) and ĝ(z).
The GCD that corresponds to the minimal perturbation of the

coefficients of the polynomials f(z) and g(z) is then called the
“nearest GCD.” Using such a sense of “closeness” or “nearness,”
we aim to prove that the root-MUSIC polynomial as it is tra-
ditionally formulated is optimal with respect to the coefficient
perturbations. That is, in order to solve the “nearest GCD” prob-
lem, the root-MUSIC polynomial results as the minimizer of a
Lagrange multiplier problem involving the coefficient perturba-
tions. The proof of the latter fact will be based the proof first
appearing in [12] for the “nearest GCD” problem in the case
of two polynomials. We will adopt and extend it to multiple
polynomials as well as note that the minimizer of the Lagrange
multiplier problem is, in fact, the root-MUSIC polynomial (5).

The problem of finding the nearest GCD of two perturbed
polynomials described above can be formulated as [12]

min
λ,µ

ε

s.t. f̂ (α;λ,μ) = ĝ(α;λ,μ) = 0 (13)

where λ = [λ0 , λ1 , · · · , λN ]T , μ = [μ0 , μ1 , · · · , μN ]T and

ε =
N∑

i=0

λiλ
∗
i + μiμ

∗
i = ‖λ‖2 + ‖μ‖2 (14)

is the measure of the total energy of the perturbations λ and μ.
Then the following theorem that connects the theory of nearest
GCDs to the solution of (5) holds.

Theorem 1: The minimizer of ε for f1(z), · · · , fk (z),
where f1(z), · · · , fk (z) are polynomials whose coefficients are

defined by the noise eigenvectors Qn of the signal covariance
matrix, is the root-MUSIC polynomial (5).

Proof: Let us start with the case of two polynomials when
Qn contains only two noise eigenvectors, that is, we start with
considering problem (13). Introducing the Lagrange multipliers
a, b, c, d, we can express the Lagrangian of problem (13) as

L(λ,μ, a, b, c, d) = ε + 2a · Re(f̂(α)) + 2b · Im(f̂(α))

+ 2c · Re(ĝ(α)) + 2d · Im(ĝ(α)) (15)

At optimality with respect to the primal optimization variables
λ and μ, the real and imaginary parts of both polynomials must
be equal to 0. Thus, differentiating (15) with respect to the real
and imaginary parts of λi and μi and solving the result for the
multipliers by substituting back into the constraint of (13), it
can be found that

λi = −(a + jb)(α∗)i

μi = −(c + jd)(α∗)i (16)

where

a + jb = − f(α)
∑N −1

i=0 (α∗α)i

c + jd = − g(α)
∑N −1

i=0 (α∗α)i
. (17)

More details of the derivation of (16) and (17) are given in
Appendix.

Substituting (17) into (16), and then substituting the result
to (14), the minimum total perturbation energy ε can then be
written entirely in terms of the original polynomials f(z) and
g(z) and α as

εmin =
∑N −1

i=0 [f(α)f ∗(α)αi(α∗)i + g(α)g∗(α)αi(α∗)i ]
∑N −1

i=0 (αα∗)i
(∑N −1

i=0 (αα∗)i
)∗

=
f(α)f ∗(α) + g(α)g∗(α)

∑N −1
i=0 (αα∗)i

. (18)

These results can be easily extended to an arbitrary num-
ber of polynomials, i.e., an arbitrary dimension of the noise
subspace. For this, we rename the polynomials and the pertur-
bation coefficients corresponding to the polynomials as fl(α)
and λi,l , respectively. Following the preceding derivation for
the corresponding Lagrangian ∂L

∂λi , j
= 0 will yield the follow-

ing equations for λi,j and εmin

λi,k = − fk (α)
∑n−1

i=0 (α∗α)i

⇒ εmin =
∑K

k=1 fk (α)f ∗
k (α)

∑N −1
i=0 (α∗α)i

. (19)

Finally, noting that the noise eigenvectors Qn = [uL+1 , · · · ,
uN ] are mutually orthogonal, and that |α| ≈ 1 we can rewrite
(19) as

εmin =
1
N

dH (z)QnQH
n d(z) (20)

which coincides with N−1J(z) in (5) and completes the proof.�
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Fig. 2. The 0 level cut of equations (21) corresponding to the last two eigen-
vectors of the SCM corresponding to a system with 10 antennas, with 3 sources
impinging on the array. The real intersection points clearly correspond to source
locations.

From Theorem 1 it follows that the formation of the root-
MUSIC polynomial is therefore optimal with respect to the
polynomial coefficients encoded in the noise eigenvectors. It is
the first statement of optimality of the root-MUSIC polynomial
to the best of our knowledge. For example, the seminal work
[3] is concerned with the statistical study of the root-MUSIC
algorithm in terms of mean square error, but it is not concerned
with optimality of the root-MUSIC polynomial itself.

With the established optimality of the root-MUSIC polyno-
mial in the sense of Theorem 1, what then remains is the root-
selection algorithm, in other words, finding the minimum of the
function εmin with respect to α. This corresponds to finding the
values of α which correspond to the location of the sources.
Writing α = u + jv, u, v ∈ R, εmin becomes a real polynomial
in two variables, which attains its minima at the stationary points

∂εmin

∂u
= 0

∂εmin

∂v
= 0. (21)

Fig. 2 depicts an example of the intersection of the two
algebraic plane curves described by equations (21) along
with the roots that correspond to the actual source locations.
The solution of the above stationary points is investigated in
Section IV-B. A certificate of the satisfaction of a necessary
condition for optimality is produced in Section IV-B.

