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Abstract—The fused lasso signal approximator (FLSA) is a 
vital optimization problem with extensive applications in signal 
processing and biomedical engineering. However, the optimization 
problem is difficult to solve since it is both non- smooth and 
nonseparable. The existing numerical solutions implicate the use 
of several auxiliary variables in order to deal with the 
nondifferentiable penalty. Thus, the resulting algorithms are both 
time- and memory-inefficient. This paper proposes a compact 
neural network to solve the FLSA. The neural network has a one-
layer structure with the number of neurons proportion- ate to the 
dimension of the given signal, thanks to the utilization of 
consecutive projections. The proposed neural network is stable in 
the Lyapunov sense and is guaranteed to converge globally to the 
optimal solution of the FLSA. Experiments on several applica- 
tions from signal processing and biomedical engineering confirm 
the reasonable performance of the proposed neural network. 

Index Terms—Fused lasso, global convergence, Lyapunov, 
neural network. 

I. INTRODUCTION 

HE FUSED lasso signal approximator (FLSA) has diverse 

applications in several disciplines. The FLSA enforces 

sparsity both in the coefficients and the differences between 

consecutive elements in the coefficient vector. A class of the 

corresponding optimization problem is 

1 n n-1 

min-||x-y\\2 + M N+A.2 |x -x+d (FLSA) 
x 2 

i=1 i=1 

where k1,k2 > 0 are the regularization parameters, y e Rn is the 

observed signal, and x e Rn is the noise-free approximation ofy. If 

X2 = 0, FLSA has the closed-form solutionby applying the soft-

thresholding operator [1], and for M1 = 0, FLSA boils down to the 

total variation denoising problem [2]. As a result, the solution to 

this minimization yields the solution to the total variation 

denoising as well. 

Neural networks have been long used for finding the optimal 

solution to optimization problems since the Hopfield’s pioneering 

works on solving the combinatorial traveling sales- man problem 

[3] and linear programming [4]. Ever since, 
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solutions have been put forward to solve vari- ous optimization 

problems with respect to manifold types of constraints [5]-[14]. 
Solving optimization problems using neu- ral networks have 
several salient advantages over traditional numerical methods in 
real-time processing. First and fore- most, the structure of the 
neural network can be effectively implemented using very-large-
scale integration and optical technologies [15]. Thus, when there is 
a demand for real- time optimization, neural networks offer the 
practical solution. In addition, ordinary differential equations 
(ODEs) repre- senting a recurrent neural network can be solved by 
using different methods so they can be implemented on digital 
computers as well. Another advantage of neural networks is that 
they can converge globally to the exact optimal solu- tion of the 
given minimization regardless of their initial values. 

Zhang and Constantinides [6] presented a Lagrangian neural 

network for solving general nonlinear programming. Bouzerdoum 

and Pattison [5] developed a neural network for quadratic 

programming with box constraints only by writing the partial dual 

of the given minimization. Quadratic pro- gramming has been 

considered in numerous research studies and, thus, many networks 

exist to solve a particular case of quadratic minimization. One case 

is the strictly convex quadratic programming for which many 

neural solutions have been tailored [9]-[11], [16]-[18]. Another 

neural network is for the case when the second derivative of the 

objective func- tion equals the identity matrix [19], and it has been 

shown that the neural network has a simpler structure when other 

neural networks are applied to the same minimization. Several 

neural solutions are also presented to solve general quadratic 

programming [20]-[22]. 

Aside from neural networks for general optimization prob- 

lems, several well-known engineering problems have also been 

solved by using projection neural networks. For instance, there are 

several neural networks for support vector machine training [23], 

[24]. There are also neural solutions for regression analysis [25], 

[26], robot control [27], image restoration [28], image fusion [29], 

and non-negative matrix factorization [30]. One of the essential 

problems which has been considered recently is the l1 

minimization, for which several neural networks have been 

presented [31]-[36]. The optimization problem has a similar 

challenge to FLSA since it implicates the minimization of the l1 -

norm. However, the FLSA is more complicated as it entails two 

nonsmooth terms, one of which minimizes the difference among 

consecutive elements in the coefficient vector.  
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As FLSA has two nondifferentiable terms, finding its optimal 

solution is not straightforward. Techniques in the lit- erature 

usually need to employ several auxiliary variables in order to deal 

with the nonsmoothness and nonseparability of the problem [37]-

[40]. As a result, the resulting algorithms have higher time and 

memory complexity. In contrast to those solvers, the Condat’s 

method is a noniterative method which solves FLSA for A1 = 0 

[41]. The complexity of algorithm on the most real problems is 

O(n) and its worst case is O(n2). The method, though very fast, is 

sequential by nature since the optimal value of xj is reliant on the 

optimal value xi-1. As a result, the algorithm is not prone to parallel 

execution. 

