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a b s t r a c t 

Existing battery modeling works have limitations in addressing the dependence of transport properties 

on local field variations and characterizing the response of anisotropic media. These limitations are tack- 

led by means of a nested finite element (FE 2 ) multiscale framework in which microscale simulations are 

employed to comprehensively characterize an anisotropic medium (macroscale). The approach is applied 

to the numerical simulation of transport processes in lithium ion battery separators. From the microscale 

solution, homogenized fluxes and their dependence on the downscaled macroscale variables are upscaled, 

thereby replacing otherwise assumed macroscale constitutive laws. The tensorial nature of macroscale 

effective transport properties stems from the numerical treatment. The proposed approach is verified 

against full-scale simulations. Several numerical examples are used to demonstrate the perils associated 

with accepted procedures, leading in some cases to severe discrepancies in the prediction of field quan- 

tities (from differences in the potential drop across the separator of about 27% for a fixed microstructure 

to more than 100% in the case of an evolving microstructure). Despite the use of simplified assumptions 

(e.g., synthetic microstructures), the numerical results demonstrate the importance of a tensorial descrip- 

tion of transport properties in the modeling of battery processes. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Electrochemical models employed for battery cell performance 

rediction are based upon assumptions that are functional to their 

fficient numerical solution. A common assumption is that trans- 

ort properties are constant when calculating the effective trans- 

ort coefficients. Moreover, the effective transport properties are 

sually represented by a scalar or, at best, by a tensor with null 

ross-terms. The implication of this choice is that the role of the 

icrostructure is not fully reflected by the effective transport prop- 

rties. This paper discusses these aspects by means of a nested 

nite element (FE 2 ) multiscale framework endowed with nonlin- 

ar physics-based constitutive models at the microscale (pore- 

cale) and well-defined information exchange between micro- and 

acro-scales (cell level). 
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The popular DFN model [1] , also referred to as the pseudo two- 

imensional (P2D) model, describes porous battery cell compo- 

ents as homogenized macroscopic continua using averaged mass 

nd charge transport equations. The impact of a component’s mi- 

rostructure on the overall response is taken into account by 

eans of effective transport properties. These parameters are iden- 

ified either through Bruggeman relationship [2] , or through sets of 

imulations independently performed on microstructural volume 

lements. Although the direct application of the first approach is 

traightforward, its accuracy in terms of battery response predic- 

ion is limited [3,4] . For this reason, variants of Bruggeman rela- 

ionship are available in the literature and are tuned through ex- 

erimental investigations on a problem-specific basis [5] (an ex- 

mple of such an approach relevant for lithium ion battery sep- 

rators is represented by Cannarella and Arnold [6] ). The second 

pproach reaches a compromise between computational cost and 

 microstructure-informed analysis. This compromise is reached 

hrough a simple multiscale computational strategy [3,7–9] in 

hich the macroscale formulation is analogous to that of the DFN 

odel as summarized in Sec 3.1 . 

Some problems however arise with the second approach. First, 

he coupling between mass and charge transport is disregarded 
under the CC BY-NC-ND license 
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Nomenclature 

c e concentration at the pore-scale 

〈 c m 

〉 e intrinsic volume average of microscale concentra- 

tiony 

c h homogenized concentration 

c m 

concentration at the microscale 

˜ c m 

microscale concentration fluctuation field 

〈 c m 

〉 e intrinsic volume averages of microscale concentra- 

tion 

c M 

concentration at the macroscale 

f e mean molar activity coefficient 

I app applied current 

i e pore-scale current density 

i m 

microscale current density 

i M 

macroscale current density (averaged flux) 

n ex outward unit normal vector to RVE boundary �ex 

q e pore-scale lithium ion flux 

q m 

microscale lithium ion flux 

q M 

macroscale lithium ion flux (averaged flux) 

t time 

t e transference number 

t end end of simulation time 

x point in RVE 

x r reference point in RVE 

D e bulk diffusivity 

D eff effective bulk diffusivity 

D ref bulk diffusivity at concentration c e = 1 . 0 mol / L 

D eff macroscale diffusivity tensor 

F Faraday constant 

K q , K i consistent tangents summarizing the (numerical) 

relationships between inputs ( X ) and outputs ( q M 

and i M 

) of the microscale simulations 

R gas constant 

T absolute temperature 

V e electrolyte domain 

V b ion-transport blocking phase domain 

X vector containing macroscale concentration and po- 

tential fields and their gradients 

α Bruggeman exponent 

δ effective transport coefficient 

δ tensor of the effective transport coefficients 

δi j effective transport coefficients in δ
ε electrolyte volume fraction (i.e., RVE porosity) 

κD diffusional conductivity 

κD,eff effective diffusional conductivity 

κe bulk conductivity 

κeff effective bulk conductivity 

κref bulk conductivity at concentration c e = 1 . 0 mol / L 

τ tortuosity 

φe electric potential at the pore-scale 

φh homogenized electric potential 

φm 

electric potential at the microscale 

φM 

electric potential at the macroscale 
˜ φm 

microscale potential fluctuation field 

〈 φm 

〉 e intrinsic volume averages of microscale potential 

�eb interface between electrolyte and ion-transport 

blocking phase 

�ex RVE boundary 

�e ex RVE boundary associated to the electrolyte 

�b ex RVE boundary associated to the ion-transport block- 

ing phase 

	φ potential drop 

∇ · f divergence of vector field f 
fi

2 
∇ gradient operator 

hen a simulation is performed on the microstructure volume el- 

ment. Second, microscale simulations are performed with a con- 

tant bulk transport property. The omission of the concentration 

ependence leads to the question of whether we can safely use the 

ame concentration dependence function for the effective transport 

roperties at the macroscale (this aspect is discussed in Sec 3.1.1 ). 

inally, the dimensionality of the effective properties is understood 

ifferently. Some authors [3,7,8] treat effective properties as scalar. 

thers [4,5,9–12] report different properties in through-plane and 

n-plane directions (i.e., the direction of transport between elec- 

rodes and those directions orthogonal to it [9] , respectively), but 

o not make reference to cross-terms (effective transport coeffi- 

ients that describe the occurrence of flux in one direction when 

 gradient of the field variable is applied in the orthogonal direc- 

ion). Cooper et al. [4] suggest to describe local heterogeneities in 

he microstructure using a vectorial tortuosity. Even if this treat- 

ent is unconditionally applicable to isotropic media, it is not nec- 

ssarily adequate for porous battery components. In fact, experi- 

ental evidence indicates that transport properties in battery elec- 

rodes are sensitive to the direction of the applied gradient [5,10] . 

 tensorial description thus appears more adequate [13–16] . Fur- 

hermore, as the battery components morphology changes with 

lectrochemical cycling (due, for example, to the deformations of 

onstituents [17] ), initially isotropic porous structures might not 

emain isotropic during battery operations. 

Single-scale simulations (also referred to as direct numerical 

imulations) fully resolve the microstructure [18–20] and can be 

mployed to address some of the issues illustrated above. How- 

ver, a detailed numerical representation of porous battery com- 

onents (up to their microstructure) requires a significant com- 

utational effort, especially when the pore/particle size is two to 

hree orders of magnitude smaller than the typical size of a battery 

ell [4,21] . Direct microstructure-resolved approaches are computa- 

ionally expensive and are therefore deemed unsuitable for battery 

erformance improvements through model-instructed microstruc- 

ure manipulation if an entire battery cell is considered and in the 

ase of performance optimization studies. 

To address the limitations just described, we propose the use 

f a FE 2 -based computational homogenization scheme and present 

 proof-of-concept two-scale framework with simple information 

xchange between macro- and micro-scale levels. The approach is 

lso used to extract effective properties as a by-product of the nu- 

erical procedure as discussed in Sec 3.1.2 . Although the FE 2 ap- 

roach has been successfully applied to many problems, ranging 

rom mechanical equilibrium [22–24] and transport [25] problems 

o multi-physics problems [26–29] , the analyses reported in this 

anuscript have been performed on academic, yet plausible, ex- 

mples for the sake of verification of the framework. Its application 

o engineering-relevant problems does however require the use of 

d-hoc procedures [30,31] . 

