

Delft University of Technology

A Compact Neural Network for Fused Lasso Signal Approximator

Mohammadi, Majid

DOI
10.1109/TCYB.2019.2925707
Publication date
2021
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Cybernetics

Citation (APA)
Mohammadi, M. (2021). A Compact Neural Network for Fused Lasso Signal Approximator. IEEE
Transactions on Cybernetics, 51(8), 4327-4336. Article 8766144.
https://doi.org/10.1109/TCYB.2019.2925707

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TCYB.2019.2925707
https://doi.org/10.1109/TCYB.2019.2925707

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

Accepted Author Manuscript. Link to published article (IEEE): https://doi.org/10.1109/TCYB.2019.2925707

A Compact Neural Network for Fused Lasso
Signal Approximator

Majid Mohammadi

Abstract—The fused lasso signal approximator (FLSA) is a
vital optimization problem with extensive applications in signal
processing and biomedical engineering. However, the optimization
problem is difficult to solve since it is both non- smooth and
nonseparable. The existing numerical solutions implicate the use
of several auxiliary variables in order to deal with the
nondifferentiable penalty. Thus, the resulting algorithms are both
time- and memory-inefficient. This paper proposes a compact
neural network to solve the FLSA. The neural network has a one-
layer structure with the number of neurons proportion- ate to the
dimension of the given signal, thanks to the utilization of
consecutive projections. The proposed neural network is stable in
the Lyapunov sense and is guaranteed to converge globally to the
optimal solution of the FLSA. Experiments on several applica-
tions from signal processing and biomedical engineering confirm
the reasonable performance of the proposed neural network.

Index Terms—Fused lasso, global convergence, Lyapunov,
neural network.

I. INTRODUCTION

HE FUSED lasso signal approximator (FLSA) has diverse

applications in several disciplines. The FLSA enforces

sparsity both in the coefficients and the differences between

consecutive elements in the coefficient vector. A class of the

corresponding optimization problem is

1 n n-1

min-||x-y\\2 + M N+A.2 |x -x+d (FLSA)
x 2

i=1 i=1

where k1,k2 > 0 are the regularization parameters, y e Rn is the

observed signal, and x e Rn is the noise-free approximation ofy. If

X2 = 0, FLSA has the closed-form solutionby applying the soft-

thresholding operator [1], and for M1 = 0, FLSA boils down to the

total variation denoising problem [2]. As a result, the solution to

this minimization yields the solution to the total variation

denoising as well.

Neural networks have been long used for finding the optimal

solution to optimization problems since the Hopfield’s pioneering

works on solving the combinatorial traveling sales- man problem

[3] and linear programming [4]. Ever since,

Manuscript received October 4, 2018; revised January 25, 2019, April 16, 2019,

and June 11, 2019; accepted June 22, 2019. Date of publica- tion July 18, 2019; date

of current version August 4, 2021. This paper was recommended by Associate

Editor S. Squartini.

The author is with the Faculty of Technology, Policy, and Management, Delft

University of Technology, 2628 BX Delft, The Netherlands (e-mail:

m.mohammadi@tudelft.nl).

Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TCYB.2019.2925707.

Digital Object Identifier 10.1109/TCYB.2019.2925707 diverse neural
solutions have been put forward to solve vari- ous optimization

problems with respect to manifold types of constraints [5]-[14].
Solving optimization problems using neu- ral networks have
several salient advantages over traditional numerical methods in
real-time processing. First and fore- most, the structure of the
neural network can be effectively implemented using very-large-
scale integration and optical technologies [15]. Thus, when there is
a demand for real- time optimization, neural networks offer the
practical solution. In addition, ordinary differential equations
(ODEs) repre- senting a recurrent neural network can be solved by
using different methods so they can be implemented on digital
computers as well. Another advantage of neural networks is that
they can converge globally to the exact optimal solu- tion of the
given minimization regardless of their initial values.

Zhang and Constantinides [6] presented a Lagrangian neural

network for solving general nonlinear programming. Bouzerdoum

and Pattison [5] developed a neural network for quadratic

programming with box constraints only by writing the partial dual

of the given minimization. Quadratic pro- gramming has been

considered in numerous research studies and, thus, many networks

exist to solve a particular case of quadratic minimization. One case

is the strictly convex quadratic programming for which many

neural solutions have been tailored [9]-[11], [16]-[18]. Another

neural network is for the case when the second derivative of the

objective func- tion equals the identity matrix [19], and it has been

shown that the neural network has a simpler structure when other

neural networks are applied to the same minimization. Several

neural solutions are also presented to solve general quadratic

programming [20]-[22].

Aside from neural networks for general optimization prob-

lems, several well-known engineering problems have also been

solved by using projection neural networks. For instance, there are

several neural networks for support vector machine training [23],

[24]. There are also neural solutions for regression analysis [25],

[26], robot control [27], image restoration [28], image fusion [29],

and non-negative matrix factorization [30]. One of the essential

problems which has been considered recently is the l1

minimization, for which several neural networks have been

presented [31]-[36]. The optimization problem has a similar

challenge to FLSA since it implicates the minimization of the l1 -

norm. However, the FLSA is more complicated as it entails two

nonsmooth terms, one of which minimizes the difference among

consecutive elements in the coefficient vector.

T

https://doi.org/10.1109/TCYB.2019.2925707
https://orcid.org/0000-0002-7131-8724
mailto:m.mohammadi@tudelft.nl
https://doi.org/10.1109/TCYB.2019.2925707

0
0

D=

(1) wj =

P 'M (aj)

As FLSA has two nondifferentiable terms, finding its optimal

solution is not straightforward. Techniques in the lit- erature

usually need to employ several auxiliary variables in order to deal

with the nonsmoothness and nonseparability of the problem [37]-

[40]. As a result, the resulting algorithms have higher time and

memory complexity. In contrast to those solvers, the Condat’s

method is a noniterative method which solves FLSA for A1 = 0

[41]. The complexity of algorithm on the most real problems is

O(n) and its worst case is O(n2). The method, though very fast, is

sequential by nature since the optimal value of xj is reliant on the

optimal value xi-1. As a result, the algorithm is not prone to parallel

execution.