In this paper, a projection neural network is presented to solve 

FLSA. The proposed neural solution has a simple one- layer 

structure and is efficient in terms of both the component required 

for its circuit implementation and the number of oper- ations in 

each iteration. The neural model deals with the two nonsmooth 

terms in FLSA by using two consecutive projec- tions, which 

results in a network with n — 1 neurons, where n is the length of 

the given data. As a result, the proposed network is compact since 

the dimension of the network is lin- ear with respect to the 

dimension of the given data. The neural model is guaranteed to be 

stable in the sense of Lyapunov, and its trajectory is assured to 

converge to the optimal solution of FLSA given any arbitrary 

initial point. The neural solution is further applied to several 

problems in signal processing and biomedical engineering and the 

results are compared to the state-of-the-art solvers. In contrast to 

the Condat’s method, the proposed network can also be applied to 

other problems, such as weighted total variation [42] and trend 

filtering [43]. The complexity of the solving is of O(n) for a finite 

number of iterations. 

In summary, the contributions of this paper are as follows. 

1) A neural model is tailored for FLSA, which is, to the best of 

my knowledge, the first attempt to solve this problem using 

neurodynamic optimization. The neural model has a 

straightforward structure as it uses two successive 

projections. 

2) The network is proved to be stable in the sense of 

Lyapunov, and it is assured that it converges globally to the 

optimal solution to FLSA. 

3) The proposed model is simplified in the case where A1 = 0 

in FLSA. In this case, the neural network boils down to a 

well-known projection neural network, where its 

exponential convergence could also be guaranteed. 

The remainder of this paper is structured as follows. The neural 

network model is developed in Section II, and its sta- bility is 

assured in Section III. In Section IV, the proposed model is 

simplified for circumstances when A1 = 0 in FLSA, and it is 

shown that the proposed neural network boils down to a well-

known projection model with guaranteed exponential 

convergence. The experiments regarding the proposed neural 

network are presented in Section VI. Finally, this paper is 

concluded in Section VII. 

II. NEURODYNAMIC MODEL 

In this section, a neurodynamic model is developed for FLSA. 

To this end, FLSA can be equivalently

rewritten as 

1 2 
min-||x — y^2 + A1 ||x^ 1 + k2\\Dx\\1 (FLSA2) 

x 2 

where ||.|1 is the /1-norm and D e R(n—1)xn is defined as 

1 —1 0 . . . 0  

0  1  — 1

 . .

. 0  

0  0  . . .  1  — 1  

Since FLSA2 is convex, the Karush-Kuhn-Tucker (KKT) 

conditions [44] are necessary and sufficient for the optimality. On 

the other hand, it is required to use the property of the subgradients 

for FLSA2 due to its nonsmoothness. Thus, x* is the optimal 

solution of FLSA2 if there are w* and z* such that x—y+w+DTz 

= 0, where w e A19(|x| 1) andz e A29(|Dx|1). The derivative of | x| 1 

is not defined at zero, but the derivative is simply one if xj > 0, 

and —1 otherwise. Thus, one can write 

M if xj > 0 

e [—A.1, M] if xj = 0 

—A.1 if xj < 

0. 

The conditions in (1) can be restated using the well-known 

projection operator as [45] 

w = PX1 (w + x) (2) 

where P^ (a) = [P^ (a1), P^ (02), ...,PA1 (a„)], and 

A.1 if a j > A1 

e [—A1; A1] if |aj| < A1 

—A1 if a j < —A1. 

Similarly, one obtains the same projection equation for z as 

z = PA2 (z + Dx). 

As a result, the KKT conditions can be summarized as 

x — y + w + DT z = 0 

• w = PX1 (w + x) (3) 

_ z = PA2(z + Dx). 

From the first equation in (3), it follows that x = y—w —DTz. 