The theoretical framework of a computational homogenization 

pproach for battery applications has been recently developed by 

alvadori et al. [32,33] to account for the multi-physics nature of 

rocesses taking place in battery cells, including diffusion, migra- 

ion, intercalation, and mechanics. In this paper, we present an al- 

ernative FE 2 framework focused on ionic transport through porous 

attery cell separators ( Sec 2 ). In the separator only two con- 

tituents coexist: a liquid electrolyte filling the pores of an inert 

nd electrochemically inactive membrane (e.g., polyolefin [9] ). The 

bsence of active materials results in significant modeling simpli- 

cations, as no lithium exchange occurs between the constituents. 
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Fig. 1. Schematic of the multiscale approach showing (a) a battery cell with porous 

anode, separator, and cathode (the porous electrode and separator domains are 

filled with the electrolyte occupying domain V e ), (b) the homogenized domain at 

the macroscale, and (c) a microscopic representative volume element (RVE) of bat- 

tery separator, consisting of blue-shaded electrolyte domain V e and gray-shaded 

ion-transport blocking phase domain V b . The blocking phases represent the separa- 

tor membrane. The information exchange between macro- and micro-scales is de- 

picted in panels (b) and (c). The potential ( φM ) and its gradient ( ∇φM ), and the con- 

centration ( c M ) and its gradient ( ∇c M ) at a point of the macroscale domain � (inte- 

gration point in the context of FEM) are transferred to the microscale to define the 

boundary conditions, while the averaged fluxes ( i M , q M ) and their dependence ( K i , 

K q ) on the downscaled quantities are transferred back after the microscale quan- 

tities ( φm and c m ) are evaluated. The RVE boundary �ex is divided into two parts, 

each associated with a phase, such that �ex = �e ex 
∪ �b ex 

with �e ex 
∩ �b ex 

= ∅ . 

t

t
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his allows capturing the most fundamental phenomena and as- 

ess the applicability of the FE 2 method to the battery setting. 

Battery cell separators can have a macroscopically anisotropic 

esponse [9,12] and undergo deformation during battery cycling 

as a result of either electrode deformations [34] or externally ap- 

lied mechanical loads [6] ), just like any other battery compo- 

ent. The design of the separator is not secondary to that of elec- 

rodes, as experimental and numerical investigations indicate that 

t is the transport-limiting component of a cell when subject to de- 

ormations [6,9] . We thus employ the proposed multiscale frame- 

ork to simulate charge processes and focus on the battery sep- 

rator response. For simplicity, we consider two-dimensional (2- 

) microstructures only and do not discuss procedures [30,31] to 

educe the simulation costs of the FE 2 approach. In Sec 3 the 

eatures of the FE 2 approach are discussed in the light of the 

imitations of existing models, under conditions that allow also 

impler approaches to be examined in Sec 3.3 . Furthermore, we 

erform simulations of battery separators both with single-scale 

microstructure-resolved) and FE 2 approaches and show that the 

ame level of accuracy is achieved ( Sec 3.2 ), thus verifying our 

pproach. Finally, Sec 3.4 demonstrates the potential of the ap- 

roach to describe the consequences of different microstructure 

eformation paths of a separator during the charge process. The re- 

ults show that alteration of the microstructure morphology alone 

i.e., at constant porosity) results in a significant alteration of the 

acroscopic response of the system. 

. Multiscale approach 

Next, the FE 2 approach employed in this study is summarized, 

nd the governing equations at the two scales together with the 

orresponding information-passing procedures are reported. De- 

ails about the numerical implementation are provided in Sec S4 

n the Supplementary Material (SM). In the remainder of the pa- 

er, quantities at the microscale and macroscale are identified by 

ubscripts ‘m’ and ‘M’, respectively. 

.1. Macroscale model 

We restrict our scope to ionic transport through the battery cell 

eparator where there is no mutual interfacial flux between elec- 

rolyte and porous membrane. A schematic of the problem is re- 

orted in Fig. 1 a. The ionic transport in the electrolyte is governed 

y mass conservation of lithium ions and electric charge balance, 

xpressed as 

∂c M 

∂t 
+ ∇ · q M 

= 0 and (1a) 

 · i M 

= 0 in � × ( 0 , t end ) , (1b) 

espectively, where ε is the electrolyte volume fraction (i.e., the 

embrane porosity), q M 

is the lithium ion flux, i M 

is the cur- 

ent density, and c M 

represents the macroscale concentration. The 

acroscale governing equations can be derived through a volume- 

veraging approach applied to the single scale governing equations 

s shown in Sec S3 in the SM. 

Equation (1) expresses the macroscale balance equations over 

he homogenized domain � ( Fig. 1 b). It is remarked that 

acroscale concentration c M 

and potential φM 

(not explicitly 

resent in Eq. (1b) ) are the two field variables to solve for, and that

he macroscale constitutive relations for q M 

and i M 

are numeri- 

ally obtained through the information exchange between the two 

cales ( Sec 2.4 ). As schematically depicted in Fig. 1 , the macroscale

olution fields c M 

and φM 

and their gradients are downscaled to 

he microscale problem, and the macroscale fluxes and their tan- 

ents are evaluated from the microscale solution and upscaled to 
3 
he macroscale problem. Initial and boundary conditions complete 

he macroscale problem definition and are provided in Sec 3 for 

ach example considered. 

.2. Downscaling 

The boundary conditions enforced at the microscale level are 

btained by downscaling macroscale quantities at each integration 

oint of the macroscale mesh: concentration c M 

, potential φM 

, and 

heir gradients ∇c M 

and ∇φM 

, respectively. For conciseness, these 

uantities are stacked in the column vector 

 = 

[ (∇c M 

)T 
c M 

(∇φM 

)T 
φM 

] T 
. (2) 

.3. Microscale model 

The microscale problem is defined on a representative volume 

lement (RVE), as shown in Fig. 1 c, associated to a macroscale in- 

egration point of the homogenized separator ( Fig. 1 b). The bal- 

nce equations at the microscale, analogously to those used at the 

acroscale ( Eq. (1) ), are expressed as 

 · q m 

= 0 and (3a) 

 · i m 

= 0 in V e , (3b) 

here V e is the electrolyte domain bounded by �e ex ∪ �eb with 

e ex ∩ �eb = ∅ ( Fig. 1 c). Subscripts ‘e’ and ‘b’ refer to electrolyte 

nd ion-transport blocking phase (porous membrane), respectively. 

he ion-transport blocking phase is not modeled because no trans- 

ort processes occur within it (in this study the blocking phase is 
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erely an obstacle that is impenetrable to ions). At the microscale 

e neglect the time variation of the concentration field assuming 

hat the RVE is sufficiently small to allow the steady state con- 

guration to be suddenly attained. This condition is met in bat- 

ery separators where the characteristic size of the pores is or- 

ers of magnitude smaller than the typical thickness of porous 

embranes [21] (a discussion is provided in Sec S8 of the SM). 

e remark that simulations of porous battery electrodes within a 

E 2 framework might call for a concurrent time modeling between 

acroscale and microscale, as discussed by Salvadori et al. [33] . 

ndeed, diffusion in active material can be so slow that the time 

volution of microscale fields becomes comparable to that of the 

acroscale counterparts. The low diffusivity of the active materi- 

ls is indeed recognized as one of the limiting factor towards the 

ull exploitation of the theoretical battery energy over a range of 

perating conditions, as the thorough investigation performed by 

u et al. [35] demonstrates. 

Constitutive equations are explicitly provided at this scale, 

here the ionic transport processes is modeled through the con- 

entrated solution theory [1] . The lithium ion flux, and the current 

ensity read 

 m 

= −D e ∇c m 

+ 

t e 

F 
i m 

, (4a) 

and 

 m 

= −κe ∇φm 

+ κD ∇ ln c m 

, (4b) 

espectively, with the diffusional conductivity defined as 

D = 

2 RT κe 

F 

(
1 + 

∂ ln f e 

∂ ln c e 

)
( 1 − t e ) . (4c) 

The coupled set of differential Eq. (3) is solved in terms of 

ithium ion concentration c m 

and electric potential φm 

. In the 

bove equations, D e and κe denote bulk diffusivity and ionic con- 

uctivity (i.e., quantities actually related to the material), respec- 

ively, t e is the transference number, and f e is the mean molar ac- 

ivity coefficient. Finally, F , R , and T represent the Faraday constant, 

he gas constant, and the absolute temperature, respectively. 

Next, we derive the microscale boundary conditions from the 

acroscale quantities X in Eq. (2) . Without loss of generality, mi- 

roscale fields can be decomposed into linear contributions consis- 

ent with macroscale quantities ( c M 

, φM 

, and their gradients) and 

uctuation fields ˜ c m 

and 

˜ φm 

as in 

 m 

= c M 

+ ∇c M 

· ( x − x r ) + 

˜ c m 

, (5a) 

m 

= φM 

+ ∇φM 

· ( x − x r ) + 

˜ φm 

, (5b) 

here x and x r denote the spatial coordinates of a point and a 

eference point in the RVE domain, respectively. 