IV. ALGORITHMS

Several algorithms have been developed in the computer alge-
bra literature to compute the approximate GCD of polynomials
whose coefficients are either only imprecisely known, perturbed
by noise, or in some other sense “close” to having a GCD, but
for which Euclid’s algorithm will fail to find an appropriate
GCD [12]. As was discussed in the previous section, there are
two competing notions of GCD “closeness.” The first being re-
lated to the roots of the polynomials in question, and the second
relating to their coefficients. We present two algorithms in this
section which use each notion respectively.

In [22], a “root-clustering” algorithm was proposed whereby
the roots of two polynomials f(x) and g(x) were compared
pairwise, and deemed to have a common root if a pair of roots
were found to exist within a radius δ of each other. Once a
root pair {xq,1 , xq,2} is identified, the corresponding root of the
approximate GCD, yq , is computed as the average of the two
points. Finally, the approximate GCD, h(x), is calculated as

h(x) =
Q∏

q=1

(x − yq ) (22)

where Q is in the number of discovered paired roots.
We extend this approach here to the considered array pro-

cessing scenario, where additionally we will consider multiple
polynomials instead of just two. Moreover, when calculating
the “true” root we make use of the prior information that the
roots corresponding to the sources must lie on the unit circle.
The number of roots discovered in a cluster will be shown to be
useful for determining the number of sources as well as for sep-
arating closely located sources, thus, addressing the important
open problems of the joint estimation of the number of sources
and source parameters and non-idealities in the data model. We
detail this method in Section IV-A.

The algorithm highlighted above provides a good estimate of
the “true” GCD in most circumstances. However it does not pro-
vide a guarantee for how far the estimated GCD will be from the
“nearest” GCD. As was shown in the previous section, the for-
mation of the root-MUSIC polynomial is optimal with respect
to the polynomial coefficients, and the factors of the GCD are
found by solving the equation (21). In this section we derive an
algorithm which solves the nearest GCD problem with respect
to the polynomial coefficients. In [12] the approximate GCD is
found by directly solving (21). This involves symbolic compu-
tations. Alternatively, we adopt the approach of [27], [28]. The
author of [27], [28] solves this problem using only matrix-vector
operations which are backward stable.4 Moreover, the method
of [27], [28] produces a certificate of a necessary condition of
optimality. This certificate can be used to verify if any estimate
could be optimal or not with respect to the coefficients of the
noise eigenvectors. This includes the estimates provided by the
root-clustering method.

A. Root Clustering Method

The root clustering approach of [22] proceeds in two steps. In
the first step, roots that are “close” are paired together. Then in
the second step, a “consensus” root is calculated based on each
of these roots.

For our problem here, since we consider more than two poly-
nomials, we adopt a different clustering approach. There is a
wide variety of clustering algorithms within the literature of ma-
chine learning [26]. Because we are looking for tight clusters,
we adopt the hierarchical approach of agglomerative clustering.
Agglomerative clustering starts by considering each data point
as its own cluster. At each step, it calculates for each cluster the
closest neighboring data point. The cluster which has the clos-
est neighbor is then merged with this neighbor to form a new
cluster, while the distance between the original cluster and the
new member is stored. The distance by which the roots are com-
pared is called a “dissimilarity,” and it can, in general, be any

4Thus, resolving the issues with Wilkinson’s type polynomials.
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Fig. 3. Root dendrogram corresponding to ULA with N = 10 elements, L =
2 sources at 30◦ and −40◦. Target clusters are highlighted with red ellipses.

pseudonorm. This process continues until all the data points are
grouped in one large cluster, with all clusters, ci , are ranked by
their dissimilarity in a tree-structure known as a “Dendrogram”.

Illustrative Example 2: Fig. 3 shows a dendrogram for a
system consisting of a ULA with N = 10 elements and L = 2
sources impinging from 30o and −40o . A total of T = 100
snapshots were collected at an SNR of 10 dB. Two clusters of 8
roots each-one from a different eigenvector - with a dissimilarity
close to 0 can be easily observed in the figure and are marked
by ellipses.

Each mark on the x-axis of Fig. 3 is a root of an eigenvector
of Rxx . If there is a bracket between two roots, then these roots
are in a cluster. If there is a bracket between clusters, these two
clusters are part of a larger cluster. The height of the bracket
indicates the maximum dissimilarity between elements in that
cluster. From Fig. 3 it is clear that large, tight clusters are rare
events which only exist as a result of the algebraic structure of
the noise subspace. Thus this property is useful from a detection
and estimation standpoint. The number of “tight” clusters found
in this process gives us the estimate of the number of sources
L̂. We note that the roots being clustered can be taken from
either all eigenvectors or from a noise-subspace estimate, such
as the one produced from a eigenvalue based detection method.
Once the root clusters ci = {zi,1 , · · · , zi,Ji

} are obtained, the
clusters are treated as samples of a distribution parametrized
by the “true” root. The remaining challenge is then to estimate
the true root from the sample. In [22], this is just taken to be
the centroid of the root cluster. However in the context of the
considered array processing scenario, the prior information that
the root estimate must lie on the unit circle can be exploited.

Illustrative Example 3: In Fig. 4, the roots corresponding
to the last 8 eigenvectors of the sample covariance matrix
R̂xx obtained for the same scenario considered in Illistrative
Example 2 are plotted, along with the unit circle and the source
location.