In this paper, a projection neural network is presented to solve

FLSA. The proposed neural solution has a simple one- layer

structure and is efficient in terms of both the component required

for its circuit implementation and the number of oper- ations in

each iteration. The neural model deals with the two nonsmooth

terms in FLSA by using two consecutive projec- tions, which

results in a network with n — 1 neurons, where n is the length of

the given data. As a result, the proposed network is compact since

the dimension of the network is lin- ear with respect to the

dimension of the given data. The neural model is guaranteed to be

stable in the sense of Lyapunov, and its trajectory is assured to

converge to the optimal solution of FLSA given any arbitrary

initial point. The neural solution is further applied to several

problems in signal processing and biomedical engineering and the

results are compared to the state-of-the-art solvers. In contrast to

the Condat’s method, the proposed network can also be applied to

other problems, such as weighted total variation [42] and trend

filtering [43]. The complexity of the solving is of O(n) for a finite

number of iterations.

In summary, the contributions of this paper are as follows.

1) A neural model is tailored for FLSA, which is, to the best of

my knowledge, the first attempt to solve this problem using

neurodynamic optimization. The neural model has a

straightforward structure as it uses two successive

projections.

2) The network is proved to be stable in the sense of

Lyapunov, and it is assured that it converges globally to the

optimal solution to FLSA.

3) The proposed model is simplified in the case where A1 = 0

in FLSA. In this case, the neural network boils down to a

well-known projection neural network, where its

exponential convergence could also be guaranteed.

The remainder of this paper is structured as follows. The neural

network model is developed in Section II, and its sta- bility is

assured in Section III. In Section IV, the proposed model is

simplified for circumstances when A1 = 0 in FLSA, and it is

shown that the proposed neural network boils down to a well-

known projection model with guaranteed exponential

convergence. The experiments regarding the proposed neural

network are presented in Section VI. Finally, this paper is

concluded in Section VII.

II. NEURODYNAMIC MODEL

In this section, a neurodynamic model is developed for FLSA.

To this end, FLSA can be equivalently

rewritten as

1 2
min-||x — y^2 + A1 ||x^ 1 + k2\\Dx\\1 (FLSA2)

x 2

where ||.|1 is the /1-norm and D e R(n—1)xn is defined as

1 —1 0 . . . 0

0 1 — 1

 . .

. 0

0 0 . . . 1 — 1

Since FLSA2 is convex, the Karush-Kuhn-Tucker (KKT)

conditions [44] are necessary and sufficient for the optimality. On

the other hand, it is required to use the property of the subgradients

for FLSA2 due to its nonsmoothness. Thus, x* is the optimal

solution of FLSA2 if there are w* and z* such that x—y+w+DTz

= 0, where w e A19(|x| 1) andz e A29(|Dx|1). The derivative of | x| 1

is not defined at zero, but the derivative is simply one if xj > 0,

and —1 otherwise. Thus, one can write

M if xj > 0

e [—A.1, M] if xj = 0

—A.1 if xj <

0.

The conditions in (1) can be restated using the well-known

projection operator as [45]

w = PX1 (w + x) (2)

where P^ (a) = [P^ (a1), P^ (02), ...,PA1 (a„)], and

A.1 if a j > A1

e [—A1; A1] if |aj| < A1

—A1 if a j < —A1.

Similarly, one obtains the same projection equation for z as

z = PA2 (z + Dx).

As a result, the KKT conditions can be summarized as

x — y + w + DT z = 0

• w = PX1 (w + x) (3)

_ z = PA2(z + Dx).

From the first equation in (3), it follows that x = y—w —DTz.

Replacing it in the second equation, one arrives at x = y — DTz —

PA1 (y — DTz). As a result, the conditions in (3) can be rewritten

simply as

z = PA2 (z — DPA1 (y — DTz) — Dy + DDTz). (4)

Based on (4), a neural network is proposed with the dynamic

equation as being given by

State Equation

dz
— = PA2 (z — h(z)) — z (5)
dt

output Equation

x = y — DTz — PAI (y — DTz) (6)

where h(z) = DPA1 (y — DTz) — Dy + DDTz. The dynamic

system given in (5) can be easily recognized by a simple one- layer

neural network, as shown in Fig. 1 for a general matrix D. The

number of neurons for FLSA is k = n — 1, hence

the structure of the network grows linearly with respect to the

dimension of the given data. According to Fig. 1 with Dkxn, the

circuit realizing the proposed neural network consists of k

integrators, n + k piecewise activation functions, 2n + 2k

summers, 2nk multipliers, and some weights.

III. STABILITY ANALYSIS

This section contains the stability analysis of the proposed

neural network. First, some required definitions and lemmas are

presented.

Definition 1: x* is the equilibrium point of the dynamic

system

X= f (x), x(t0) = X0 e Rn (7)

where f : Rn ^ Rn is a function, if f (x*) = 0.

Definition 2 (Lyapunov Stability): Let x(t) be a solution of

the dynamic system in (7). An equilibrium point x* is stable if, for

t > t0

Ve > 0, 35 > 0, s.t. \\x(t) — x*|| < e if ||x(t0) — x*\| < 8.

The dynamic system is asymptotically stable if x(t) ^ x* as t

^<x> holds as well.

Definition 3 (Monotonicity): A mapping H is called mono-

tone at y e Q if

(x — y)T (H(x) — H(y)) > 0 Vx e Q.

If the above inequality holds for any x, y e Q, then the mapping H

is said to be monotone in Q.

Definition 4 (Variational Inequality): The variational

inequality problem is about finding x* e Q such that

(x — x*)TH(x) > 0 Vx e Q

where H is a function from Rn into itself. It was shown that x* is

the solution of the above inequality if and only if the following

projection equation holds [46]:

x = PQ(X — H(x))

where PQ() is the projection operator defined as

PQ(Z) = argmin ||z — y\\.

yeQ

Lemma 1 (Projection Properties [46]): Let Q C Rn be a

closed convex set, then:

1) (a — Pa(a))T(PQ(a) — b) > 0, a e Rn, b e Q;

2) ||PQ(a) — PQ(b)\\2 < (PQ(a) — Pa(b))T(a — b) <\\a —

b\\2, a, b e Rn.