To design the boundary conditions of the microscale prob- 

em, we assume that the volume average of the gradients of mi- 

roscale variables over the whole RVE is equal to the correspond- 

ng macroscale gradients in analogy with the kinematical averaging 

elation used in solid mechanics to establish the macro-to-micro 

oupling: 

1 

V 

∫ 
V 

∇ c m 

d V = ∇ c M 

, (6a) 

1 

V 

∫ 
V 

∇ φm 

d V = ∇ φM 

, (6b) 

here the RVE volume V is such that V = V e ∪ V b with V e ∩ V b =
 . The electrolyte volume fraction can thus be explicitly defined 

s ε = V e /V . Note that by analogy with the problem of a RVE

ith holes under mechanical loading [36] , the domain of the 
4 
on-transport blocking phase needs to be included in the aver- 

ges (6) because the RVE is considered as a macroscale point 

s a whole. Substituting Eq. (5a) into the left-hand side of 

q. (6a) yields 

1 

V 

∫ 
V 

∇ c m 

d V = ∇ c M 

+ 

1 

V 

∫ 
V 

∇ ̃

 c m 

d V. (7) 

ccording to the divergence theorem, the second term in the right- 

and side of Eq. (7) can be reformulated as 

1 

V 

∫ 
V 

∇ ̃

 c m 

d V = 

1 

V 

∫ 
�ex 

˜ c m 

n ex d�, (8) 

here �ex is the RVE boundary ( Fig. 1 c). Comparing Eq. (7) with 

q. (6a) and considering Eq. (8) lead to 
 

�ex 

˜ c m 

n ex d � = 0 and (9a) 

 

�ex 

˜ φm 

n ex d � = 0 , (9b) 

here the relation for φm 

has been obtained by analogy. Although 

onstraint (9) can be satisfied through different sets of bound- 

ry conditions, we employ periodic boundary conditions according 

o Ref. [37] as discussed in Sec S2 in the SM. To uniquely solve 

he microscale problem, we impose two additional conditions: the 

ntrinsic volume averages of microscale variables, as defined in 

ec S1 in the SM, are set equal to the corresponding macroscale 

uantities: 

 c m 

〉 e = c M 

, 〈 φm 

〉 e = φM 

. (10) 

 substantial difference exists between the above constraints. 

hile the former (conservation of mass between macro- and 

icro-scales) must be enforced because the microscale solution 

epends on the actual concentration value (the material proper- 

ies in Eq. (4) are concentration-dependent), the latter is enforced 

or consistency and is not essential provided the uniqueness of the 

olution is ensured. 

.4. Upscaling 

In this section we describe how the homogenized quantities, 

ased on the microscale solution and needed in the macroscale 

omputation ( Fig. 1 b), are upscaled. In a continuum mechanics 

ontext it is customary to derive the micro-to-macro transition 

y enforcing either energy [38] (Hill-Mandel condition) or en- 

ropy [39] consistency across scales. An extended version of the 

ill–Mandel condition tailored for battery cell modeling was pro- 

osed by Salvadori et al. [32,33] , who equated ‘the microscopic vol- 

me average of the virtual power on the RVE and the point-wise 

ne at the macroscale’ [32] . An alternative strategy is used here: 

e enforce 

1 

V 

∫ 
V 

∇ c m 

· q m 

d V = ∇ c M 

· q M 

, (11a) 

1 

V 

∫ 
V 

∇ φm 

· i m 

d V = ∇ φM 

· i M 

. (11b) 

This approach presents similarities with the works of Keip, 

teinmann, and Schröder [26–28] and Lee and Sundararaghavan 

29] . The former focuses on the electromechanical coupling in 

iezoelectric and electro-active materials at multiple scales, and 

he authors considered the mechanical and electrical contribu- 

ions independently in the scale transitions. The latter makes 

se of restriction (11a) to identify the micro-to-macro scale tran- 

itions for the mass flux in the context of diffusion-reaction- 

nduced degradation of composites. Numerical evidence reported 
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Table 1 

Field variables and their physical meaning. 

Approach symbol physical meaning 

DFN 

φh homogenized electric potential 

c h homogenized concentration 

FE 2 

φM electric potential at the macroscale 

c M concentration at the macroscale 

φm electric potential at the microscale 

c m concentration at the microscale 

single-scale 
φe electric potential at the pore-scale 

c e concentration at the pore-scale 

3

f
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ε

∇

t
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T
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c

(

c

t

D

n Sec 3.2 indicates that the micro-to-macro scale transitions ob- 

ained from Eq. (11) (given in Eq. (14) ) are sound for the class of

roblems considered in this study. 

Macroscale fluxes are obtained by following the procedure de- 

cribed below. By making use of Eq. (3) and the divergence theo- 

em, the left-hand side of Eq. (11a) is expressed as 

1 

V 

∫ 
V 

∇c m 

· q m 

d V = 

1 

V 

∫ 
V 

∇ · ( c m 

q m 

) d V = 

1 

V 

∫ 
�ex 

c m 

q m 

· n ex d�. (12) 

ue to the adoption of periodic boundary conditions (S.5), the 

erm q m 

·n ex takes opposite value on opposite edges. This term 

s referred to as the anti-periodic normal flux boundary condi- 

ion [37] ; such a meaning can be clearly inferred from the use 

f Lagrange multipliers to enforce periodic boundary conditions in 

he microscale FE implementation discussed in Sec S.5 in the SM. 

onsidering mass conservation Eq. (3a) , periodic boundary condi- 

ions S.6, and the anti-periodic normal flux leads to (refer, e.g., to 

ef. [37] for derivation details) 

1 

V 

∫ 
�ex 

c m 

q m 

· n ex d� = ∇c M 

· 1 

V 

∫ 
�ex 

x q m 

· n ex d�. (13) 

omparing Eq. (13) with Eqs. (11a) and (12) we obtain 

 M 

= 

1 

V 

∫ 
�ex 

x q m 

· n ex d�. (14a) 

An analogous procedure leads to the definition of the 

acroscale current density 

 M 

= 

1 

V 

∫ 
�ex 

x i m 

· n ex d�. (14b) 

The consistent tangents 

 q = 

δq M 

δX 

and K i = 

δi M 

δX 

(15) 

re matrices that summarize the (numerical) relationships be- 

ween inputs ( X ) and outputs ( q M 

and i M 

) of the microscale sim-

lations. Terms K q and K i are determined according to the proce- 

ure described in Sec S4.3 in the SM. 

.5. FE 2 procedure summary 

In the FE 2 framework, nested finite element simulations are 

erformed, and a microscale numerical simulation is executed at 

ach integration point of the macroscale problem. Every microscale 

roblem is solved by downscaling the macroscale values of the cor- 

esponding macroscale point (vector X defined in Eq. (2) ) and ap- 

lying boundary conditions according to the procedure described 

n Sec S5. 

The constitutive equations of the macroscale problem are not 

 priori-defined and are replaced by numerically obtained con- 

titutive relations. Upon solving the microscopic boundary value 

roblem, the macroscopic quantities q M 

and i M 

and the macro- 

copic constitutive tangents K q and K i are determined from the 

icrostructural analysis through Eqs. (14) and (15) , respectively. 

rom the numerical implementation perspective, the counterparts 

f Eqs. (14) and (15) are Eqs. (S.31) and (S.38), respectively. 

Once the constitutive relations are known, the macroscale prob- 

em is solved through standard FE procedures. The solution of the 

on-linear problem is determined through a Newton–Raphson it- 

rative procedure, making it necessary to define the macroscale 

onstitutive tangents (15) . The values stored in the X vectors cor- 

esponding to each macroscopic integration point are updated to 

ove the macroscopic computation further. This set of operations 

s repeated for each time step of the macroscale simulation. An in- 

roduction about computational homogenization procedure can be 

ound, for example, in Ref. [40] . Details about the numerical im- 

lementation of the FE 2 framework are given in Secs S4 and S5 in 

he SM. 
5 
. Results and discussion 

The FE 2 framework does not require an explicit definition of ef- 

ective transport properties since the constitutive equation are nu- 

erically obtained from the analysis at the RVE level ( Sec 2.1 ). 

s the FE 2 naturally takes into account the effect of the mi- 

rostructure on the macroscopic response, in Sec 3.1 we show how 

nformation about the microstructure is embedded in the scale 

ransition scheme. Multiscale simulations for separators made of 

anoporous materials [41] are discussed in Sec 3.2 , where FE 2 sim- 

lation results are verified against results obtained from a single- 

cale simulation. Exploiting the findings of the first application, 

 simplified alternative strategy to the concurrent computation 

f a microstructured separator is illustrated in Sec 3.3 . Finally, 

ec 3.4 focuses on the application of the FE 2 framework in the 

tudy of time-evolving microstructures. Table 1 lists the notation 

sed for the field variables in the DFN model and the FE 2 frame- 

ork. 