Since the estimate of the source location is based on the phase
argument of the root in question, only distortions tangential to
the unit circle contribute to estimation error [3]. Radial distor-
tions do not cause any error, and thus, the roots of the noise
eigenvectors can be projected onto the unit circle by simply
normalizing them by their corresponding absolute values. The
estimate of the source location αl is then given by the Fréchet

Fig. 4. Root scatter corresponding to ULA with N = 10 elements, L = 2
sources at 31◦ and 45◦. Note that there are N − L = 8 roots in the cluster.

mean of the roots in each cluster, as the unit circle is a Rieman-
nian manifold.

To calculate a Fréchet mean, an iterative procedure is re-
quired whereby the points in question are mapped onto the
Euclidean tangent space (exponentiation) in which the mean of
these points is calculated. This mean estimate is then mapped
back onto the manifold (logarithm), and serves as the tangent
point for the next iteration. For a detailed explanation on the
theory and computation of Fréchet means we refer the reader to
[23]. However, instead of calculating a Fréchet mean for esti-
mating the source location, a simpler procedure can be used. In
fact, it is apparent from Fig. 4 that, since the roots are closely
located, the “small angle” approximation can be used instead
while incurring very little error. Thus, a “good consensus” root
estimate is just exp{−jφavg} where φavg is the mean phase
argument of the roots. The estimate of the DOA is then given
by sin−1 (

π−1φavg ,l
)

where φavg ,l is the average phase argu-

ment of the l-th cluster of roots for l ∈ 1, · · · , L̂. These steps
of estimating L̂ and then the roots are summarized in Algo-
rithm 1, where the input argument δ is a maximum allowable
dissimilarity between clusters.

Assuming that there are L distinct sources, there must be N −
L eigenvectors of the form (10). Thus, the roots corresponding to
the source locations are estimated form L tight clusters of N − L
roots each. Thus, not only do the roots contain information about
the source location, but the number of roots in each cluster
contains information about the number of sources. It is this
information which can be then used to separate closely located
sources. Specifically, if two sources are closely located, they
will be grouped into the same cluster. According to (10), a valid
cluster cannot have more than N − 1 roots, since the signal
must occupy a subspace with at least dimension 1 to which
the resulting N − 1 dimensional subspace must be orthogonal.
Thus, tight clusters with more than N − 1 roots are deemed to
correspond to multiple closely located sources.

Accounting for this possibility of resolving closely located
sources, Algorithm 1 can be extended to exploit the above ex-
plained criterion to jointly estimate the number of sources and
their locations. This results in Root Clustering Algorith.

The Root Clustering Algorithm accepts as an input a cluster of
roots. First, the algorithm checks whether the number of roots in
the detected cluster is consistent with (10). If the number of roots
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Algorithm 1
1: procedure ci,Q, δ
2: Compute roots of columns of Q → r
3: Agglomerative clustering on r into clusters

d(ci) < δ, ci = {zi,1 , · · · , zi,Ji
}

4: L̂ = |{ci, | Ji > 2}|
5: for i ≤ L̂ do
6: φavg ,i = 1

|ci |
∑Ji

j=1 ∠zi,j

7: θi = sin−1 ( 1
π φavg ,i

)

8: end for
9: end procedure

Root Clustering Algorithm
1: procedure ci , Q, δ
2: if |ci | > N − 1 then
3: φavg = 1

Ji

∑Ji

j=1 ∠zi,j

4: for j ≤ Ji do
5: if ∠zi,j ≤ φavg then ci,1 = ci,1 ∪ {∠zi,j}
6: else ci,2 = ci,2 ∪ {zi,j}
7: end if
8: φavg ,i,k = 1

|ci , k |
∑

zi , j ∈ci , k
∠zi,j

9: θci
= sin−1 ( 1

π φavg ,i
)

10: end for
11: end if
12: end procedure

in the cluster is larger than N − 1 the cluster is “split.” That is,
provided the average phase argument of the roots in the cluster,
the roots are grouped into those whose phase argument is larger,
or less than the average phase argument. The algorithm then
returns two DOAs estimated from the average phase argument
of the two groups of roots.

The dominant task in both Algorithm 1 and Root Clustering
Algorithm in terms of computational complexity is the root-
clustering algorithm. Given N nodes, the N 2 pair-wise dis-
tances between nodes are computed, and stored in a sorted array
of “next-best” distances. When two nodes are merged into a
single cluster, the “next-best” distance array is updated, and
the clustering algorithm continues on the basis of this new up-
dated array. Each update can be done with complexity O(N),
while the computation of the initial array requires complex-
ity O(N 2). Thus, the overall complexity of the algorithm is
O(N 2). If there are K sources, N − K noise eigenvectors are
selected, each having N − 1 roots. Thus the overall complex-
ity of the root clustering algorithm, in terms of N and K is
O((N 2 − N(K + 1) + K)2) in which N 4 dominates, result-
ing in a complexity bound O(N 4).

The high performance of these algorithms will be demon-
strated in Section V.

B. Nearest GCD

In [12], the nearest GCD algorithm proceeds in two steps.
First, the points α are found, then λi and μi are calculated from
(16) and (17), and added to the coefficients of f(z) and g(z)
in order to recover the system of polynomials which has a non-
trivial GCD. The problem of root-selection in root-MUSIC can
thus be expressed as finding the real intersection points of two
algebraic plane curves.

There are algorithms to solve this problem in the order of
complexity of N 3 operations, however they all require symbolic
computations. We instead adopt the approach of [27] to the
problem posed in [12] which requires only numeric matrix-
vector calculations and Gauss-Newton iterations. The details of
the derivation can be found in [27], while here we provide the
most essential steps needed for adopting the method of [27] for
solving our problem or equivalently the problem posed in [12].
For details and complete proofs, we direct the reader to [27].