The stability and the convergence of the proposed neural

network in (5) is now examined. Without loss of generality, we

assume that D e R(n—1)xn. Before stating the main results, it is first

shown that the function h(z) in (6) is monotone.

Lemma 2: The mapping h(z) = D(Px l (y — DTz) — y +

DTz) is monotone in Rn—1.

Proof: For any u, v e Rn—1, one obtains

(h(u) — h(v))T (u — v)

= (Ph (y — Dru) — y + DTu

— PXl (y — DTv) + y — DTv)T (DTu — DTv)

= (PXl (y — DTu) — Pkl (y — DTv))T(DTu — DTv)

+ \\DTu — DTv\\2. (8)

Let a = y— DTu and b = y— DTv in Lemma 1-2), then (Ph

(y — DTu) — Ph (y — DTv))T(—DTu + DTv)

< \\DTu — DTv\\2

^ \DTu — D T v \ \ 2 + (PXl (y — DTu) — Pkl (y — DTv))T

x (DTu — DTv) > 0. (9)

Considering (8) and (9), it follows that:

(h(u) — h(v))T(u — v) > 0

and h is thus monotone. ■

Now, consider the function H with the definition

H(z) = 1\y — DTz — Pkl (y — DTz)f.
 (10
)

The following two lemmas are about the features of this function.

Lemma 3 [47]: The derivative of the function H(z) given in

(10) is h(z), for example, VH(z) = h(z).

Lemma 4: The function H given above is convex.

Proof: The convexity of H(z) can be simply proved using its

first derivative. In particular, one obtains

(z1 — z2)T (V H(z1) —VH(z2))

= (z1 — z2)T(h(z1) — h(z2)) > 0

Fig. 1. Architecture of the proposed neural network for general matrix D e Rkxn,

where k = n — 1 for FLSA. (a) Output circuit of the proposed neural network. (b)

Dynamic circuit of the proposed neural network.

dV

(z)

dt

<0

d V

(z)

d t

= 0.

1
■x\z(t) -z

2

where the last inequality holds true since h is monotone. Thus, H

is convex. ■

Lemma 5: There exists a unique continuous solution tra-

jectory z(t) for the dynamic system (5) with any given initial point

for t e [t0, T).

Proof: It is first required to show that the right-hand side of the

dynamic system is Lipschitz. To do so, let z1; z2 e Rn-1 be two

arbitrary variables, then

||z1 - Ph (Z1 - h(Z1)) - Z2 + Ph (Z2 - h(Z2)) ||

< 2||z1 -z2\\ + ||h(z1) - h(z2)\\

< \\z1 - z2\\ + ||D|| \y - DTz1 - Pkl {y - DTz1)

-y + DTz1 + PXl {y - DTz1)\.

 (11

)

Now, consider the following inequality for any arbitrary x, y, and

PQ:

\x - PQ (X) -y + PQO) \ | 2 = ||x -y||2 + ||PQ(X) - Pa(y)\\2

- 2(PQ (X) - Pn(y))T (x -y)

<(1) \x -y||2 -||PQ(X) -PQ(y)\ \ 2 < \x -

y||2

 (12

)

where (1) is obtained by using Lemma 1-2). Let x = b - DTz1 and

y = b - DTz2 in (12), then one can rewrite (11) as

\z1 - PXl (z1 - h(z1)) - z2 + PXl (z2 - h(z2)) \

< 2\z1 - z2 \| + ||D \ 2 \z1 - z2||

< (2 +||D||2) ||zx - z2|.

Therefore, the right-hand side of the dynamic equation is

Lipschitz. According to the Peano’s theorem for ODEs [48], a

unique continuous solution z(t) exists for the dynamic system in

(5) in the interval [t0, T). ■

The stability of the dynamic system in (5) is now explored.

Theorem 1: The neural network governed by the dynamic

equation in (5) is stable in the sense of Lyapunov and con- verges

globally to a unique equilibrium z*. The unique solution to FLSA

is then obtained by the output equation in (6).

Proof: With any arbitrary initialization z0, the trajectory of the

dynamic system in (5) has a unique continuous solution trajectory,

thanks to Lemma 5. Consider the following Lyapunov function

[19], [49]:

V(z) = H(z) - H(z*) + h(z*)T(z* - z) + 1 ||z - z* ||2

where z* is the equilibrium of the dynamic system and u e Rn-1.

Since H is convex, it simply follows that [46]:

H(z) - H(z*) + h(z*)(z* - z) > 0.

Thus, V(z) > ||z - z*||2/2, which means that V(z) ^ +TO as ||z|| ^ TO

[49]. The time derivative of the Lyapunov function is then

obtained as [19], [49] {h(z) - h(z*) + z - z*)Tdt

{h(z) - h(z*) + z - z*)T{PX2 (z - h(z)) - z). (13)

Now, let a = z - h(z) and b = z* in Lemma 1-1),

one obtains [19], [49]

{PX2 (z - h(z)) - z*)T{z - h(z) - PX2 (z - h(z))) > 0. (14)

Further, using Definition 4 with x = PX2 (z - h(z)) results in

{PX2 (z - h(z)) - z*)Th{z*) > 0, Vz e Rn-1.
 (15
)

Adding the inequalities in (14) and (15), we obtain

{PX2 (z - h(z)) - z* + z - z)T

X {z - h(z) - PX2 (z - h(z)) + h(z*)) > 0.

It follows [49]:

{z - z* + h(z) - h(z*))T{PX2(z - h(z)) - z)

< ~{z - z*)T{h(z) - h(z*)) - ||z - PX2(z - h(z))W2

< 0 (16)

where the last inequality is obtained as (z - z*)T (h(z) - h(z*)) >

 0 due to the monotonicity of h(z), and ||.||2 is

evidently non-negative. Plugging (16) into (13), it follows:

d V (z) d t

and the dynamic system in (5) is

thus stable in the sense of

Lyapunov.

According to the invariant set theorem [50], all trajecto- ries of

the proposed neural network converge to the largest invariant set

n, where d V(z)/dt = 0. Now, it is shown that dV(z)/dt = 0 if and

only if dz/dt = 0. If dz/dt = 0, then

d V(z) \T /dz dz) l dt

Conversely,
d V(z)/dt =
0 implies

(z - z*)T{h(z) - h(z*)) + ||z -

PX2(z - h(z))W = 0.