We remark that bulk properties are isotropic (scalar terms) in 

ll the examples considered, and thus the macroscopic anisotropy 

xclusively results from the microstructure geometry. 

.1. Effective transport properties 

In this section we show that a generalization of the effective 

roperties used in the DFN model [1] is embedded in the tangent 

atrices K q and K i ( Eq. (15) ). For completeness we recall the basic

oncepts of the DFN model. 

For battery cell separators, a DFN model is obtained by replac- 

ng the bulk diffusivity D e and conductivity κe with their effective 

ounterparts ( D eff and κeff, respectively) in Eq. (4) and inserting 

he so-obtained constitutive equations into Eq. (1) . Since the DFN 

odel describes the separator as an homogenized continuum, the 

omogenized variables c h and φh replace c M 

, c m 

, and φm 

in all the 

quations leading to 

∂c h 
∂t 

+ ∇ ·
(
−D eff ∇c h 

)
= 0 , (16a) 

 ·
(
−κeff ∇φh + κD,eff ∇ ln c h 

)
= 0 . (16b) 

Equatio (16a) is obtained by substituting Eq. (4a) into Eq. (1a) , 

aking into account that the current density is divergence free 

 Eq. (1b) ), and considering a constant transference number t e . 

he effective diffusivity D eff and ionic conductivity κeff are de- 

ermined adjusting bulk properties D e and κe through the coeffi- 

ient δ that accounts for the effect of the microstructural geometry 

e.g., transport-blocking phases that are part of porous battery cell 

omponents) on the macroscopic transport response. The effective 

ransport coefficient δ is implicitly defined through the relations 

 eff = D e δ, κeff = κe δ. (17) 
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he effective diffusional conductivity κD,eff is defined by means of 

q. (4c) by replacing κe with κeff. 

Note that the notion of an effective transport coefficient is in 

rinciple valid only when D e and κe are constant. Since the ge- 

metrical features of the microstructure are often described in 

erms of porosity ε and tortuosity τ (that ‘quantifies the resistance 

o diffusion caused by the convolution of the pore network’ [4] ), 

he effective transport coefficient is described through the rela- 

ion [4,41,42] 

= 

ε

τ
, (18a) 

usually expressed as 

= εα. (18b) 

The last expression is obtained by describing the correlation be- 

ween porosity and tortuosity through an exponential law (an ap- 

roach attributed to Bruggeman [5,43] ). 

Three major concerns emerge with the procedure just described 

 (16) –(18) ). First, the homogenization strategy implicitly used in 

he DFN model implies that the effective properties ( D eff and κeff) 

an only be related to the homogenized concentration c h when 

oncentration-dependent bulk properties need to be accounted 

or [44] . Indeed, any information about the pore-scale concentra- 

ion c e is lost when using the DFN model. The question then arises 

s to how well relation (17) with D e ( c h ) and κe ( c h ) approximates 

he actual dependence of the effective properties on the homoge- 

ized concentration c h . Second, even if in most applications of in- 

erest the relationship τ = ε1 −α describes the dependence of tor- 

uosity on porosity to a good approximation [5] , the value of coef- 

cient α is problem-specific. Microstructures with identical poros- 

ty yield different exponents, and thus different transport proper- 

ies, depending on their actual morphology and transport direc- 

ion. Numerical simulations performed on microscopic volume el- 

ments (either numerically generated or reconstructed from real 

attery microstructures) have been used to determine either tor- 

uosity τ [4,9–12,45,46] , exponent α [8] , or the effective transport 

roperties (17) [3,7,8] for porous battery cell components with ar- 

itrary microstructures. The reader can refer to Tjaden et al. [5] for 

 recent review on tortuosity evaluation strategies in electrochem- 

cal devices. Furthermore, since battery cell components undergo 

eformation during charge/discharge processes, effective proper- 

ies should be updated according to the morphology evolution 

hroughout the process. Third, δ should account for cross-terms 

n a multidimensional framework. In the numerical frameworks 

sed for instance in Refs. [3,4,10,45] for determining the effective 

ransport coefficient δ, the authors applied boundary conditions 

o a pair of opposite boundaries and insulated the others. These 

oundary conditions enable the determination of transport prop- 

rty in one specific direction implicitly assuming the absence of 

ross-terms, a treatment adequate for isotropic media only (whose 

ffective transport properties can be characterized by a scalar δ). 

lthough a tensorial description [13–16] appears appropriate, the 

escription of transport properties through a vector that defines 

he tortuosity along three arbitrarily selected orthogonal directions 

s a widespread practice in the characterization of electrochemi- 

al devices [5] . A notable exception is represented by the contri- 

ution by Ebner and Wood [47] , even if they do not discuss the

elevance of cross-terms on the performance prediction of battery 

ell components. For media with arbitrary microstructures (result- 

ng in anisotropic macroscopic responses), cross-terms vanish only 

f effective properties are evaluated along the principal directions, 

hich is not necessarily the case for through-plane (main direction 

f transport between the electrodes) and in-plane directions in 

orous battery components. It follows that, in general, the evalu- 

tion of effective properties along the through-plane direction and 
6 
wo in-plane directions [4,9–12] does not provide a comprehensive 

valuation of the transport properties. 

We now show that the three concerns just described are prop- 

rly addressed through our FE 2 approach. The consistent tan- 

ents K q and K i ( Eq. (15) ) incorporate the most general depen- 

ence of mass flux q M 

and current density i M 

on concentration, 

otential, and their gradients. Nonlinear microscale constitutive re- 

ations are thus transferred from the micro- to macro-scale avoid- 

ng the inconsistencies related to the use of simplified effective 

ransport properties in Eq. (17) . To prove this, we show that our 

omogenization approach naturally accounts for the dependence 

f the macroscopic response on i) concentration-dependent bulk 

roperties ( Sec 3.1.1 ), and ii) the contribution of the geometri- 

al features of the microstructure. The tensorial nature of the 

elationship between macroscopic fluxes q M 

and i M 

and driving 

orces ∇c M 

and ∇φM 

is discussed in Sec 3.1.2 . To this end, we de- 

ermine K q through the numerical procedure described in Sec S4.3 

n the SM and we analyze the components that express the re- 

ationships between q M 

and ∇c M 

(recall the definitions of K q in 

q. (15) , and X in Eq. (2) ). We thus define the macroscale diffusiv-

ty tensor [16] as 

 eff = 

[
D 11 D 12 

D 21 D 22 

]
, (19) 

here D i j with i, j = 1 , 2 are the components of K q according

o Eq. (S39a). Moreover, we name the tensor 

= 

D eff

D e 
= 

[
δ11 δ12 

δ21 δ22 

]
, (20) 

hich contains the effective transport coefficients δi j , the ‘tensor 

f effective transport coefficients’. We stress that since diagonal D ii 

nd off-diagonal D i j (with i � = j) components are, in general, non- 

ero, the same holds for the components of tensor δ. Off-diagonal 

erms D i j ( δi j ) with i � = j are simply the cross-terms previously 

entioned; these terms are also referred to as rotatory diffusiv- 

ty coefficients [16] . The same procedure applied to i M 

and ∇φM 

eads a tensor of effective transport coefficients δ that is numer- 

cally identical to Eq. (20) . In passing, it is worth stressing that 

he off-diagonal terms of the diffusivity tensor are a typical ex- 

mple of structure-material property relationship. They have to be 

onsidered as the numerical objective evidence of an anisotropic 

esponse stemming from an underlying non-homogeneous micro- 

copic structure, a non homogeneous distribution of material prop- 

rties, or a combination or both. 

The results shown in Secs 3.1.1 and 3.1.2 were obtained with 

imulations performed at the microscale level, where the mi- 

roscale boundary conditions for the determination of the effec- 

ive transport properties are defined by the downscaled macroscale 

uantities 

 = 

[
11 . 2 × 10 

6 mol / m 

4 0 c M 

600 mV / m 0 1 mV 

]T 
. 

(21) 

oncentration and potential gradients are two-components vec- 

ors because of the two-dimensional setting. In Sec 3.1.1 we 

valuate the dependence of the macroscale properties on the 

acroscopic concentration for c M 

in the range [0 − 30 0 0] mol / m 

3 ,

hile the simulations reported in Sec 3.1.2 are performed set- 

ing c M 

= 10 0 0 mol / m 

3 . As we will show, the results discussed in

ecs 3.1.1 and 3.1.2 are independent of the selection of the values 

n X (except for c M 

in Sec 3.1.1 ). For completeness, the values used 

n the numerical simulations are listed in (21) . 