The derivation of the algorithm in [27] follows naturally from
the definition of the Sylvester matrix. Consider two polynomials
f(x) and g(x) of degrees m and n respectively with a GCD
u(x) of degree k < m,n. Let the cofactors of f(x) and g(x) be
denoted as v(x) and w(x), respectively. Recalling the definition
of convolution matrices from Lemma 1, we can write the identity
f(x)w(x) − g(x)v(x) = 0 as

Bn−k (f)w − Bm−k (g)v = 0 (23)

where m − k and n − k are the degrees of the cofactors v(x)
and w(x) respectively, and Bn−k (f) is the convolution matrix
defined by the coefficients of f with n − k + 1 columns. The
identity can then be rewritten as

[Bn−k (f)|Bm−k (g)]
[

w
−v

]
= Sk (f, g)

[
w
−v

]
= 0. (24)

The matrix S is the known as the Sylvester matrix of polyno-
mials f and g and is singular if and only if the two polynomials
have a non-trivial GCD. This can be straight forwardly shown
from the original identity via Bezout’s theorem. The degree k
in the above expression can vary from 1 to deg(u(x)) resulting
in different Sylvester matrices. The different Sylvester matrices
have different nullities. Specifically S1(f, g) has nullity equal
to k, and Sk (f, g) has nullity equal to one. Thus, the cofactors
w(x) and v(x) can be solved for by identifying the kernel of
Sk (f, g) [27].

Once we have the cofactors w and v, the GCD u can be found
as the solution to the simultaneous linear system

Bk (v)u = f

Bk (w)u = g. (25)

The estimate of the approximate GCD u in [27] is thus given as
the solution to the following linear system

⎡

⎢⎣
rH u − 1
Bk (v)u
Bk (w)u

⎤

⎥⎦ =

[ 0
f
g

]
(26)

for u.
In the above system r is a pre-defined a scaling vector. For

example, if we wish u to be monic, r would be the vector
[1, 0, · · · , 0]T . In the simulations, we set r to be equal to the
initial estimate of the GCD, u0 . Denoting the left hand side of
(26) as f(z) where z = [uT ,vT ,wT ]T and the right-hand side
as b the solution sought is the least squares solution which mini-
mizes the distance ‖f(z) − b‖. This is done via a Gauss-Newton
iteration. The Jacobian of f(z) has a closed form expression in
terms of the scaling vector r and convolution matrices Bk given
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as

J(z) =

⎡

⎢⎣
rH

Bk (v) Bn−k (u)
Bk (w) Bn−k (u)

⎤

⎥⎦ (27)

which leads to the following Gauss-Newton iteration

zj = zj−1 + J†(zj−1)[f(zj−1) − b]. (28)

With these defined, the approximate GCD algorithm proceeds
in two steps. In the first step, the degree of the approximate
GCD, k, is estimated via the analysis of the nullity of a sequence
of Sylvester matrices of varying k. Then, with the estimate k̂, the
Gauss-Newton iteration (28) is run until convergence in order to
minimize the distance between the estimated polynomials f̂ , ĝ
which have a non-trivial GCD by definition, and the observed
polynomials f ,g. The initial Sylvester matrix S0(f, g) is defined
as [f |g] assuming, as in our case, that f and g have the same
degree.

In the exact GCD algorithm Sk (f, g) is full column rank
for all k < n − deg(u(x)). Thus, one constructs a sequence of
Sylvester matrices Sk (f, g) until a singular Sk (f, g) is found,
after which the cofactors and u can be found using (26). In
the approximate GCD algorithm, Sk (f, g) will only be approxi-
mately singular. Thus a threshold must be set to decide whether
a singular value of Sk (f, g) is close enough to 0. This is defined
in terms of an ε such that

∥∥∥∥

[
f̂
ĝ

]
−

[
f
g

]∥∥∥∥ < ζ (29)

wheer ζ is a bound to perturbation.
Given such a ζ, Sk (f, g) is said to be singular if it has a

singular value σk,min < ζ
√

2k − 2. If Sk (f, g) is approximately
singular with respect to ζ, then it is possible that f and g have an
approximate GCD which satisfies (29). Once a matrix Sk (f, g)
is found with σk,min < ζ, the linear system and Gauss-Newton
iterations (26), (28) are run to find an polynomial pair f̂ and
ĝ with a non-trivial GCD of degree n − k. If (29) is satisfied,
the solution to (28) u is returned as the approximate GCD. If
not, then k is increased and an approximate GCD is sought of
degree n − k − 1. This top down approach guarantees that the
approximate GCD of maximal degree with respect to epsilon is
found. At convergence of (28) we have the following condition.

J†(z)(f(z) − b) = 0 (30)

This does not guarantee that the polynomial pair is of mini-
mal distance from the manifold of polynomial pairs with GCD
degree equal to n − k to the observed polynomial pair f, g.
However, it is a necessary condition for the nearest polynomial
pair on this manifold. In cases of small ε - which in our context
corresponds to high SNRs - it becomes more and more likely
that satisfaction of (30) ensures optimality. The satisfaction of
(30) is thus a certificate of a necessary condition of optimality.