Since both terms in the above equation are non-negative, it

follows that:

l|z - Ph2 (z - h(z))W =0 ^ z - Ph2 (z - h(z)) = 0. Hence,

dz/dt = 0 and

lim dist(z(t), n) = 0.
t^(X

Finally, the above inequalities show that z(t) is bounded. The

boundedness of trajectories of the dynamic system in (5) means

that a subsequence {z(tk)} exists such that

lim z(tk) = z
k^<X

where z is an equilibrium of (5). Consider the following Lyapunov

function:

V(z) = H(z) - H(z) + h(z)T(z - z) + — ||z - z||2.

Then, lim^», z(tk) = V(u) = 0. Hence, there exists 5 > 0 for any e

> 0 such that < t(z(t)) < V(z(tq)) < e.

Therefore, limz^OT z(t) = z. As a result, the

dynamic system in (5) is globally convergent to

one of its equilibrium points. According to Lemma 5, the state

trajectory of (5) is unique, thus it converges to a unique

equilibrium point z*, where the unique solution to FLSA is

obtained by x* = y - DTz* - PX2 (y - DTz*). ■

IV. SlMPLIFICATION FOR ÜTHER PROBLEMS

This section presents the simplification of the proposed neu- ral

network in order to be applied to two well-known

problems:

1) total variation denoising and 2) trend filtering.

If X1 = 0, FLSA can be restated as 1
m i n - ||x - y\\ + k2\\Dx\\1 (17)

x 2

which is the total variation denoising problem [2]. The KKT

conditions for this minimization can be written as

| x — y + DTz = 0

[z = Px2 (z +

Dx).

Thus, the neural model can be simply rewritten as

State equation

dz = Px2 (z — h(z)) — z (18)
d t

Output
x = y — DT z

where h1(z) = DDTz — Dy. In comparison to the neural network

for FLSA, the neural network in (18) does not have the projection

to X1, since it is zero. The neural model in (18) is a linear

projection equation, which has been extensively studied in

different research [11], [49], [51], [52]. Since DDT is positive

definite, it has been investigated that the trajectory of this neural

network is exponentially convergent in finite time to the unique

equilibrium [51].

The approximation of the trend in a given time series is a

fundamental problem that arises in a variety of disciplines. Trend

filtering has been also modeled similar to (17), in which matrix D

is replaced with D e R(n—2)xn defined as [43]

-1 2 —1 . . . 0 0 0 0 — 1 2

. . . 0 0 0

0 0 . . . —1 2 —1_

Since the neural model in (18) does not impose any assumption on

D, it can be simply applied to this problem as well. On the other

hand, matrix D is also full row rank, thus DDT is positive definite,

and the dynamic system in (18) is thus exponentially convergent in

finite time.

Another important problem is the proposed model can solve the

weighted total variation, that is, [42]

1 n n—1

min 2 l|x — y\2 + X^2 \xi\ +X2 ^ ai\xi — xi+11

i=1 i=1

where a e Rn—1,a i > 0 penalizes the difference between the

associated elements in the vector. One can define D = diag(a)D,

where diag is a diagonal matrix whose diagonal elements are a,

making the problem turn into FLSA2. Thus, the proposed neural

network can also solve this problem.

V. COMPLEXITY OF THE NEURAL SOLUTION

For a general matrix D e Rkxn, the proposed neural network in

(5) requires 2nk multiplications and 2nk + n + k addi-

tions/subtractions. However, the computations can be more

Algorithm 1 FLSA Computations

Input: y e Rn, z e Rn—1, X1, X2

for iter=1:n do if i == 1 then

temp = y1 — z1
end if

if i == n then

temp = yn + zn

else

temp = y i + z i—1 — z i

end if

if temp > X1 then

xi = temp — X1

end if

if temp < —X

then xi = temp +

X1

else

xi = 0 end if end for

for i=1:n-1 do

temp = z i + xi —

xi+1 if temp > X2

then newZ i = X2 —

z i end if

if temp < — X then

newZ i = —X2 —

z i

else

newZi = temp — z i

end if end for Output

newZ

economical in some special cases, such as FLSA or the total

variation denoising (17).

For FLSA, the value of y — DTz is

y1 — z1

y2 + z1 — z2

y — DTz =

yn—1 + zn—2 zn—1
yn + zn—1

Having the value of X1, the value of x = y — DTz — PX1 (y —

DTz) can be obtained by 3n+3 additions/subtractions (and no

multiplication). The time complexity is also linear in n since we

only need to iterate over the length of y — DTz. Similarly, PX (z

+ Dx) — z can be computed in linear time with respect to n.

Overall, the time complexity of recurrent neural network is linear

in n for a number of iterations. Algorithm 1 summarizes the

procedure of the FLSA computations in each iteration. The

algorithm can also be written by one loop, but we deliberately use

two loops so that they can be executed in parallel. Each iteration in

these loops can be executed independently with respect to other

iterations of the loop. Therefore, the algorithm is ideal for parallel

computing.

Fig. 2. Convergence of the proposed neural network over a random sample selected from the Pollack et al.

dataset [58] for aCGH data. The selected sample was subjected to the neural network with three different initial

values: (a) with initialization z = 1; (b) with initialization z = 0; and (c) with random initialization. The abscissa

is the time, and the ordinate is the value of each element of z at a specific time. The trajectories of each element

of z are shown by distinct colors.

For the total variation denoising, the order is also linear in n,

and the number of iterations is finite [11], [49], [51], [52]. Thus,

the overall time complexity of the neural network is of O(n) as

well, similar to the Condat’s method. However, the difference is

that the Condat’s method is of order n2 in the worst case and not

prone to parallelism. In the proposed neu- ral network, aside from

its possibility to be implement using circuits, the computations of

x and P\(z + Dx) — z can be conducted in parallel.

VI. EXPERIMENTS

This section presents the experiments regarding the proposed

neural network. The neural network is implemented using the

ODE solvers of MATLAB with the tolerance 10-5. The

implementation of the proposed network is publicly avail- able.1

First, we study how parameters in FLSA can be tuned, and then

the convergence of the dynamic system in (5) was empirically

investigated. Then, the proposed neural network was applied to

several real-world problems, including array comparative genomic

hybridization (aCGH or CGH array) data recovery and trend

filtering. The performance of the neural solution was compared to

those of the state-of-the-art methods in each application.