A first verification about the properties extracted from tan- 

ents K q and K i is provided in Sec S6 in the SM, where the 

umerically obtained δ − ε relationship for an isotropic medium 



M. Zhuo, D. Grazioli and A. Simone Electrochimica Acta 393 (2021) 139045 

Table 2 

Modeling parameters. Note that concentration c e is expressed in mol / L . 

Parameter symbol value unit ref. 

diffusivity D e 5 . 34 × 10 −10 e −0 . 65 c e m 

2 / s [3] 

ionic conductivity κe 0 . 0911 + 1 . 9101 c e − 1 . 052 c 2 e + 0 . 1554 c 3 e S/m [3] 

transference number t e 0.4 [52] 

thermodynamic factor 1 + 

∂ ln f e 
∂ ln c e 

1 [1] 

Faraday constant F 96485 C/mol 

gas constant R 8.31 J/(K mol) 

absolute temperature T 298.15 K 
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Fig. 2. Effective diffusivity D eff (a) and ionic conductivity κeff (b) normalized by the 

bulk values at c e = 1 . 0 mol / L (i.e., D ref and κref , respectively) versus the macroscale 

concentration c ( c h in the DFN model combined with Bruggeman approach or c M in 

the FE 2 ). The dashed lines are calculated via Bruggeman approach, the solid lines 

represent the bulk properties multiplied by 0.31 (Fig. S2 in the SM), while circles 

are D 11 and κ14 in Eq. (S.39) at each macroscale input c M . The RVE porosity ε = 0 . 5 . 

The bulk properties can be found in Table 2 . 
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a

s compared against ‘Bruggeman approach’. With ‘Bruggeman ap- 

roach’ we identify an approximation of the effective properties of 

orous electrodes obtained calculating δ from Eq. (18b) with α = 

 . 5 (determined by Bruggeman [43] for spherical non-overlapping 

ransport obstructing phases). The evaluation of transport effective 

roperties of porous battery components through Bruggeman ap- 

roach was already in use at time of the seminal modeling work of 

oyle et al. [1] , and it still is a popular simple-to-compute first ap-

roximation (see, for example, Refs. [48–51] ). Even if many strate- 

ies for the estimation of effective properties are available in the 

iterature [5] , the popularity of Bruggeman approach is such that 

t enables a straightforward comparison. For this reason the results 

btained with Bruggeman approach are presented along with the 

esults of the proposed approach. 

All the results involving a RVE have been obtained considering 

VEs with 16 ion-transport blocking inclusions, corresponding to a 

VE size that ensures converged transport properties (refer to the 

tudy in Sec S7 in the SM for the case of elliptical inclusions). 

.1.1. Concentration-dependent transport properties 

This section attempts to answer the previously raised question 

f how accurately Eq. (17) represents the dependence of the ef- 

ective diffusivity D eff and ionic conductivity κeff on the homog- 

nized concentration c h . We consider a liquid electrolyte consist- 

ng of LiPF 6 dissolved in EC-DMC (a mixture of ethylene carbon- 

te and dimethyl carbonate). Bulk transport properties, listed in 

able 2 , are chosen according to Refs. [1,3,52] . In the microscale 

E computation, we calculate the effective transport properties at 

arying macroscale concentration values c M 

. The chosen RVE in- 

ludes 16 randomly distributed circular inclusions (that represent 

he ion-transport blocking phase). Based on the δ − ε relationship 

btained through our numerical study on microstructures with cir- 

ular inclusions (Sec S6), a coefficient δ = 0 . 31 applies to x and y

irections when ε = 0 . 5 . It is remarked that δ = 0 . 31 is calculated

sing constant diffusivity and ionic conductivity and, therefore, it 

esults from the microstructure. 

Figure 2 shows the effective transport properties as a func- 

ion of the macroscale concentration (i.e., c h in the DFN model 

nd c M 

in the proposed FE 2 approach). The effective transport 

roperties D eff and κeff, denoted by dashed lines, are calculated 

ia Bruggeman approach and with bulk transport properties de- 

cribed as a function of concentration in Table 2 . This implies that 

he concentration dependence does not change from microscale 

o macroscale and a scaling factor is sufficient to reflect the mi- 

rostructure geometry effect. The solid lines represent the effective 

ransport properties ( Eq. (17) ) that are equal to the bulk properties 

ultiplied by the effective transport coefficient δ = 0 . 31 (Fig. S2). 

he simulated effective transport properties denoted by circles are 

he component D 11 in Eq. (S39a) and κ14 in Eq. (S39b) at dis- 

rete macroscale concentrations c M 

. Note that these effective prop- 

rties are normalized by the bulk properties at concentration c e = 

 . 0 mol / L and denoted as D ref and κref . 

The microscale FE simulation results overlap with those ob- 

ained with concentration-dependent bulk properties multiplied 
7 
y the effective transport coefficient δ = 0 . 31 . This agreement ad- 

resses the first concern and verifies the incorporation of mi- 

rostructure effect by directly scaling the concentration-dependent 

ulk properties by a microstructure-related factor ( Eq. (17) ). It 

s remarked that this observation is consistent with the volume- 

veraging analysis by Quintard et al. [53] , and a similar relation 

o Eq. (17) can be reproduced based on Eqs. (24), (25), (98), and 

102) in their paper. According to Quintard et al. [53] , the func- 

ional relation at the macroscale can safely use the microscale one 

rovided a length scale constraint (Eq. (26) in Quintard et al. [53] ): 

 rve � l vv , where l rve represents the RVE length scale and l vv is the

acroscale distance over which significant variations of volume- 

veraged field variables occur. This scale constraint will naturally 
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Fig. 3. Effective transport coefficients δi j in Eq. (20) versus the orientation θ of the ellipses at aspect ratio a/b = 1 . 5 (a) and 3.0 (b). The subscripts 1 and 2 are associated 

with the x and y directions, respectively. The diagonal components δ11 and δ22 are the transport coefficients in the x and y directions, respectively, while the off-diagonal 

components δ12 and δ21 reflect the influence of concentration gradient in the y direction on the mass flux in the x direction and vice versa. In the simulation the bulk 

properties ( D e and κe ) are isotropic and constant. The porosity is held constant at 0.5 (i.e., the total area of the ellipses is fixed). Panels (c) and (d) show the Mohr’s circles 

in the δii θ
− δi j θ (i � = j) coordinate system related to the results in panels (a) and (b). Subscript θ indicates that coefficients δi j (i, j=1 , 2) relate to the microstructure inclination 

θ . 

b

F

3

a

p

t

o

o

f

s

p

a

w

i

t

t  

e

c

T

b

m

p

v

r  

e

g

c

p

r

u

o

e

a

t

t

t

p

d

d  

r

a

e satisfied when the principle of scale separation [32,37] of the 

E 2 method holds. 

.1.2. Anisotropic effective transport properties 

The morphology of the ion-transport blocking phase (e.g., sep- 

rator membranes [54] ) is crucial for the overall ionic transport 

rocess taking place in battery cell separators as the microstruc- 

ure of the porous separator determines the macroscopic response 

f the system. In this section we aim to investigate the capability 

f our multiscale framework to capture this dependence, especially 

or microstructures that determine an anisotropic macroscopic re- 

ponse. 

The study is performed by generating microstructures with 

orosity ε = 0 . 5 characterized by different morphologies, and an- 

lyzing the components of δ in Eq. (20) . We consider RVEs filled 

ith randomly distributed elliptical inclusions (representing the 

on-transport blocking phase) surrounded by the electrolyte. In 

hese RVEs, the position of an ellipse is random but its orienta- 

ion θ is fixed, ranging from 0 to 90 ◦. For each orientation we gen-

rate 100 RVE configurations taking isotropic and constant (i.e., not 

oncentration-dependent) microscale bulk properties D e and κe . 

wo families of morphologies are generated considering transport- 

locking ellipses, characterized by semi-major axis a and semi- 
8 
inor axis b, with aspect ratio a/b values equal to 1.5 and 3. Each 

oint in Fig. 3 represents the average of 100 RVE (the standard de- 

iations is also shown). 