Replacing it in the second equation, one arrives at x = y — DTz — 

PA1 (y — DTz). As a result, the conditions in (3) can be rewritten 

simply as 

z = PA2 (z — DPA1 (y — DTz) — Dy + DDTz). (4) 

Based on (4), a neural network is proposed with the dynamic 

equation as being given by 

State Equation 

dz 
— = PA2 (z — h(z)) — z (5) 
dt 

output Equation 

x = y — DTz — PAI (y — DTz) (6) 

where h(z) = DPA1 (y — DTz) — Dy + DDTz. The dynamic 

system given in (5) can be easily recognized by a simple one- layer 

neural network, as shown in Fig. 1 for a general matrix D. The 

number of neurons for FLSA is k = n — 1, hence  



 

the structure of the network grows linearly with respect to the 

dimension of the given data. According to Fig. 1 with Dkxn, the 

circuit realizing the proposed neural network consists of k 

integrators, n + k piecewise activation functions, 2n + 2k 

summers, 2nk multipliers, and some weights. 

III. STABILITY ANALYSIS 

This section contains the stability analysis of the proposed 

neural network. First, some required definitions and lemmas are 

presented. 

Definition 1: x* is the equilibrium point of the dynamic 

system 

X= f (x), x(t0) = X0 e Rn (7) 

where f : Rn ^ Rn is a function, if f (x*) = 0. 

Definition 2 (Lyapunov Stability):  Let x(t) be a solution of 

the dynamic system in (7). An equilibrium point x* is stable if, for 

t > t0 

Ve > 0, 35 > 0, s.t. \\x(t) — x*|| < e if ||x(t0) — x*\| < 8. 

The dynamic system is asymptotically stable if x(t) ^ x* as t 

^<x> holds as well. 

Definition 3 (Monotonicity):  A mapping H is called mono-

tone at y e Q if 

(x — y)T (H(x) — H(y)) > 0 Vx e Q. 

If the above inequality holds for any x, y e Q, then the mapping H 

is said to be monotone in Q. 

Definition 4 (Variational Inequality):  The variational 

inequality problem is about finding x* e Q such that 

(x — x*)TH(x) > 0 Vx e Q 

where H is a function from Rn into itself. It was shown that x* is 

the solution of the above inequality if and only if the following 

projection equation holds [46]: 

x = PQ(X  — H(x)) 

where PQ() is the projection operator defined as 

PQ(Z ) = argmin ||z — y\\. 

yeQ 

Lemma 1 (Projection Properties [46]): Let Q C Rn be a 

closed convex set, then: 

1) (a — Pa(a))T(PQ(a) — b) > 0, a e Rn, b e Q; 

2) ||PQ(a) — PQ(b)\\2 < (PQ(a) — Pa(b))T(a — b) <\\a — 

b\\2, a, b e Rn. 

The stability and the convergence of the proposed neural 

network in (5) is now examined. Without loss of generality, we 

assume that D e R(n—1)xn. Before stating the main results, it is first 

shown that the function h(z) in (6) is monotone. 

Lemma 2: The mapping h(z) = D(Px l (y — DTz) — y + 

DTz) is monotone in Rn—1. 

Proof: For any u, v e Rn—1, one obtains 

(h(u) — h(v))T (u — v) 

= (Ph (y — Dru) — y + DTu 

— PXl (y — DTv) + y — DTv)T (DTu — DTv) 

= (PXl (y — DTu) — Pkl (y — DTv))T(DTu — DTv) 

+ \\DTu — DTv\\2. (8) 

Let a = y— DTu and b = y— DTv in Lemma 1-2), then (Ph 

(y — DTu) — Ph (y — DTv))T(—DTu + DTv) 

< \\DTu — DTv\\2 

^ \DTu — D T v \ \ 2  + (PXl (y — DTu) — Pkl (y — DTv))T 

x (DTu — DTv) > 0. (9) 

Considering (8) and (9), it follows that: 

(h(u) — h(v))T(u — v) > 0 

and h is thus monotone. ■ 

Now, consider the function H with the definition 

H(z) = 1\y — DTz — Pkl (y — DTz)f.
 (10
) 

The following two lemmas are about the features of this function. 

Lemma 3 [47]: The derivative of the function H(z) given in 

(10) is h(z), for example, VH(z) = h(z).  

Lemma 4: The function H given above is convex. 

Proof: The convexity of H(z) can be simply proved using its 

first derivative. In particular, one obtains 

(z1 — z2)T (V H(z1) —VH(z2)) 

= (z1 — z2)T(h(z1) — h(z2)) > 0

 

Fig. 1. Architecture of the proposed neural network for general matrix D e Rkxn, 

where k = n — 1 for FLSA. (a) Output circuit of the proposed neural network. (b) 

Dynamic circuit of the proposed neural network. 



dV 

(z) 

dt 

<0 

d V 

(z) 

d t 

= 0. 

1 
■x\z(t) -z 

2 

where the last inequality holds true since h is monotone. Thus, H 

is convex. ■ 

Lemma 5: There exists a unique continuous solution tra- 

jectory z(t) for the dynamic system (5) with any given initial point 

for t e [t0, T). 