A. Parameter Tuning

There are two parameters in (FLsA) whose values can sig-

nificantly impact the behavior and the outcome of the neural

network. Consequently, it is vital to appropriately tune the

parameters. There are several strategies for identifying the

appropriate values of such parameters, including, but not lim- ited

to genetic algorithms [53], sequential minimization [54], L-curve

method [55], and variational Bayes [56]. Another sim- ple yet

practical strategy is grid search where we build a model for every

possible combination of the parameters X1 and A.2, and then select

the parameters with the best model fit gauged by some fitness

function.

As there are two parameters in (FLSA), we need to apply a 2-D

grid search, which is time consuming in general. However,

following a related study [57], we restricted the choice of the

parameters to the set 0.1, 0.3, 0.5, 0.7, and 0.9. We further

1 https://github. com/Majeed7

gauged the fitness of an estimated model, shown by X, as [57]

/ \\y — XII 2 \

- n log n —s log(n) (19)

where s is the number of nonzero elements in X. Finally, we

selected the model with the maximum fitness value.

B. Convergence

The theoretical analysis showed that the neural network in (5)

converges globally to the optimal solution of FLSA, regardless of

the initial point. In this experiment, the conver- gence of the

network is empirically explored by performing a recovery on

aCGH data. In this regard, a sample from the Pollack et al. dataset

[58] was randomly selected, and it was subjected to the recurrent

neural network for recovery.

The sensitivity of the proposed model was investigated by

initializing the network with distinct values. The network was

initialized with a vector of one, zero, and a random vector,

respectively, so that the convergence of the neural solution could

be explored in practice. Fig. 2 plots the trajectory of each element

of z in the dynamic system in (5) against different time slots. The

trajectory of each element is displayed by distinct colors so they

can be distinguished in three plots. Based on this figure, the

trajectory of the dynamic system is convergent to the same value,

regardless of the initialization. This experiment corroborates the

global convergence of the proposed neural network, which was

theoretically assured in Section III.

C. aCGH Data Analysis

aCGH or CGH array is arguably the first important applica-

tion of FLSA [59], [60]. The aCGH data helps the diagnosis and

prognosis of various diseases such as cancer by finding the

aberrational regions in the DNA genome of a given sample. The

major impediment to find such regions is that aCGH data is highly

corrupted by various sources of noise. Therefore, a recovery

method is required to approximate the noise-free data from

contaminated observations. It was shown that the result- ing aCGH

data of a sample is both sparse and smooth [60]. Hence, FLSA is

the minimization which is deemed to recover the noise-free data.

For this experiment, several synthesized and real aCGH data were

subjected to the proposed neural solution, and its

https://github/

Fig. 3. ROC curves plotted from recovery of synthesized data with different SNRs. The abscissa and ordinate of each plot are the TPR and FPR, respectively. The

methods are the proposed neural network, TVSp [61], PLA [62], LRHQ [63], and GFLseg [64].

performance was compared with those of more sophisticated

methods.

For the synthesized data, 50 samples with the length of 120

were generated. The elements of each aCGH sample were assumed

normal if it is zero, and the aberrant regions were created by

distorting the elements of each sample with the value 1 or -1. The

length of each aberrant region was ran- domly selected from the

set {5, 10, 20, 30}. Then, a Gaussian noise was added to each

sample to produce the observation. To compare the methods in

different corruption levels, several ratios of the data to the noise

were considered. These ratios are called signal-to-noise ratios

(SNRs). To affect the SNRs, one can simply write

y = x + SNR-1e (20)

where e is the noise distributed according to the standard normal

distribution. As a result, the higher values of SNR would result in

less corrupted observations, and the smaller values would indicate

that the data is highly contaminated with the noise e. The noisy

samples were then subjected to the neural network, total variation

and spectral regular- ization (TVSp) [61], piecewise and low-rank

approximation (PLA) [62], low-rank approximation based on half-

quadratic programming (LRHQ) [63], and group fused lasso

segmen- tation (GFLseg) [64]. The parameters of methods, when

not determined by the method itself, are identically identified

similar to the proposed neural network.

Since the ground truth is available in the synthetic exper-

iments, one can simply compare the performance of each method

by juxtaposing real and recovered data. For this experiment, the

receiver operator characteristic (ROC) curve is used to contrast

different methods. The ROC curve plots the true positive rate

(TPR) against the false positive rate (FPR), and

deviation from diagonal is the indicator of the goodness of a

method.

Fig. 3 plots the ROC curve of various methods over the syn-

thesized data with different SNRs. As the level of corruption

decreases, the performance of all methods increases signifi- cantly.

In particular, the performance of the proposed neural network is

competitive with TVSp and LRHQ in all levels of corruptions. On

the other hand, it is significantly superior to GFLseg and PLA in

all scenarios.

Although the performance of the proposed network is com-

petitive with TVSp and LRHQ, the neural solution is more time-

and memory-efficient. TVSp and LRHQ (and also PLA) use the

nuclear norm regularization, which needs to compute the singular

value decomposition in each iteration. For m samples with the

length of n, the singular value decomposition has the complexity

of order O(mn2). Hence, the methods based on the nuclear norm

are of higher time complexity.

Regarding memory complexity, the proposed neural network

does not need to use any auxiliary variables. The size of the

network is commensurate with the length of the given data.

Fig. 4. Execution time in seconds of five methods with datasets with

varying number of probes. The methods are the proposed neural network,

TVSp [61], PLA [62], LRHQ [63], and GFLseg [64].

4

(21) Xt+1 = xt +
Vt,

Fig. 5. Recovery of three samples from the Pollack et al. dataset by three methods. Each row is dedicated to a particular sample, while each column corresponds to each

method. The methods are the proposed neural network, TVSp [61], and LRHQ [63]. The blue lines are the data recovered by the corresponding methods and the red dots

denote the data before recovery.

However, TVSp and LRHQ require the use of several auxiliary

variables in order to solve their corresponding optimization

problem. As a result, they occupy more space in the main memory

compared with the proposed neural network.