Figure 3 a shows that the diagonal component δ11 in the x di- 

ection is maximized at θ = 0 , that is, when the major axis of the

llipse is aligned along the x direction. As the major axis is pro- 

ressively aligned with the y direction ( θ increases), δ11 keeps de- 

reasing and reaches the minimum at θ = 90 ◦. The effective trans- 

ort coefficient δ22 in the y direction show an opposite trend with 

espect to δ11 ; their behavior reverses at θ = 45 ◦ where their val- 

es coincide. These observations are consistent with the outcome 

f the three-dimensional investigation performed in Ref. [46] . Yan 

t al. [46] show that the alignment of ellipsoidal particles along 

 certain direction results in a lower tortuosity along the direc- 

ion of alignment compared to directions orthogonal to it (recall 

he inverse proportionality (18) that relates tortuosity τ and effec- 

ive transport coefficient δ). The values of the off-diagonal com- 

onents δ12 and δ21 coincide, in agreement with theoretical pre- 

ictions for (uncoupled) diffusion phenomena in anisotropic me- 

ia [16] , reach a maximum at θ = 45 ◦, and show a symmetry with

espect to θ = 45 ◦. 

In the simulations, we fix the coordinate system and rotate the 

ngle of alignment of the elliptical phase for the sake of compu- 
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ational convenience. The outcome is analogous to a rotation of 

he coordinate system. This observation and the results reported 

n Fig. 3 a allow us to draw a parallel with solid mechanics in the

ense that the numerically evaluated δ can be understood as a ten- 

or, i.e., an object that is used to describe physical properties and 

beys certain transformation rules. More specifically, the connec- 

ion of δ to physical properties is rooted in its definition (the ef- 

ective transport coefficients δi j are extracted from K q (Eq. (S39a)) 

ccording to Eqs. (19) and (20) ). Whether or not δ can be consid- 

red representative of the actual effective transport properties as- 

ociated to a given microstructure can be ascertained by means of 

n analysis of the results reported in Fig. 3 a. The results indicate 

hat these properties do not change with rotations of the coordi- 

ate system as demonstrated by the invariance of the mean value 

f δ11 and δ22 (0.30 and 0.29 for a/b = 1 . 5 and 3.0, respectively)

ith respect to θ . It can also be shown that the spectrum of δ is 

nvariant, implying that δ is indeed a sound representation of the 

ffective transport coefficients for a given microstructure. The defi- 

ition of δ as ‘tensor of effective transport coefficients’ is therefore 

ustified. 

In solid mechanics, Mohr’s circle is a two-dimensional graphical 

epresentation of the state of stress at a point. Since the transfor- 

ation of δ11 , δ22 , and δ12 with θ should be consistent (at least 

n theory [16] ) with the coordinate transformation of tensor com- 

onents, Mohr’s circle [55] can be used to represent transport co- 

fficients in multidirectional transport processes, an approach re- 

ently taken in Yang and Qin [56] . Figure 3 b shows the Mohr’s cir-

les for the data represented in Fig. 3 a. For convenience, the an- 

lytical expressions of the circles is defined with reference to the 

icrostructures oriented at θ = 0 or 90 ◦. At these orientations, the 

ff-diagonal terms δ12 = δ21 = 0 and the direct terms δ11 and δ22 

re used to define center (as their mean value) and diameter (as 

heir difference). As a confirmation of the validity of the coordi- 

ate transformation rules of tensor components, the application of 

ohr’s transformation rules to each data point in Fig. 3 a results 

n the placement of these points on the circles. In analogy with 

he use of Mohr’s circle in stress analysis, as soon as the effective 

ransport coefficients at a point are known, it is therefore immedi- 

te to identify the principal directions (i.e., the directions such that 

he off-diagonal terms δi j are zero) and the effective transport co- 

fficients acting on a plane at a generic inclination passing through 

hat point. 

We recognize that restricting the numerical simulation to a 

wo-dimensional setting is rather simplistic and might affect the 

nterpretation of the results and their generalization to the char- 

cterization of porous media. In fact, the description of porous 

tructures that result in macroscopic anisotropic properties can 

ensibly vary if a three-dimensional investigation is performed in 

lace of a two-dimensional one (refer, for example, to Yan et al. 

57] ). Nevertheless, in spite of the simplified representation of the 

icrostructure, our numerical results are consistent with Ebner 

t al.’s [10] experimental observations about the effect of parti- 

le shape and orientation on the tortuosity of three-dimensional 

attery electrode microstructure. Ebner et al. [10] report values of 

ortuosity τ ( Eq. (18a) ) around 1.46 for NMC electrodes consist- 

ng of spherical active particles. By converting the values of δ ob- 

ained through our numerical simulations into τ , we obtain a tor- 

uosity equal to 1.61 for a RVE filled with random circular inclu- 

ions (Fig. S2). Ebner et al. [10] observe that, if elongated parti- 

les make up the electrodes, the particles tend to align with their 

ongest axis parallel to the current collector (perpendicular to the 

irection of flow). We thus focus on the values that pertain to 

he x direction at θ = 90 ◦ ( Fig. 3 ) for the comparison. Ebner et al.

10] report through-plane tortuosities for LCO (ellipsoide-like parti- 

les) and graphite (platelets-like particles) electrodes equal to 1.77 

nd 3.76, respectively. The increase of tortuosity for increased par- 
9 
icles aspect ratio is in good agreement with our results: taking 

he value of δ11 at θ = 90 ◦, we observe that the tortuosity in- 

reases from 1.9 to 2.9 as the aspect ratio increases from 1.5 to 

 ( Fig. 3 ), respectively. The qualitative agreement in terms of tor- 

uosity change validates the proposed numerical approach. 

The Mohr’s circle representation captures the degree of 

nisotropy: the more pronounced the anisotropy (the higher the 

spect ratio a/b), the bigger the radius of Mohr’s circle (in the 

imit case of isotropic response, the circle collapses to a point). 

wo conclusions follow. First, the measure of anisotropy proposed 

y Cooper et al. [4] , based on the difference between the max- 

mum and minimum transport properties along arbitrary orthog- 

nal directions, may not provide a comprehensive representation 

f anisotropy. The anisotropy degree can be evaluated as the dif- 

erence between the maximum and minimum principal trans- 

ort properties along the principal directions only (i.e., when off- 

iagonal components are null) [56] . Second, since the transport 

irection between electrodes is in general not the principal, the 

ff-diagonal components of the effective diffusivity tensor should 

ot be disregarded a priori. In Appendix A the metric proposed by 

ooper et al. [4] and Mohr’s radius are used to evaluate the degree 

f anisotropy of a selection of porous battery materials. 

.2. Comparison with single-scale simulation results and DFN model 

rediction 

In this section we employ the multiscale approach to charac- 

erize ionic transport in a battery cell separator with a microstruc- 

ure that yields an anisotropic macroscopic response. As a verifi- 

ation of the FE 2 framework, the multiscale simulation results are 

ompared with those obtained from a single-scale simulation in 

hich the separator microstructure is fully resolved. The single- 

cale simulation is performed by substituting Eq. (4) into balance 

quations 

∂c e 

∂t 
+ ∇ · q e = 0 and (22a) 

 · i e = 0 in V e × ( 0 , t end ) . (22b) 

In such case, c e = c m 

, q e = q m 

, and i e = i m 

. Notice that neither

omogenization strategies nor effective properties are used with 

his approach. This example shows the ability of the FE 2 method 

o properly account for all terms of the effective transport property 

ensor and highlights the relevance of the off-diagonal terms for 

 proper evaluation of the macroscopic response. The prediction 

apabilities of the DFN model, which uses scalar effective transport 

roperties, are also discussed. 

We simulate a porous separator consisting of a regular array 

f unit cells. Each unit cell contains an elliptical ion-transport 

locking phase surrounded by the electrolyte as shown in Fig. 4 a. 

igure 4 b shows the discretization of the multiscale problem do- 

ains at both scales. At each integration point of the macroscale 

esh, we attach the microscale RVE, which is equal to a unit cell. 

or the single-scale simulation, we consider 100 × 40 unit cells 

s shown in Fig. 4 c. Numerical studies (not reported here) con- 

rm that the results obtained with each approach can be consid- 

red converged. Here we use the concentration-dependent trans- 

ort properties listed in Table 2 . 