Proof: It is first required to show that the right-hand side of the 

dynamic system is Lipschitz. To do so, let z1; z2 e Rn-1 be two 

arbitrary variables, then 

||z1 - Ph (Z1 - h(Z1)) - Z2 + Ph (Z2 - h(Z2)) || 

< 2||z1 -z2\\ + ||h(z1) - h(z2)\\ 

< \\z1 - z2\\ + ||D|| \y - DTz1 - Pkl {y - DTz1) 

-y + DTz1 + PXl {y - DTz1)\.

 (11

) 

Now, consider the following inequality for any arbitrary x, y, and 

PQ: 

\x - PQ (X )  -y + PQO) \ | 2  = ||x -y||2 + ||PQ(X) - Pa(y)\\2 

-  2(PQ (X )  -  Pn(y))T (x  -y ) 

<(1) \x -y||2 -||PQ(X) -PQ(y)\ \ 2 <  \x - 

y||2

 (12

) 

where (1) is obtained by using Lemma 1-2). Let x = b - DTz1 and 

y = b - DTz2 in (12), then one can rewrite (11) as 

\z1 - PXl (z1 - h(z1)) - z2 + PXl (z2 - h(z2)) \ 

< 2\z1 - z2 \| + ||D \ 2 \z1 - z2|| 

< (2 +||D||2) ||zx - z2|. 

Therefore, the right-hand side of the dynamic equation is 

Lipschitz. According to the Peano’s theorem for ODEs [48], a 

unique continuous solution z(t) exists for the dynamic system in 

(5) in the interval [t0, T). ■ 

The stability of the dynamic system in (5) is now explored. 

Theorem 1: The neural network governed by the dynamic 

equation in (5) is stable in the sense of Lyapunov and con- verges 

globally to a unique equilibrium z*. The unique solution to FLSA 

is then obtained by the output equation in (6). 

Proof: With any arbitrary initialization z0, the trajectory of the 

dynamic system in (5) has a unique continuous solution trajectory, 

thanks to Lemma 5. Consider the following Lyapunov function 

[19], [49]: 

V(z) = H(z) - H(z*) + h(z*)T(z* - z) + 1 ||z - z* ||2 

where z* is the equilibrium of the dynamic system and u e Rn-1. 

Since H is convex, it simply follows that [46]: 

H(z) - H(z*) + h(z*)(z* - z) > 0. 

Thus, V(z) > ||z - z*||2/2, which means that V(z) ^ +TO as ||z|| ^ TO 

[49]. The time derivative of the Lyapunov function is then 

obtained as [19], [49] {h(z) - h(z*) + z - z*)Tdt 

{h(z) - h(z*) + z - z*)T{PX2 (z - h(z)) - z). (13) 

Now, let a = z - h(z) and b = z* in Lemma 1-1), 

one obtains [19], [49] 

{PX2 (z - h(z)) - z*)T{z - h(z) - PX2 (z - h(z))) > 0. (14) 

Further, using Definition 4 with x = PX2 (z - h(z)) results in 

{PX2 (z - h(z)) - z*)Th{z*) > 0, Vz e Rn-1.
 (15
) 

Adding the inequalities in (14) and (15), we obtain 

{PX2 (z - h(z)) - z* + z - z)T 

X {z - h(z) - PX2 (z - h(z)) + h(z*)) > 0. 

It follows [49]: 

{z - z* + h(z) - h(z*))T{PX2(z - h(z)) - z) 

< ~{z - z*)T{h(z) - h(z*)) - ||z - PX2(z - h(z))W2 

< 0 (16) 

where the last inequality is obtained as (z - z*)T (h(z) - h(z*)) >

 0 due to the monotonicity of h(z), and ||.||2 is 

evidently non-negative. Plugging (16) into (13), it follows: 

d V (z) d t 

and the dynamic system in (5) is 

thus stable in the sense of 

Lyapunov. 

According to the invariant set theorem [50], all trajecto- ries of 

the proposed neural network converge to the largest invariant set 

n, where d V(z)/dt = 0. Now, it is shown that dV(z)/dt = 0 if and 

only if dz/dt = 0. If dz/dt = 0, then 

d V(z) \T /dz dz ) l dt 

Conversely, 
d V(z)/dt = 
0 implies 

(z - z*)T{h(z) - h(z*)) + ||z - 

PX2(z - h(z))W = 0. 