To show the efficiency of the proposed neural network in

practice, we generate synthesized data with varying lengths. The

proposed neural solution is then compared with other methods

based on the execution time required for each gen- erated data.

Fig. 4 plots the execution time in seconds of the foregoing

methods on data with differing lengths.

The neural network is significantly superior to PLA and LRHQ

regarding execution time. The neural solution is fur- ther

competitive with TVSp, and GFLseg is significantly faster than

other methods. The reason for this difference is that the proposed

neural network is solely implemented in MATLAB while different

parts of TVSp and GFLseg are implemented in C/C++. Generally,

the proposed neural network is efficient concerning execution

time.

The neural network is further applied to a real aCGH data to

verify its efficiency. The Pollack et al. [58] is a well-known

aCGH dataset on breast cancer which contains 44 samples of 6691

human mapped genes. The dataset was subjected to the neural

network, TVSp, and LRHQ, and three recov- ered samples are

displayed in Fig. 5. In this figure, each row is dedicated to each

sample, and each column corresponds to a method. The red dots in

this figure are the real data, and the blue line is the data recovered

by the corresponding techniques. Based on this figure, the

recovered data by the proposed neural network is way smoother

than those of TVSp and LRHQ, even though the neural network

has less time and memory complexity in comparison to competing

meth- ods. To quantify the difference between methods in terms of

smoothness, we gauge the total variation of each sample

GFLseg - Neural
Network ■

Fig. 6. CD diagram to compare methods with respect to the smoothness of samples

on the Pollack et al. dataset.

from the Pollack et al. dataset and compare the average of the

total variation of methods using the Friedman test and the

corresponding post-hoc analysis with Nemenyi’s correc- tion

method [65]. The null hypothesis of the Friedman test was rejected

with p-value was close to zero. We further visualize the critical

difference (CD) diagram to compare the methods based on the

smoothness. Fig. 6 plots the rank of each method obtained by the

Friemdan test; the lower the rank, the better the method. Also, the

methods that are not significantly different from each other are

connected with red dots. According to this figure, GFLseg and the

proposed neural network are identical top methods in terms of

smooth recovery, followed by TVSp, LRHQ, and PLA. The

reason that GFLSeg performs well is that, rather than conducting

the recovery, it first finds the mutated points and then connects the

points by a line. Thus, it has a very smooth recovery. This

experiment corroborates the efficiency of the neural network in

real-world situations.

D. Trend Filtering

In this section, the proposed neural network in (18) is applied

to a fictitious dataset for the so called trend filtering, and its results

are compared with HP filtering [66].

The synthesized data is created based on the following

equation:

t = 1, 2 , . . . , n

Neural network TVSp

LRHQ

where xt is the data at the time t, vt is the trend slope, and x0 = 0.

The slope vt is generated based on the simple Markov process in a

way that with the probability of p, vt+\ = vt, and vt is selected

from the interval [—b, b] otherwise.

The noise-free data is then required to contaminate with a

random noise. In this experiment, we use an additive Gaussian

noise to corrupt data based on the following equation [43]:

yt = xt + et (22)

where et is a zero-mean Gaussian noise with standard devia- tion

o. It is now required to specify the fixed parameters b, p, o, and n.

For this experiment, these values are set as

n = 1000, p = 0.985, o = 10, b = 0.3. (23)

The k2 is also set to 100 for both the HP filtering and the

proposed neural network in (18). The real data and the noise

generated to corrupt it are plotted at the top panel of Fig. 7 with

red and blue lines, respectively. The generated corrupted data were

subjected to the proposed neural network and the HP filtering to

conduct the recovery and discover the underlying trend in the

fictitious time series. The middle and bottom panel in Fig. 7

display the recovered time series by the proposed neural network

and the HP filtering, respectively. The black lines are the

recovered data and the red dots are the real data before corruption.

According to this figure, the neural network could successfully

detect four kink points out of six. Similarly, the HP filtering could

also detect the same number of kink points. The difference is,

however, the recovered data by the HP filtering is curvy while the

neural network estimation is angular.

VII. CONCLUSION

This paper presented a recurrent neural network for FLSA. The

proposed neural network was assured to be stable in the sense of

Lyapunov and converge globally to the optimal solu- tion of the

problem. The network was also simplified to solve several real

problems, including total variation denoising, trend filtering, and

weighted total variation problem. The experi- ments illustrated the

reasonable performance of the proposed neural solution.

The proposed neural network can also be applied to several

other problems as well. For instance, the total variation-

regularized problem has diverse applications, such as image

restoration, image deblurring, and hot-spot detection. The neu- ral

network is thus possible to solve these problems as well, which is

left for the future research. Also, as Algorithm 1 suggests, the

neural network can be executed highly in parallel. Therefore,

another avenue for the future research is to take advantage of the

graphics processing units (GPUs) and execute the program in

parallel with those technologies.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers for

their constructive comments. He would also like to thank the

efforts of A. A. Atashin, M.Sc., for implementing the proposed

neural network.

REFERENCES

[1] D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory,

vol. 41, no. 3, pp. 613-627, May 1995.

[2] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise

removal algorithms,” Physica D Nonlin. Phenom., vol. 60, nos. 1^, pp. 259-

268, 1992.

[3] J. J. Hopfield and D. W. Tank, “‘Neural’ computation of decisions in

optimization problems,”Biol. Cybern., vol. 52, no. 3, pp. 141-152, 1985.

[4] D. Tank and J. J. Hopfield, “Simple ‘neural’ optimization networks: An A/D

converter, signal decision circuit, and a linear programming circuit,” IEEE

Trans. Circuits Syst., vol. 33, no. 5, pp. 533-541, May 1986.

[5] A. Bouzerdoum and T. R. Pattison, “Neural network for quadratic optimization

with bound constraints,” IEEE Trans. Neural Netw., vol. 4, no. 2, pp. 293-

304, Mar. 1993.

[6] S. Zhang and A. Constantinides, “Lagrange programming neural networks,”

IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 39, no. 7,

pp. 441-452, Jul. 1992.

[7] S. Qin, X. Yang, X. Xue, and J. Song, “A one-layer recurrent neu- ral network

for pseudoconvex optimization problems with equality and inequality

constraints,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3063-3074, Oct. 2017.