The first step of this algorithm is merely a method to find
an initial GCD estimate u and set of cofactors v. Of course,
given any initial estimate u, its optimality (or sub-optimality)
can be verified and refined using the iteration (28). Given ini-
tial estimates α̂l of the source locations, one can produce the
initial estimate u0 using the formula (7). The cofactors corre-
sponding to each eigenvector can then be found by solving the

Root Certificate Algorithm
1: procedure (uvGCD [27])qi ,qj , ε
2: S0(qi, qj ) = Q0R0
3: for k = 0, ..., N − 2 do
4: Obtain σk from Rk

5: if σk ≤ ζ
√

2k − 2 then

6: Solve Sk (f, g)
[

w
−v

]
= 0 for v and w

7: Solve f(z) − b = 0 for u
8: Iterate (28) until J(z)†(f(z) − b) = 0
9: if ‖[(q̂i , q̂j ) − (qi ,qj )‖2 ≤ ε then

10: Return u terminate Algorithm 3
11: end if
12: end if
13: end for
14: Return u = [1]
15: end procedure

overdetermined system

Bn−k (u)vi = qi (31)

for vi . The matrices Bk (vi) can then be formed from vi . The
performance of this approach is verified in Section V, where the
initial estimates are provided by the root clustering algorithm.

A detailed analysis of the convergence of (28) is given in
[27],[28]. We only repeat the result that if the polynomial pair
has an approximate GCD which satisfies (29), then there exists
some small positive real number μ such that (28) converges to
the approximate GCD from any initial state z0 within distance
μ of the observed polynomial pair. The total complexity of the
root-certificate algorithm is k · O((N(N − K) + 1)3), where
k is the total number of iterations required for convergence, N
is the number of antennas, and K is the number of sources,
resulting in a complexity bound of O(N 6). The total number
of iterations is not known a-priori, and is thus investigated in
Section V.

From the definitions in Section III the estimate of the number
of sources is then the degree of u(x) and the estimates of the
source locations are its roots. The aforementioned steps are
summarized in Root Certificate Algorithm.

C. Parameter Selection

There is a physical sense in which to select the relevant pa-
rameters in Algorithms 1 and 3. The dissimilarity in Algorithm
1 and the ball of radius ζ in Algorithm 3 represent the pertur-
bation of the roots of the eigenvectors uk . As these roots are
each injectively related to the parameter being estimated, θ, the
perturbations themselves must be on the order of the estimation
error given the SNR conditions. In order to address the selec-
tion of parameters for the root certification algorithm, we must
relate uncertainty of the source locations to the perturbation of
the coefficients of the noise eigenvectors. In essence, the Gauss-
Newton iteration searches in a ball of radius ζ on the GCD
manifold of dimension k, whereas the estimation error of the al-
gorithm is quantified in terms of the root estimates themselves.
To address this, we use a result proved in reference [20]. Let
u(x) and ũ(x) be two polynomials of the same degree n, whose
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roots αi and α̃i are such that

|αi − α̃i | ≤ δ (32)

then ‖u(x) − ũ(x)‖ ≤ ‖u(x)‖ · ((1 + δ)n − 1) where ‖ · ‖ in-
dicates, in this case, the Euclidian norm of the polynomial coef-
ficient vector. The resulting relation of the maximum pairwise
root distances and the perturbation of coefficients allows us to
relate source location uncertainty with the radius of search on
the GCD manifold. Let �θ be the maximum uncertainty of the
source locations. Then, from the definition of our polynomial
roots, we express the difference as

δ = |ejπ sin(θ1 ) − ejπ sin(θ1 −�θ) |
= |ejπ sin(θ1 ) − ejπ sin(θ1 )cos(�θ)−cos(θ1 )sin(�θ) |. (33)

Using the small angle approximation we, rewrite (33) as

δ ≈ |ejπ sin(θ1 ) · (1 − e−jπ cos(θ1 )sin(�θ))|
≤ |1 − e−jπ sin �θ | ≈ |1 − e−jπ�θ | (34)

Illustrative Example 4: Say we know the SNR conditions
under which we are working, and as a result, we know that
the uncertainty in our source estimates is 0.5o . Using the
above relation, we set δ = 0.0274. Assuming K = 3 sources,
and ‖u(x)‖ = 1 we have a maximum perturbation of ζ =
(1 + δ)3 − 1 = 0.0845. We stress that this is a guideline for
parameter selection, but on the basis of this analysis the sug-
gested baseline is ζ = O(10−2).

V. SIMULATION RESULTS

To examine the performance of the proposed algorithms we
consider two scenarios. The first, and most challenging, scenario
is the case where we have multiple sources that are closely lo-
cated. The second scenario is when we have multiple widely
spaced sources. We consider two performance metrics. The first
is the probability of detecting the correct number of sources.
The second is the root mean squared error (RMSE) perfor-
mance of the DOA estimates. Performance comparisons for the
algorithms described in this paper are given with respect to
AIC, MDL, and the Sequentially Rejective Bonferroni Proce-
dure (SRBP) described in [11]. To implement the SRBP, jack-
knife bias correction is applied to both the eigenvalues of the
SCM corresponding to the all T observations, and the sets of
bootstrapped eigenvalues. A total of B = 200 booststraps are
collected of size M = 30 each. A global significance level of
β = 0.03 is maintained for both scenarios. In addition to these
two metrics, we provide histograms of the source number esti-
mates. The root-certificate algorithm is implemented using the
software uvGCD which is made freely available by the author
of [27]. The Gauss-Newton iteration (28) was implemented by
the authors. In all simulations we assume that the sources are
impinging on a ULA of N = 10 elements, with element spacing
λc/2, and T = 100 snapshots are collected. The sources are as-
sumed to be equal power i.i.d. Gaussian zero mean sources with
covariance σ2

s I, and the noise assumed to be i.i.d. Gaussian with
zero mean and covariance σ2

nI. Throughout all simulations, the
signal to noise ratio is varied from −15 dB to 30 dB in 3 dB
increments.