Since both terms in the above equation are non-negative, it 

follows that: 

l|z - Ph2 (z - h(z))W =0 ^ z - Ph2 (z - h(z)) = 0. Hence, 

dz/dt = 0 and 

lim dist(z(t), n) = 0. 
t^(X 

Finally, the above inequalities show that z(t) is bounded. The 

boundedness of trajectories of the dynamic system in (5) means 

that a subsequence {z(tk)} exists such that 

lim z(tk) = z 
k^<X 

where z is an equilibrium of (5). Consider the following Lyapunov 

function: 

V(z) = H(z) - H(z) + h(z)T(z - z) + — ||z - z||2. 

Then, lim^», z(tk) = V(u) = 0. Hence, there exists 5 > 0 for any e 

> 0 such that < t(z(t)) < V(z(tq)) < e. 

Therefore, limz^OT z(t) = z. As a result, the 

dynamic system in (5) is globally convergent to 

one of its equilibrium points. According to Lemma 5, the state 

trajectory of (5) is unique, thus it converges to a unique 

equilibrium point z*, where the unique solution to FLSA is 

obtained by x* = y - DTz* - PX2 (y - DTz*). ■  



IV. SlMPLIFICATION FOR ÜTHER PROBLEMS 

 

This section presents the simplification of the proposed neu- ral 

network in order to be applied to two well-known 

problems: 

1) total variation denoising and 2) trend filtering. 

If X1 = 0, FLSA can be restated as 1 
m i n -  ||x - y\\ + k2\\Dx\\1 (17) 

x 2 

which is the total variation denoising problem [2]. The KKT 

conditions for this minimization can be written as 

| x — y + DTz = 0 

[z = Px2 (z + 

Dx). 

Thus, the neural model can be simply rewritten as 

State equation 

dz = Px2 (z — h(z)) — z (18) 
d t 

Output 
x = y — DT z 

where h1(z) = DDTz — Dy. In comparison to the neural network 

for FLSA, the neural network in (18) does not have the projection 

to X1, since it is zero. The neural model in (18) is a linear 

projection equation, which has been extensively studied in 

different research [11], [49], [51], [52]. Since DDT is positive 

definite, it has been investigated that the trajectory of this neural 

network is exponentially convergent in finite time to the unique 

equilibrium [51]. 

The approximation of the trend in a given time series is a 

fundamental problem that arises in a variety of disciplines. Trend 

filtering has been also modeled similar to (17), in which matrix D 

is replaced with D e R(n—2)xn defined as [43] 

-1 2 —1 . . . 0  0  0  0  — 1 2  

. . . 0  0  0  

0 0 . . .  —1 2 —1_ 

Since the neural model in (18) does not impose any assumption on 

D, it can be simply applied to this problem as well. On the other 

hand, matrix D is also full row rank, thus DDT is positive definite, 

and the dynamic system in (18) is thus exponentially convergent in 

finite time. 

Another important problem is the proposed model can solve the 

weighted total variation, that is, [42] 

1 n n—1 

min 2 l|x — y\2 + X^2 \xi\ +X2 ^ ai\xi — xi+11 

i=1 i=1 

where a e Rn—1,a i > 0 penalizes the difference between the 

associated elements in the vector. One can define D = diag(a)D, 

where diag is a diagonal matrix whose diagonal elements are a, 

making the problem turn into FLSA2. Thus, the proposed neural 

network can also solve this problem. 

V. COMPLEXITY OF THE NEURAL SOLUTION 

For a general matrix D e Rkxn, the proposed neural network in 

(5) requires 2nk multiplications and 2nk + n + k addi- 

tions/subtractions. However, the computations can be more 

Algorithm 1 FLSA Computations 

Input: y e Rn, z e Rn—1, X1, X2 

for iter=1:n do if i == 1 then 

temp = y1 — z1 
end if 

if i == n then 

temp = yn + zn 

else 

temp = y i + z i—1 — z i 

end if 

if temp > X1 then 

xi = temp — X1 

end if 

if temp < —X 

then xi = temp + 

X1 

else 

xi = 0 end if end for 

for i=1:n-1 do 

temp = z i + xi — 

xi+1 if temp > X2 

then newZ i = X2 — 

z i  end if 

if temp < — X then 

newZ i = —X2 — 

z i 

else 

newZi = temp — z i 

end if end for Output 

newZ 

economical in some special cases, such as FLSA or the total 

variation denoising (17). 