[8] Q. Liu, C. Dang, and T. Huang, “A one-layer recurrent neural network for real-

time portfolio optimization with probability criterion,” IEEE Trans. Cybern.,

vol. 43, no. 1, pp. 14-23, Feb. 2013.

[9] M. J. Perez-Ilzarbe, “New discrete-time recurrent neural network proposal for

quadratic optimization with general linear constraints,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 24, no. 2, pp. 322-328, Feb. 2013.

[10] Q. Liu and J. Cao, “A recurrent neural network based on projection operator

for extended general variational inequalities,” IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 40, no. 3, pp. 928-938, Jun. 2010.

[11] Y. Xia, H. Leung, and J. Wang, “A projection neural network and its

application to constrained optimization problems,” IEEE Trans. Circuits Syst.

I, Fundam. Theory Appl., vol. 49, no. 4, pp. 447-458, Apr. 2002.

[12] C.-F. Juang and Y.-T. Yeh, “Multiobjective evolution of biped robot gaits

using advanced continuous ant-colony optimized recurrent neu- ral

networks,” IEEE Trans. Cybern., vol. 48, no. 6, pp. 1910-1922, Jun. 2018.

[13] X. Le, S. Chen, Z. Yan, and J. Xi, “A neurodynamic approach to dis- tributed

optimization with globally coupled constraints,” IEEE Trans. Cybern., vol.

48, no. 11, pp. 3149-3158, Nov. 2018.

[14] M. Eshaghnezhad, S. Effati, and A. Mansoori, “A neurodynamic model to

solve nonlinear pseudo-monotone projection equation and its applica- tions,”

IEEE Trans. Cybern., vol. 47, no. 10, pp. 3050-3062, Oct. 2017.

[15] Y. Lu, D. Li, Z. Xu, and Y. Xi, “Convergence analysis and digital

implementation of a discrete-time neural network for model predictive

control,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 7035-7045, Dec.

2014.

[16] S. Qin, X. Le, and J. Wang, “A neurodynamic optimization approach to

bilevel quadratic programming,” IEEE Trans. Neural Netw. Learn. Syst. , vol.

28, no. 11, pp. 2580-2591, Nov. 2017.

[17] Y. Xia, G. Feng, and J. Wang, “A recurrent neural network with expo- nential

convergence for solving convex quadratic program and related linear

piecewise equations,”NeuralNetw., vol. 17, no. 7, pp. 1003-1015, 2004.

[18] G. Costantini, R. Perfetti, and M. Todisco, “Quasi-Lagrangian neural network

for convex quadratic optimization,” IEEE Trans. Neural Netw. , vol. 19, no.

10, pp. 1804-1809, Oct. 2008.

[19] X. Hu and J. Wang, “An improved dual neural network for solving a class of

0 1 00 200 300 400 500 600 700 tOO 900 1000

Fig. 7. Detection of trends in a synthesized time series. The top panel plots

the noise-free data and noise with red and blue lines, respectively. The black

lines in the middle and bottom panels show the recovered data by the

proposed neural network and the HP filtering, respectively, and display the

noise-free data with red dots.

quadratic programming problems and its k-winners-take-all application,”

IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2022-2031, Dec. 2008.

[20] X. Gao and L.-Z. Liao, “A new one-layer neural network for linear and

quadratic programming,” IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 918-

929, Jun. 2010.

[21] Q. Liu and J. Wang, “A one-layer recurrent neural network with a discon-

tinuous hard-limiting activation function for quadratic programming,” IEEE

Trans. Neural Netw., vol. 19, no. 4, pp. 558-570, Apr. 2008.

[22] Y. Xia, “An extended projection neural network for constrained

optimization,” Neural Comput., vol. 16, no. 4, pp. 863-883, Apr. 2004.

[23] Y. Xia and J. Wang, “A one-layer recurrent neural network for support vector

machine learning,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no.

2, pp. 1261-1269, Apr. 2004.

[24] M. Mohammadi, S. H. Mousavi, and S. Effati, “Generalized variant support

vector machine,” IEEE Trans. Syst., Man, Cybern., Syst., to be published.

[25] Y. Xia, H. Leung, N. Xie, and E. Bossé, “A new regression estimator with

neural network realization,” IEEE Trans. Signal Process. , vol. 53, no. 2, pp.

672-685, Feb. 2005.

[26] Y. Xia and J. Wang, “Robust regression estimation based on low- dimensional

recurrent neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29,

no. 12, pp. 5935-5946, Dec. 2018.

[27] Y. Xia and J. Wang, “A dual neural network for kinematic control of

redundant robot manipulators,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,

vol. 31, no. 1, pp. 147-154, Feb. 2001.

[28] Y. Xia, C. Sun, and W. X. Zheng, “Discrete-time neural network for fast

solving large linear L1 estimation problems and its application to image

restoration,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 812-

820, May 2012.

[29] Y. Xia and M. S. Kamel, “Novel cooperative neural fusion algorithms for

image restoration and image fusion,” IEEE Trans. Image Process. , vol. 16,

no. 2, pp. 367-381, Feb. 2007.

[30] J. Fan and J. Wang, “A collective neurodynamic optimization approach to

nonnegative matrix factorization,” IEEE Trans. Neural Netw. Learn. Syst.,

vol. 28, no. 10, pp. 2344-2356, Oct. 2017.

[31] Z. Guo and J. Wang, “A neurodynamic optimization approach to con- strained

sparsity maximization based on alternative objective functions,” in Proc.

IEEE Int. Joint Conf Neural Netw. (IJCNN), 2010, pp. 1-8.

[32] C. Guo and Q. Yang, “A neurodynamic optimization method for recovery of

compressive sensed signals with globally converged solution approx- imating

to l0 minimization,” IEEE Trans. Neural Netw. Learn. Syst. , vol. 26, no. 7,

pp. 1363-1374, Jul. 2015.

[33] B. Xu, Q. Liu, and T. Huang, “A discrete-time projection neural network for

sparse signal reconstruction with application to face recognition,” IEEE

Trans. Neural Netw. Learn. Syst., vol. 30, no. 1, pp. 151-162, Jan. 2019.