Fig. 5. RMSE comparison of RClA and RCA with root-MUSIC in widely
separated sources scenario. Two sources impinge on the array from directions
Θ = [−10◦ 20◦] respectively.

A. Widely Separated Sources

In terms of estimation and detection performance, our first
point of inquiry is whether the proposed algorithms perform
well in normal situations where subspace based DOA estima-
tion algorithms are known to provide optimal or near-optimal
performance. To perform this comparison, we consider the sit-
uation when two sources impinge on the array from directions
[−10o 20o ] respectively. In order to test the RMSE performance
of the root-clustering (RClA) and root-certificate algorithms
(RCA) we compare them to Root-MUSIC. The RClA adap-
tively learns the number of sources from the root structure of the
noise eigenvectors, root-MUSIC learns the number of sources
via MDL and the RCA estimates the number of sources from
the GCD manifold of maximum co-dimension corresponding to
the last two eigenvectors of Rxx .

Fig. 5 depicts the performance comparison between RClA
and RCA and root-MUSIC with respect to RMSE. As one ex-
pects, root-MUSIC performs near-optimally from −3 dB SNR
onwards. Algorithm 2 converges later but still performs well in
a usable and practical SNR range from 0 dB to 10 dB. It’s worth
noting that the gap between RClA and root-MUSIC never closes
at high SNRs. This is likely a consequence of Theorem 1. How-
ever, once RCA is applied to the initial estimate provided by
RClA the gap closes between root-MUSIC and root-clustering.
In sum, the proposed methods sacrifice no estimation perfor-
mance over the whole usable SNR range of subspace based
methods. The only price is thus increased computational com-
plexity.

Fig. 6 depicts the detection performance of RClA and RCA in
comparison with MDL and AIC. AIC detects the correct num-
ber of sources before any other method, but this is due mostly
to the tendency of AIC to overestimate the number of sources.
MDL correctly estimates the number of sources with 100% ac-
curacy starting from −6 dB followed by RClA which estimates
the correct number of sources with 97% starting from −3 dB,
after which perfect detection is observed. Neither RCA nor AIC
ever achieve perfect detection, however, RCA considerably out-
performs AIC in high SNR conditions. The performance of the
SRBP tracks very closely to that of MDL (as is predicted by
theory in large sample sizes), and that of the root-clustering
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Fig. 6. Probability of detection of correct number of sources comparison for
AIC, MDL, and RClA and RCA.

Fig. 7. Histogram comparison of source number estimates of AIC, MDL,
SRBP, and RClA for SNR = 0 dB and two sources impinging from Θ =
[−10◦ 20◦] respectively.

method in the low SNR regime. However, at high SNRs, the
SRBP never achieves 100% at this significance level. This is
due to over-estimation. One could restrict the significance level
to achieve 100% correct detection at high SNRs, but this nec-
essarily will induce under-estimation in the low-SNR regime,
in which it is likely that fewer null-hypotheses are able to be
rejected at any significance level. As Fig. 7 demonstrates, un-
derestimation at the significance level β = 0.03 is already a
problem for the SRBP at −6 dB SNR.

Fig. 7 depicts the histogram of source estimates for RClA in
comparison with MDL and AIC at 0dB SNR. RCA is excluded
from the figure for the reason that it never corrects the correct
number of sources in this scenario. RClA correctly identified
the number of sources in 499 out of 500 Monte Carlo trials.
More importantly, RClA never overestimates the number of
sources, while AIC sometimes wildly overestimates the number
of sources.

B. Closely Located Sources

We consider the case illustrated in Example 1 earlier. Two
equal power sources impinge on the array from directions

Fig. 8. Performance comparison between AIC, MDL, and RClA in terms of
probability of correctly learning the number of sources in the case of two closely
located sources at Θ = [31◦ 32◦].

[31o 32o ]. RClA is employed to first detect the number of sources
and then estimate their DOAs. In order to test the detection per-
formance, we compare RClA to both AIC and MDL. In order to
test the RMSE performance, we compare RClA to root-MUSIC
which has been provided with the correct number of sources for
all SNRs. RClA, by comparison, learns the number of sources
before performing the DOA estimation.

Fig. 8 demonstrates the detection performance of RClA while
SNR is varied. We notice two separate performance gaps be-
tween the proposed method and AIC and MDL. As previ-
ously noted, AIC has a tendency to overestimate the number
of sources. This explains the fact that AIC never detects the
correct number of sources 100% of the time. As such, our algo-
rithm enjoys a permanent performance advantage over AIC in
high SNR scenarios. By contrast, MDL tends to underestimate
sources. In Fig. 8 we observe a rapid transition in detection
probability for MDL. Before approximately 6 dB SNR, MDL
never correctly estimates the number of sources. Thus, Algo-
rithm 2 enjoys a significant performance advantage in the low
SNR region. By 12 dB, however, MDL correctly estimates the
number of sources 100% of the time. The performance of the
SRBP tracks very closely the performance of MDL. However,
the root clustering algorithm is able to resolve the sources at a
much lower SNR, and perfectly at high SNRs.