The RVE of choice is not representative of the morphology of 

 real separator; as such, the numerical results are not meant to 

eplicate the response of a real battery separator. The RVE shown 

n Fig. 4 has been selected for numerical convenience only and it 

s functional to our purpose (verification of the FE 2 framework). 

he steady state assumption for the microscale formulation (3) is 

iscussed in Sec S8 in the SM with reference to the geometrical 

etting considered here. 
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Fig. 4. Panel (a) illustrates the problem setting. The RVE porosity is 0.5, and the 

electrolyte properties are listed in Table 2 . Panel (b) shows the computational 

mesh for the FE 2 method: 10 × 4 four-node quadrilateral elements are used for the 

macroscale mesh and 204 three-node triangular elements for the RVE mesh. The 

single-scale discretization in panel (c) consists of 100 × 40 unit cells, with each unit 

cell discretized as the RVE. 
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In accordance with the galvanostatic charge process, a constant 

urrent density I app and a constant lithium ion mass flux are en- 

orced. In addition, the electric potential at the leftmost bound- 

ry ( x = 0 ) is set to zero as the reference value. Boundary and ini-

ial conditions are expressed as 

 M 

·n | x = l sep 
= −I app , φM 

| x =0 = 0 , (23a) 

 M 

·n | x = l sep 
= − I app 

F 
, q M 

·n | x =0 = 

I app 

F 
for t ∈ ( 0 , t end ) , (23b) 

nd 

 M 

= c 0 at t = 0 in �, (23c) 

espectively. We apply a current density I app = 300A / m 

2 , equiva- 

ent to a 10 C charge rate for commercial graphite-NMC battery 

ells [9,58] . The initial concentration c 0 in the whole separator do- 

ain � is specified at 10 0 0 mol / m 

3 . The simulation ends at t end =
s when steady-state is achieved. The above boundary and initial 

onditions for the multiscale problem also hold for the single-scale 

pproach. 

The results are reported in Fig. 5 . Panels (a) and (c) show the

teady-state ionic concentration and electric potential distribution, 

espectively, along three horizontal lines (bottom: y = 0 , middle: 

 = 5 μm , and top: y = 10 μm ), while panels (b) and (d) show the

oncentration and potential profiles, respectively, along three verti- 

al lines (leftmost: x = 0 , middle: y = 12 . 5 μm , and rightmost: y =
5 μm ). The circles represent the macroscale solution c M 

and φM 

rom the FE 2 method; the solid lines denote the single-scale simu- 

ation results, i.e., the intrinsic volume averages 〈 c 〉 e and 〈 φ〉 e . Ini- 

ially, the concentration is uniform in the x and y directions; as the 

urrent flows, a concentration gradient starts to develop, resulting 
10 
n a concentration decrease at the leftmost edge and a concen- 

ration increase at the rightmost boundary. Since the off-diagonal 

erms of the tensor of effective transport coefficients (20) are not 

ull (refer to (24) ), both components (in x and y directions) of 

he macroscopic flux q M 

are affected by both components of the 

acroscopic gradients. It follows that, despite the insulated top 

nd bottom boundaries, field variable gradients develop in the y 

irection to counterbalance the contribution by the off-diagonal 

erms ( δ12 and δ21 in Fig. 3 ). A discussion about this effect is pro-

ided in Sec S9 in the SM. 

Besides the steady-state profiles, we show the concentration 

volution at the middle points of the vertical edges in panel (e). 

anel (f) reports the temporal evolution of the potential drop from 

oint B to A and provides an indication of the ohmic loss at- 

ributable to the separator. The figure shows that the multiscale 

imulation results adequately match the single-scale simulation re- 

ults, verifying the multiscale framework (and the scale transitions 

escribed in Secs 2.3 and 2.4 ). In this example, we specifically 

hoose the inclination θ = 45 ◦ for the inclusion in order to max- 

mize the off-diagonal values (according to Fig. 3 ), causing evident 

oncentration and potential gradients in the y direction. The vari- 

tion in the y direction is obviously not seen in the results per- 

aining to the DFN model combined with Bruggeman approach 

dashed lines in all the panels). 

For the morphology at hand, the evaluation of the tensor of ef- 

ective transport coefficients by means of the proposed approach 

eads to 

= 

[
0 . 31 0 . 13 

0 . 13 0 . 31 

]
. (24) 

wo remarks are needed at this stage. First, the values reported 

n (24) are comparable with those shown in Fig. 3 b, where δ11 = 

22 = 0 . 29 and δ12 = δ21 = 0 . 11 at θ = 45 ◦ (the relative differ-

nce is approximately 7% and 15% for diagonal and off-diagonal 

erms, respectively). We stress that the geometry of the transport- 

locking phase considered in this section is similar to that of 

ec 3.1.2 (aspect ratio of the ellipse is a/b = 2 . 5 and a/b = 3 . 0 , re-

pectively), while the spatial distribution of the transport-blocking 

hase is remarkably different (the arrangement is regular in this 

ection, and random in Sec 3.1.2 ). The effect of orientation and 

hape (of transport-blocking inclusions) on the tensor of effective 

ransport coefficients is dominant with respect to the effect of the 

patial arrangement (recall that porosity is unchanged, ε = 0 . 5 in 

oth investigations). This observation is consistent with the con- 

lusion of Ebner et al. [10,47] . Second, if the off-diagonal terms of 

24) are dropped, the tensor of effective transport coefficients re- 

uces to δ = 0 . 31 I . Bruggeman approach with ε = 0 . 5 leads to δ ≈
 . 31 (refer, to Fig. S2), i.e., δ ≈ 0 . 31 I (a scalar δ is equivalent to

 transport property tensor with equal diagonal terms δ11 = δ22 = 

 . 31 and δ12 = δ21 = 0 ). This means that (for the morphology at

and) any approach incapable of taking the off-diagonal terms into 

ccount leads to a response prediction that is equivalent to that of 

ruggeman approach, and it is thus characterized by the same level 

f (in)accuracy. In this regard, panels (b) and (d) in Fig. 5 show 

he differences in the concentration and potential field prediction 

aused by the absence of off-diagonal terms; the 27% discrepancy 

n the prediction of the potential drop across the separator with 

espect to single-scale and FE 2 approaches shown in panel (f) is 

oteworthy. 

An estimate of the extent of the off-diagonal terms in 

eal porous battery material is provided for reference in 

ppendix A ( Table A.1 ). 
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Fig. 5. Comparison between FE 2 calculation and single-scale simulations. Panels (a) and (c) show concentration c and potential φ, respectively, along the x direction at 

y = 0 , 5, and 10 μm in the steady state ( t = 4s ); correspondingly, panels (b) and (d) show concentration c and potential φ along the y direction at x = 0 , 12.5, and 25 μm . 

Here c and φ refer to c M and φM for the FE 2 method, c h and φh for the DFN model with Bruggeman approach ( Table 1 ), and the intrinsic volume averages 〈 c 〉 e and 〈 φ〉 e 
for the single-scale simulations. Panel (e) shows the temporal evolution of the concentration at point A and B, which are located at the center of the leftmost ( x = 0 ) and 

rightmost ( x = 25 μm ) boundaries of the separator, respectively. Panel (f) shows the temporal evolution of the potential drop 	φ from point B to A across the separator, i.e., 

the potential at point B with reference to a prescribed null potential at the leftmost boundary. 

3

d

d

d

D

w

.3. A simplified alternative strategy to the FE 2 method 

The results described in Secs 3.1.1, 3.1.2 and 3.2 suggest that the 

escription of the most general transport processes (concentration- 

ependent bulk properties and anisotropy) can be attained by 

e

11 
efining effective transport properties as 

 eff = D e ( c h ) δ, and κeff = κe ( c h ) δ, (25) 

here D e ( c h ) and κe ( c h ) are concentration-dependent bulk prop- 

rties, and using Eq. (25) in a DFN model. In this section, we as- 
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Fig. 6. Comparison of the results obtained with the simplified alternative strategy and the concurrent FE 2 approach. The problem setting is reported in Fig. 4 a. The results 

of the concurrent FE 2 approach and the DFN model with Bruggeman approach are shown in Fig. 5 a and b. The simplified alternative strategy results are obtained by solving 

Eq. (16) with the effective transport properties evaluated according to Eq. (25) and the tensor δ with a single microscale simulation (RVE in Fig. 4 a) according to Sec 2.4 (and 

the numerical implementation described in Sec S4.3 in the SM). 
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ess the validity of such a simplified approach by pre-computing δ
ith a single microscale simulation according to Sec 2.4 (and the 

umerical implementation described in Sec S4.3 in the SM). To this 

nd, we consider the problem setting of Sec 3.2 . 

The results obtained with the simplified approach and those 

f the FE 2 method, contrasted in Fig. 6 , show a perfect agree- 

ent. The agreement suggests that the effective transport prop- 

rties ( Eq. (25) with pre-computed δ) perfectly match the numer- 

cal tangents in Eq. (15) computed through the FE 2 and confirm 

hat the conclusions drawn in Sec 3.1.1 for the isotropic macro- 

copic response hold true also when the macroscopic response is 

nisotropic. The results of the DFN model combined with Brugge- 

an approach (dashed lines in Fig. 6 ) are reported to show the 

utcome of a generic approach that evaluates δ11 and δ22 without 

aking the off-diagonal terms into account. The (erroneous) con- 

lusion would be that the response is isotropic because δ11 = δ22 . 

owever, the single-scale simulation show that this is not the 

ase. The response of the material is not isotropic because the off- 

iagonal terms do not vanish in the coordinate system of choice. 

his means that the coordinate system that results in δ11 = δ22 is 

ot the principal reference system. Thanks to the analogy with the 

esults of Sec 3.1.2 we can refer to Fig. 3 c and 3 d and deduce that

he principal coordinate system, the one for which δ12 = δ12 = 0 , is 

uch that δ11 � = δ22 (either for θ = 0 or 90 ◦). The macroscopic re- 

ponse is actually anisotropic. The ‘simplified alternative strategy’ 

roperly addresses the macroscopic description of the medium as 

t preserves the tensorial nature of the effective transport proper- 

ies. 