For FLSA, the value of y — DTz is 

y1 — z1 

y2 + z1 — z2 

y — DTz = 

yn—1 + zn—2 zn—1 
yn + zn—1 

Having the value of X1, the value of x = y — DTz — PX1 (y — 

DTz) can be obtained by 3n+3 additions/subtractions (and no 

multiplication). The time complexity is also linear in n since we 

only need to iterate over the length of y — DTz. Similarly, PX (z 

+ Dx) — z can be computed in linear time with respect to n. 

Overall, the time complexity of recurrent neural network is linear 

in n for a number of iterations. Algorithm 1 summarizes the 

procedure of the FLSA computations in each iteration. The 

algorithm can also be written by one loop, but we deliberately use 

two loops so that they can be executed in parallel. Each iteration in 

these loops can be executed independently with respect to other 

iterations of the loop. Therefore, the algorithm is ideal for parallel 

computing.  



 

Fig. 2. Convergence of the proposed neural network over a random sample selected from the Pollack et al. 

dataset [58] for aCGH data. The selected sample was subjected to the neural network with three different initial 

values: (a) with initialization z = 1; (b) with initialization z = 0; and (c) with random initialization. The abscissa 

is the time, and the ordinate is the value of each element of z at a specific time. The trajectories of each element 

of z are shown by distinct colors. 

For the total variation denoising, the order is also linear in n, 

and the number of iterations is finite [11], [49], [51], [52]. Thus, 

the overall time complexity of the neural network is of O(n) as 

well, similar to the Condat’s method. However, the difference is 

that the Condat’s method is of order n2 in the worst case and not 

prone to parallelism. In the proposed neu- ral network, aside from 

its possibility to be implement using circuits, the computations of 

x and P\(z + Dx) — z can be conducted in parallel. 

VI. EXPERIMENTS 

This section presents the experiments regarding the proposed 

neural network. The neural network is implemented using the 

ODE solvers of MATLAB with the tolerance 10-5. The 

implementation of the proposed network is publicly avail- able.1 

First, we study how parameters in FLSA can be tuned, and then 

the convergence of the dynamic system in (5) was empirically 

investigated. Then, the proposed neural network was applied to 

several real-world problems, including array comparative genomic 

hybridization (aCGH or CGH array) data recovery and trend 

filtering. The performance of the neural solution was compared to 

those of the state-of-the-art methods in each application. 

A. Parameter Tuning 

There are two parameters in (FLsA) whose values can sig- 

nificantly impact the behavior and the outcome of the neural 

network. Consequently, it is vital to appropriately tune the 

parameters. There are several strategies for identifying the 

appropriate values of such parameters, including, but not lim- ited 

to genetic algorithms [53], sequential minimization [54], L-curve 

method [55], and variational Bayes [56]. Another sim- ple yet 

practical strategy is grid search where we build a model for every 

possible combination of the parameters X1 and A.2, and then select 

the parameters with the best model fit gauged by some fitness 

function. 

As there are two parameters in (FLSA), we need to apply a 2-D 

grid search, which is time consuming in general. However, 

following a related study [57], we restricted the choice of the 

parameters to the set 0.1, 0.3, 0.5, 0.7, and 0.9. We further 

 
1 https://github. com/Majeed7 

gauged the fitness of an estimated model, shown by X, as [57] 

/ \\y — XII 2 \  

- n log n —s log(n) (19) 

where s is the number of nonzero elements in X. Finally, we 

selected the model with the maximum fitness value. 

B. Convergence 

The theoretical analysis showed that the neural network in (5) 

converges globally to the optimal solution of FLSA, regardless of 

the initial point. In this experiment, the conver- gence of the 

network is empirically explored by performing a recovery on 

aCGH data. In this regard, a sample from the Pollack et al. dataset 

[58] was randomly selected, and it was subjected to the recurrent 

neural network for recovery. 

The sensitivity of the proposed model was investigated by 

initializing the network with distinct values. The network was 

initialized with a vector of one, zero, and a random vector, 

respectively, so that the convergence of the neural solution could 

be explored in practice. Fig. 2 plots the trajectory of each element 

of z in the dynamic system in (5) against different time slots. The 

trajectory of each element is displayed by distinct colors so they 

can be distinguished in three plots. Based on this figure, the 

trajectory of the dynamic system is convergent to the same value, 

regardless of the initialization. This experiment corroborates the 

global convergence of the proposed neural network, which was 

theoretically assured in Section III. 

C. aCGH Data Analysis 

aCGH or CGH array is arguably the first important applica- 

tion of FLSA [59], [60]. The aCGH data helps the diagnosis and 

prognosis of various diseases such as cancer by finding the 

aberrational regions in the DNA genome of a given sample. The 

major impediment to find such regions is that aCGH data is highly 

corrupted by various sources of noise. Therefore, a recovery 

method is required to approximate the noise-free data from 

contaminated observations. It was shown that the result- ing aCGH 

data of a sample is both sparse and smooth [60]. Hence, FLSA is 

the minimization which is deemed to recover the noise-free data. 