If it is possible to estimate the SNR conditions in which the re-
ceiver is operating, the idea of using AIC in low SNR conditions
and MDL in high SNR conditions may seem natural. However,
as we see in Figs. 7 and 10 AIC significantly overestimates the
number of sources. Moreover, as we see in Fig. 9, even when
provided with the correct number of sources, in low to moder-
ate SNR regions, root-MUSIC is not able to provide an accurate
estimate of their location when compared with Algorithm 2. In
Fig. 9 we plot the Cramér-Rao bound [29] corresponding to a
single merged source at θ = 31.5o in order to provide a lower
bound for the performance of the algorithms. Since the Cramér-
Rao bound for a single source should be lower than for multiple
sources, the estimate variance is lower-bounded, but clearly not
tightly so. Algorithm 2 estimates the number of sources based
on information that is actually used to provide the estimate of
the source direction. Thus, if Algorithm 2 is able to correctly
detect the number of sources, it will provide a good estimate
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Fig. 9. Comparison between RClA, and RCA and root-MUSIC for closely
sources located at Θ = [31o 32o ].

Fig. 10. Histogram of number of source estimates for RClA, MDL, and AIC
for closely located sources at SNR = 3 dB.

of their location as well. This is in contrast with root-MUSIC
which struggles to localize both sources outside of the high SNR
regime.

As a result, while root-MUSIC enjoys a performance advan-
tage in scenarios with widely separated sources and in high SNR
regions, RClA provides acceptable performance in all scenar-
ios, and highly robust performance in the case of closely located
sources in practical SNR regions.

In summation, the root-clustering algorithm and the root-
certificate algorithm leverage two different concepts of perturba-
tion from membership in a polynomial ideal. The first considers
perturbations of roots, while the second considers perturbations
of the coefficients. The simulations in these scenarios demon-
strate the practical use of both. The root-clustering method offers
superior performance detection to eigenvalue based methods.
The root certificate algorithm supplies a notion of estimation
optimality with respect to the observed system of polynomials.

C. Convergence of Root-Certificate Algorithm

We will first investigate the convergence rate of the Gauss-
Newton iteration (28) in both the widely separated sources, and
closely located sources scenario. Fig. 11 depicts the convergence

Fig. 11. Convergence of the Root Certificate Algorithm. Two sources im-
pinge on the array from directions Θ = [−10◦ 20◦], respectively. Initial source
estimates are provided by the Root-Clustering Algorithm.

Fig. 12. Convergence of the Root Certificate Algorithm. Two sources impinge
on the array from directions Θ = [31◦ 32◦], respectively. Initial estimates are
provided by the Root-Clustering Algorithm.

rate of the Gauss-Newton iteration in the presence of widely
separated sources, while Fig. 12 depicts the convergence rate in
the presence of closely located sources.

In Figs. 1 and 2, we observe that convergence of the Gauss-
Newton iteration is linear. Fig. 1 demonstrates that, in the case
of widely separated sources, the Gauss-Newton iteration con-
verges to machine precision in less than N iterations. In the
case of closely located sources, we observe that convergence
requires more iterations due to the fact that the system of
polynomials is ill-conditioned. However, convergence remains
linear.

In terms of detection algorithms, it should be stated that the
SRBP has also high complexity. Separate eigendecompositions
must be made M times for each of B bootstraps. In terms of
N however, B can be on the order of N 2 (or larger), and M
can be on the order of N . Given that M · B eigendecomposi-
tions must be made, the total complexity in terms of N becomes
O(N 6), which is roughly equivalent to the root-certificate algo-
rithm. The root-clustering algorithm, which we use for detection
has complexityO(N 4). Moreover, the root-certificate algorithm
is an estimation algorithm, whereas the SBRP is a detection
algorithm.
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VI. CONCLUSIONS AND DISCUSSION

A new criterion for the simultaneous detection and localiza-
tion of an unknown number of sources has been introduced,
and two algorithms based on this criterion were proposed. The
proposed algorithms leverage the underlying algebraic struc-
ture present in the noise-eigenspace of the observation covari-
ance matrix for both detection and estimation. The essential
difference between our approach, and the dominant approach
of source detection based on eigenvalues, and estimation based
on eigenvectors is that we aim to estimate a single object, the
maximal degree GCD, of a subset of the observed eigenvectors.
The properties of this object are then the solutions to the sepa-
rate problems. Specifically, the maximal degree is the number
of sources, and the factors themselves are injectively related to
the source locations. Notably, this implies that for every degree
of this GCD, there is a factor which provides the estimate of
the source location. In illustrative example 1, however, it was
shown that this is not necessarily true of the eigenvalue-detection
eigenvector-estimation paradigm. Targets could be estimable
based on the observed eigenvectors, but not detectable on the
basis of the eigenvalues alone. The first algorithm uses the root
structure of the noise eigenvector. The second algorithm uses
structured matrices to estimate the co-dimension of a solution
manifold, and then estimate the nearest point on this manifold
from the observed eigenvectors. The proposed algorithms have
been compared to root-MUSIC in two different scenarios. In
the first scenario, the number and locations of widely sepa-
rated sources were estimated. In the second, the number and
locations of closely located sources were estimated. Simulation
results show that the first proposed algorithm offers significant
performance benefits over information theoretic detection algo-
rithms and localization using root-MUSIC in the case of closely
located sources over a broad and practical range of SNRs.

The fundamental finding of the paper is that the noise sub-
space of the SCM, under the assumptions in the paper, is imbued
with an algebraic structure which happens to be closed under any
and all linear operations. This is not true of the signal subspace.
More to the point, when we conduct an eigendecomposition of
the SCM what are returned are linear invariants of the matrix,
not the signal vectors themselves. The signal vectors themselves
are all, by definition, points on the rational normal curve. While
this is a powerful algebraic structure, it is not, in general, de-
scriptive of the signal eigenvectors. However, it is rather trivial
to show that any member of the noise subspace, invariant or not,
has the algebraic structure which is leveraged by the analysis
and algorithms contained in the paper. Thus, as long as we have
a way of tracking the noise subspace, it is possible to use the
algorithms contained in this paper.