[34] M. Mohammadi, Y.-H. Tan, W. Hofman, and S. H. Mousavi, “A novel one-

layer recurrent neural network for the l1-regularized least square problem,”

Neurocomputing, vol. 315, pp. 135-144, Nov. 2018.

[35] M. Mohammadi and A. Mansoori, “A projection neural network for

identifying copy number variants,” IEEE J. Biomed. Health Informat. , to be

published.

[36] Q. Liu and J. Wang, “L1-minimization algorithms for sparse signal

reconstruction based on a projection neural network,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 27, no. 3, pp. 698-707, Mar. 2016.

[37] L. Wang, Y. You, and H. Lian, “A simple and efficient algorithm for fused

lasso signal approximator with convex loss function,” Comput. Stat., vol. 28,

no. 4, pp. 1699-1714, 2013.

[38] Y.-X. Wang, J. Sharpnack, A. J. Smola, and R. J. Tibshirani, “Trend filtering

on graphs,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 3651-3691, 2016.

[39] J. Liu, L. Yuan, and J. Ye, “An efficient algorithm for a class of fused

lasso problems,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl. Disc. Data

Min., 2010, pp. 323-332.

[40] D. Yu, J.-H. Won, T. Lee, J. Lim, and S. Yoon, “High-dimensional fused

lasso regression using majorization-minimization and parallel processing,” J.

Comput. Graph. Stat., vol. 24, no. 1, pp. 121-153, 2015.

[41] L. Condat, “A direct algorithm for 1-D total variation denoising,” IEEE Signal

Process. Lett., vol. 20, no. 11, pp. 1054-1057, Nov. 2013.

[42] M. Wytock, S. Sra, and J. Z. Kolter, “Fast Newton methods for the group

fused lasso,” in Proc. UAI, 2014, pp. 888-897.

[43] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “L1 trend filtering,”

SIAMRev., vol. 51, no. 2, pp. 339-360, 2009.

[44] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:

Theory and Algorithms. New York, NY, USA: Wiley, 2013.

[45] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods, vol. 23. Englewood Cliffs, NJ, USA: Prentice-Hall,

1989.

[46] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational

Inequalities and Their Applications, vol. 31. Philadelphia, PA, USA: SIAM,

1980.

[47] X. Hu and J. Wang, “A recurrent neural network for solving a class of general

variational inequalities,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37,

no. 3, pp. 528-539, Jun. 2007.

[48] J. K. Hale, “Functional differential equations,” in Analytic Theory of

Differential Equations. New York, NY, USA: Springer, 1971, pp. 9-22.

[49] Y. S. Xia, “Further results on global convergence and stability of globally

projected dynamical systems,” J. Optim. Theory Appl., vol. 122, no. 3, pp.

627-649, 2004.

[50] J. P LaSalle, The Stability of Dynamical Systems, vol. 25. Philadelphia, PA,

USA: SIAM, 1976.

[51] X. Hu and J. Wang, “Solving pseudomonotone variational inequalities and

pseudoconvex optimization problems using the projection neural

network,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1487-1499, Nov.

2006.

[52] Y. Xia and J. Wang, “A recurrent neural network for solving lin- ear

projection equations,” Neural Netw., vol. 13, no. 3, pp. 337-350, 2000.

[53] F. P Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune,

“Deep neuroevolution: Genetic algorithms are a competitive alternative for

training deep neural networks for reinforcement learning,” arXiv preprint

arXiv:1712.06567, 2017.

[54] T. Bartz-Beielstein, C. W. G. Lasarczyk, and M. Preuss, “Sequential

parameter optimization,” in Proc. IEEE Congr. Evol. Comput., vol. 1, 2005,

pp. 773-780.

[55] P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-

curve,” SIAM Rev., vol. 34, no. 4, pp. 561-580, 1992.

[56] S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Parameter esti- mation in

TV image restoration using variational distribution approx- imation,” IEEE

Trans. Image Process., vol. 17, no. 3, pp. 326-339, Mar. 2008.

[57] G. Nowak, T. Hastie, J. R. Pollack, and R. Tibshirani, “A fused lasso latent

feature model for analyzing multi-sample aCGH data,” Biostatistics, vol. 12,

no. 4, pp. 776-791, 2011.

[58] J. R. Pollack et al., “Microarray analysis reveals a major direct role of DNA

copy number alteration in the transcriptional program of human breast

tumors,” Proc. Nat. Acad. Sci. USA, vol. 99, no. 20, pp. 12963-12968, 2002.

[59] R. Tibshirani and P. Wang, “Spatial smoothing and hot spot detection for

CGH data using the fused lasso,” Biostatistics, vol. 9, no. 1, pp. 18-29, 2007.

[60] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and

smoothness via the fused lasso,” J. Roy. Stat. Soc. B (Stat. Methodol.), vol. 67,

no. 1, pp. 91-108, 2005.

[61] X. Zhou, C. Yang, X. Wan, H. Zhao, and W. Yu, “Multisample aCGH data

analysis via total variation and spectral regularization,” IEEE/ACM Trans.

Comput. Biol. Bioinf., vol. 10, no. 1, pp. 230-235, Jan./Feb. 2013.

[62] X. Zhou, J. Liu, X. Wan, and W. Yu, “Piecewise-constant and low-rank

approximation for identification of recurrent copy num- ber variations,”

Bioinformatics, vol. 30, no. 14, pp. 1943-1949, 2014.

[63] M. Mohammadi, G. A. Hodtani, and M. Yassi, “A robust correntropy- based

method for analyzing multisample aCGH data,” Genomics, vol. 106, no. 5, pp.

257-264, 2015.

[64] K. Bleakley and J.-P. Vert, “The group fused lasso for multiple change-point

detection,” arXiv preprint arXiv:1106.4199, 2011.

[65] M. Mohammadi, W. Hofman, and Y.-H. Tan, “A comparative study of

ontology matching systems via inferential statistics,” IEEE Trans. Knowl.

Data Eng., vol. 31, no. 4, pp. 615-628, Apr. 2019.

[66] R. J. Hodrick and E. C. Prescott, “Postwar U.S. business cycles: An empirical

investigation,” J. Money Credit Banking, vol. 29, no. 1, pp. 1-16, 1997.