For this experiment, several synthesized and real aCGH data were 

subjected to the proposed neural solution, and its

https://github/


 

Fig. 3. ROC curves plotted from recovery of synthesized data with different SNRs. The abscissa and ordinate of each plot are the TPR and FPR, respectively. The 

methods are the proposed neural network, TVSp [61], PLA [62], LRHQ [63], and GFLseg [64]. 

performance was compared with those of more sophisticated 

methods. 

For the synthesized data, 50 samples with the length of 120 

were generated. The elements of each aCGH sample were assumed 

normal if it is zero, and the aberrant regions were created by 

distorting the elements of each sample with the value 1 or -1. The 

length of each aberrant region was ran- domly selected from the 

set {5, 10, 20, 30}. Then, a Gaussian noise was added to each 

sample to produce the observation. To compare the methods in 

different corruption levels, several ratios of the data to the noise 

were considered. These ratios are called signal-to-noise ratios 

(SNRs). To affect the SNRs, one can simply write 

y = x + SNR-1e (20) 

where e is the noise distributed according to the standard normal 

distribution. As a result, the higher values of SNR would result in 

less corrupted observations, and the smaller values would indicate 

that the data is highly contaminated with the noise e. The noisy 

samples were then subjected to the neural network, total variation 

and spectral regular- ization (TVSp) [61], piecewise and low-rank 

approximation (PLA) [62], low-rank approximation based on half-

quadratic programming (LRHQ) [63], and group fused lasso 

segmen- tation (GFLseg) [64]. The parameters of methods, when 

not determined by the method itself, are identically identified 

similar to the proposed neural network. 

Since the ground truth is available in the synthetic exper- 

iments, one can simply compare the performance of each method 

by juxtaposing real and recovered data. For this experiment, the 

receiver operator characteristic (ROC) curve is used to contrast 

different methods. The ROC curve plots the true positive rate 

(TPR) against the false positive rate (FPR), and 

 

deviation from diagonal is the indicator of the goodness of a 

method. 

Fig. 3 plots the ROC curve of various methods over the syn- 

thesized data with different SNRs. As the level of corruption 

decreases, the performance of all methods increases signifi- cantly. 

In particular, the performance of the proposed neural network is 

competitive with TVSp and LRHQ in all levels of corruptions. On 

the other hand, it is significantly superior to GFLseg and PLA in 

all scenarios. 

Although the performance of the proposed network is com- 

petitive with TVSp and LRHQ, the neural solution is more time- 

and memory-efficient. TVSp and LRHQ (and also PLA) use the 

nuclear norm regularization, which needs to compute the singular 

value decomposition in each iteration. For m samples with the 

length of n, the singular value decomposition has the complexity 

of order O(mn2). Hence, the methods based on the nuclear norm 

are of higher time complexity. 

Regarding memory complexity, the proposed neural network 

does not need to use any auxiliary variables. The size of the 

network is commensurate with the length of the given data.

 

Fig. 4. Execution time in seconds of five methods with datasets with 

varying number of probes. The methods are the proposed neural network, 

TVSp [61], PLA [62], LRHQ [63], and GFLseg [64]. 
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Fig. 5. Recovery of three samples from the Pollack et al. dataset by three methods. Each row is dedicated to a particular sample, while each column corresponds to each 

method. The methods are the proposed neural network, TVSp [61], and LRHQ [63]. The blue lines are the data recovered by the corresponding methods and the red dots 

denote the data before recovery.

 
 

However, TVSp and LRHQ require the use of several auxiliary 

variables in order to solve their corresponding optimization 

problem. As a result, they occupy more space in the main memory 

compared with the proposed neural network. 

To show the efficiency of the proposed neural network in 

practice, we generate synthesized data with varying lengths. The 

proposed neural solution is then compared with other methods 

based on the execution time required for each gen- erated data. 

Fig. 4 plots the execution time in seconds of the foregoing 

methods on data with differing lengths. 

The neural network is significantly superior to PLA and LRHQ 

regarding execution time. The neural solution is fur- ther 

competitive with TVSp, and GFLseg is significantly faster than 

other methods. The reason for this difference is that the proposed 

neural network is solely implemented in MATLAB while different 

parts of TVSp and GFLseg are implemented in C/C++. Generally, 

the proposed neural network is efficient concerning execution 

time. 