One obvious limitation to this method is that it is suitable for
point sources only. It is unclear how to adapt the algorithm to the
estimation of spread sources, since univariate polynomial ideals,
by definition have points as their corresponding varieties. As a
limitation not necessarily of the algorithms in the paper, but of
the analysis presented in the paper, we do not consider correlated
sources, or non-Gaussian noise distributions. Investigations of
these scenarios are left for future work.

Another apparent limitation of the analysis contained in the
main body of this work rely on the structure of a ULA. However,
if one allows for a pre-processing step, the analysis in this paper
can be applied to arrays of arbitrary planar geometry. We showed
that the noise eigenvectors of the sample covariance matrix exist

in a principal polynomial ideal generated by the polynomial

Q(x) =
L∏

l=1

(x − αl) (35)

where αl are complex numbers whose phase arguments corre-
spond to the source locations. However, from the definition of
A in (2) it is clear that the polynomial structure of the noise
subspace is a direct consequence of the uniform linear spatial
sampling of the array.

In [19] it was shown that the root-MUSIC algorithm can
be applied to arbitrary arrays through a “manifold separation”
technique. To perform the manifold separation technique, the
Jacobi-Anger expansion is applied to the steering vectors of an
arbitrary array to map them into those of a uniform array. The
n-th element of the steering vector corresponding to an arbitrary
planar array can be written as

[b(θ)]n = e−jω c τn (θ) (36)

where ωc � 2πfc is the angular frequency of the carrier wave-
form, and τn (θ) � (−rn/c) cos(γn − θ) is the propagation de-
lay between the n-th antenna element and the centroid of the
array, where −rn is the distance between the n-th antenna ele-
ment and the array centroid, c is the propagation velocity, and
γn is the polar position of the n-th antenna element.

Using the Jacobi-Anger expansion, (36) can be rewritten as

ejκrn cos(γn −θ) =
∞∑

m=−∞
jm Jm (κrn )ejm(γn − θ)

=
1√
2π

∞∑

m=−∞
[G(rn , γn )]n,m e−jmθ (37)

where [G(rn , γn )]n,m �
√

2πjm Jm (κrn )ejmγn and Jm (·) is
the Bessel function of the first kind. From (37) it is clear that
the Jacobi-Anger expansion maps the non-polynomial steering
vector corresponding to an arbitrary array in finite dimension,
to a polynomial steering vector of infinite dimension. A finite
approximation of b(θ) is possible by arranging the coefficients
[G(rn , γn )]n,m in an N × M matrix G. The finite approxima-
tion of the steering vector can thus be written as

b(θ) ≈ Gh(θ) (38)

where [h(θ)]m � 1√
2π

ejmθ . The natural question of how large
the sampling matrix G should be is both beyond the scope of
this paper, and treated at some length in the reference [19].

With (38) in mind, we can rewrite (1) and (2) as

x(t) = Bs(t) + n(t)

= GHs(t) + n(t) (39)

Rxx ≈ σ2
s GHHH GH + σ2

nI (40)

respectively, where H has columns h(θ) corresponding to each
source.

Following the analysis of the previous section, the range of
matrix product GH is contained in the span of the columns of
the signal eigenvector matrix Qs and is orthogonal to the noise
eigenvector matrix Qn . One can then write the root-MUSIC
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polynomial for an arbitrary array as

hH (θ)GH QnQH
n Gh(θ) (41)

after which the analysis in the main submission holds. Specifi-
cally, the columns of the matrix GH Qn must lie in a principal
polynomial ideal generated by (7).

APPENDIX

We first perform the derivations for λi and a + jb. The deriva-
tives of the Lagrangian (15) with respect to the real and imagi-
nary parts of λi are given as

∂L(λ,μ, a, b, c, d)
∂Im(λi)

= 2 · Im(λi) + 2a · (−Im(αi))

+ 2b · (Re(αi))

∂L(λ,μ, a, b, c, d)
∂Re(λi)

= 2 · Re(λi) + 2a · (Re(αi) − Im(αi))

+ 2b · (Im(αi))

Adding real and imaginary parts into a single equation, we
can find that at optimality

λi +
(

aRe(αi) − bIm(αi) + j(bRe(αi) − aIm(αi))
)

= 0

or equaivalently,

λi + (a + jb)(α∗)i = 0.

Then λi can be expressed as

λi = −(a + jb)(α∗)i .

Combining this equation with the definition of f̂ (α) and not-
ing that f̂ (α) = 0, we obtain

f̂ (α) = 0 =
N −1∑

i=0

(fi − (a + jb)(α∗)i)αi

0 =
N −1∑

i=0

fiα
i − (a + jb)

n−1∑

i=0

(α∗)iαi

a + jb =
f(α)

∑N −1
i=0 (α∗)iαi

⇒ λi = − f(α)
∑N −1

i=0 (α∗)iαi
(α∗)i .

The derivation for μi is identical since all terms with λi are
constant with respect to μi and decoupled. The only thing that
changes is the variable names. Noting this readily yields the
equations

c + jd =
g(α)

∑N −1
i=0 (α∗)iαi

μi = − g(α)
∑N −1

i=0 (α∗)iαi
(α∗)i .
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