The neural network is further applied to a real aCGH data to 

verify its efficiency. The Pollack et al. [58] is a well-known 

aCGH dataset on breast cancer which contains 44 samples of 6691 

human mapped genes. The dataset was subjected to the neural 

network, TVSp, and LRHQ, and three recov- ered samples are 

displayed in Fig. 5. In this figure, each row is dedicated to each 

sample, and each column corresponds to a method. The red dots in 

this figure are the real data, and the blue line is the data recovered 

by the corresponding techniques. Based on this figure, the 

recovered data by the proposed neural network is way smoother 

than those of TVSp and LRHQ, even though the neural network 

has less time and memory complexity in comparison to competing 

meth- ods. To quantify the difference between methods in terms of 

smoothness, we gauge the total variation of each sample 

GFLseg - Neural 
Network ■ 

Fig. 6. CD diagram to compare methods with respect to the smoothness of samples 

on the Pollack et al. dataset. 

from the Pollack et al. dataset and compare the average of the 

total variation of methods using the Friedman test and the 

corresponding post-hoc analysis with Nemenyi’s correc- tion 

method [65]. The null hypothesis of the Friedman test was rejected 

with p-value was close to zero. We further visualize the critical 

difference (CD) diagram to compare the methods based on the 

smoothness. Fig. 6 plots the rank of each method obtained by the 

Friemdan test; the lower the rank, the better the method. Also, the 

methods that are not significantly different from each other are 

connected with red dots. According to this figure, GFLseg and the 

proposed neural network are identical top methods in terms of 

smooth recovery, followed by TVSp, LRHQ, and PLA. The 

reason that GFLSeg performs well is that, rather than conducting 

the recovery, it first finds the mutated points and then connects the 

points by a line. Thus, it has a very smooth recovery. This 

experiment corroborates the efficiency of the neural network in 

real-world situations. 

D. Trend Filtering 

In this section, the proposed neural network in (18) is applied 

to a fictitious dataset for the so called trend filtering, and its results 

are compared with HP filtering [66]. 

The synthesized data is created based on the following 

equation: 

t = 1, 2 , . . . , n

 

Neural network TVSp 

 

LRHQ 

 



 

 

where xt is the data at the time t, vt is the trend slope, and x0 = 0. 

The slope vt is generated based on the simple Markov process in a 

way that with the probability of p, vt+\ = vt, and vt is selected 

from the interval [—b, b] otherwise. 

The noise-free data is then required to contaminate with a 

random noise. In this experiment, we use an additive Gaussian 

noise to corrupt data based on the following equation [43]: 

yt = xt + et (22) 

where et is a zero-mean Gaussian noise with standard devia- tion 

o. It is now required to specify the fixed parameters b, p, o, and n. 

For this experiment, these values are set as 

n = 1000, p = 0.985, o = 10, b = 0.3. (23) 

The k2 is also set to 100 for both the HP filtering and the 

proposed neural network in (18). The real data and the noise 

generated to corrupt it are plotted at the top panel of Fig. 7 with 

red and blue lines, respectively. The generated corrupted data were 

subjected to the proposed neural network and the HP filtering to 

conduct the recovery and discover the underlying trend in the 

fictitious time series. The middle and bottom panel in Fig. 7 

display the recovered time series by the proposed neural network 

and the HP filtering, respectively. The black lines are the 

recovered data and the red dots are the real data before corruption. 

According to this figure, the neural network could successfully 

detect four kink points out of six. Similarly, the HP filtering could 

also detect the same number of kink points. The difference is, 

however, the recovered data by the HP filtering is curvy while the 

neural network estimation is angular. 

VII. CONCLUSION 

This paper presented a recurrent neural network for FLSA. The 

proposed neural network was assured to be stable in the sense of 

Lyapunov and converge globally to the optimal solu- tion of the 

problem. The network was also simplified to solve several real 

problems, including total variation denoising, trend filtering, and 

weighted total variation problem. The experi- ments illustrated the 

reasonable performance of the proposed neural solution. 

The proposed neural network can also be applied to several 

other problems as well. For instance, the total variation- 

regularized problem has diverse applications, such as image 

restoration, image deblurring, and hot-spot detection. The neu- ral 

network is thus possible to solve these problems as well, which is 

left for the future research. Also, as Algorithm 1 suggests, the 

neural network can be executed highly in parallel. Therefore, 

another avenue for the future research is to take advantage of the 

graphics processing units (GPUs) and execute the program in 

parallel with those technologies. 
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