.4. An example with time-evolving microstructure 

The examples discussed in Secs 3.2 and 3.3 assume that the 

icrostructure does not evolve during a (dis)charge process. How- 

ver, (dis)charge processes are often accompanied with expan- 

ion/contraction of the electrodes [59] , leading to dynamic mi- 

rostructure changes of the separator membrane [34] . Moreover, 

dditional deformations may be induced by external mechanical 

oading [6,9] . When the separator membrane deforms, a concur- 

ent porosity ε and tortuosity τ change takes place [9] , thus af- 

ecting the overall system response (recall relation (18a) ). Lagadec 

t al. [9] showed that when the separator membrane is subject to 
12 
 significant deformation level (up to 40% ), the effective transport 

oefficient reduces by 96% in the through-plane direction of the 

eparator layer, thus making the separator the limiting component 

f the cell operations even at a modest C-rate of 0.75 C. 

As the FE 2 approach ensures that the tensorial nature of the 

ransport properties is correctly captured, it can be employed to 

ddress the effect of an evolving microstructure. The FE 2 frame- 

ork presented in this contribution allows accounting for trans- 

ort properties changes through morphology changes in a consis- 

ent manner. For simplicity, we show an example where the mi- 

rostructure morphology evolves at constant porosity ε = 0 . 5 . The 

acroscale problem setting is that of Sec 3.2 , but the RVE con- 

ains 16 ellipses. We consider two morphology evolutions with 

oincident initial and final configurations, but different evolution 

atterns (I and II according to Fig. 7 a and b). The morphology 

hange is introduced by changing the aspect ratio a/b of the el- 

ipses from 3 to 1 / 3 . For each aspect ratio value, we generate 50

VE samples and calculate the average transport properties; we 

hen select a RVE with transport properties that are closer to the 

verage values. The total simulation time ( t end = 4s ) is about three

imes larger than the time required to achieve the steady state 

ith a non-evolving microstructure (dashed line in Fig. 7 ). Pattern I 

nd II are implemented by updating the RVE geometry at different 

tages. In pattern I the RVE is updated at regular intervals of time 

rom t = 0 to t = 4s ( Fig. 7 a). In pattern II the final configuration

s attained at t = 2s and remains unchanged until t = 4s ( Fig. 7 b).

ince the semi-major axes of the ellipses are always aligned with 

he x and y directions ( Fig. 7 a and b), we stress that these direc-

ions are principal and hence the off-diagonal components ( δ12 and 

21 ) are null ( Fig. 3 ). 

The temporal evolution of the maximum/minimum concentra- 

ion and potential drop across the separator are plotted in Figs. 7 c 

nd d. The dashed lines in Fig. 7 are the results of the DFN model

ombined with Bruggeman approach, which does not account for 

he microstructure evolution. Figure 7 c and d show that when the 

icrostructure evolution is disregarded, the steady-state configu- 

ation is attained after roughly 1s , while both c and 	φ change 

uring the whole process when either one of pattern I and II is 

onsidered. A noticeable difference between the system response 

nder the different morphology patterns is the energy loss. The en- 

rgy dissipated during the simulated process is proportional to the 
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Fig. 7. FE 2 simulation of a separator with time-evolving microstructure. The 4s simulation time is discretized into 21 time steps. The microstructure evolves with time 

following two different patterns (I in panel (a) and II in (b)) at constant porosity equal to 0.5. Panel (c) shows the temporal evolution of the maximum and minimum 

concentrations computed by the FE 2 method under pattern I and II and by the DFN model that only considers porosity. Panel (d) shows the potential drop across the 

separator. Here c and φ refer to c M and φM in the FE 2 method and c h and φh in the DFN model, respectively. 
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ntegral of the potential drop ( 	φ, Fig. 7 d) with respect to time:

attern II dissipates 58 . 6% more energy than pattern I. 

Since we showed that a morphology change alone influences 

he macroscopic response, we envisage that an even stronger mod- 

fication of the macroscopic responses should be expected if a 

orosity change takes place simultaneously. We stress that even if 

e considered morphology evolution histories with identical initial 

nd final configurations, the evolution pattern itself determines a 

emarkably different system response. This consideration empha- 

izes the need to monitor the microstructure evolution (and the 

onsequent transport property changes) at adequately close time 

nstants. On-the-fly transport property simulations based on im- 

ged microstructures were also encouraged by Lagadec et al. [9] for 

mproved understanding of local effects in energy storage applica- 

ions. However, they also recognized that the deformation of the 

eparator is elastic (no residual deformation upon loading removal) 

nder low applied loadings, rendering it a challenge to image 

he separator microstructure at different stages of the deforma- 

ion process. Our results suggest that a multiscale electrochemical- 

echanical coupled model should be used to achieve this goal. 

n particular, a coupled FE 2 model would enable tracking the mi- 

rostructure deformation evolution and the concurrent change of 

he electrochemical response. 
13 
. Conclusions 

We employ a FE 2 framework for the investigation of ionic trans- 

ort in porous battery cell separators during (dis)charge processes. 

he methodology allows us to consider bulk transport proper- 

ies dependent on local fields (e.g., ionic concentration within the 

ores of the polymeric membrane) and to account for their impact 

n the system response. The approach is general and is suitable 

or isotropic and anisotropic media. We show that the numerical 

ramework allows simulating transport processes accounting for a 

oncurrent change of the separator microstructure ( Sec 3.4 ). 

Simplified strategies can be used in place of the FE 2 method 

hen microstructure deformations are negligible, i.e., when the 

icrostructure geometry does not change during the process. Un- 

er these conditions, the DFN model is as accurate as the FE 2 strat- 

gy provided that the effective transport properties properly ac- 

ount for the contribution of the microstructure. To this end, the 

ffective properties should be computed as the product of a scalar 

erm accounting for the dependence of bulk properties on local 

elds and the tensor of effective transport coefficients δ. The latter 

an be identified through a single simulation performed on a RVE 

f the microstructure, with a remarkable reduction of the compu- 

ational effort compared to FE 2 simulations. 
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At the battery cell level, transport processes mainly take place 

n the through-plane direction. Despite the dominant unidirection- 

lity our results show that in-plane transport components are, in 

eneral, not null. For this reason, we emphasize the need to ac- 

ount for the tensorial nature of δ and stress that both diago- 

al and off-diagonal components are relevant for the description 

f transport processes through porous battery components. Actu- 

lly, if the off-diagonal components of the tensor of effective trans- 

ort coefficients δ are arbitrarily omitted, in-plane transport com- 

onents cannot be captured, thus leading to incorrect prediction of 

he macroscopic response ( Sec 3.2 ). 

In general, morphology evolution with cycling is common to 

ll porous components of battery cells [34] . This means that even 

f the ‘as-produced’ battery component shows an isotropic macro- 

copic response, some level of anisotropy may arise with cycling. A 

elationship between morphology evolution and transport proper- 

ies evolution is not easy to identify and a FE 2 simulation strategy 

an provide a useful asset ( Sec 3.4 ). 
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ppendix A. Transport properties and degree of anisotropy 

Many examples of porous battery materials with direction- 

ependent effective transport properties have been documented 

n literature. We consider a selection of the data reported in 

efs. [5,9,10] and evaluate the degree of anisotropy with the met- 

ic σC introduced by Cooper et al. [4] and through the radius r M 

of 

he Mohr’s circle associated to tensor δ, as suggested in Sec 3.1.2 . 

he transport properties that result from the microstructure con- 

idered in our numerical simulations are assessed with the same 

etrics to show that their degree of anisotropy is comparable with 

hat of real porous battery media. 

Cooper et al. [4] propose the following quantity to measure 

nisotropy: 

C = 

max (τi ) − min (τi ) 

τc 
, with i = x, y, z, (A.1) 

here τi represents the tortuosity evaluated along three orthogo- 

al directions ( x , y , and z) that do not necessarily coincide with the

rincipal axes. The characteristic tortuosity τc is defined as 

c = 3 

(
1 

τx 
+ 

1 

τy 
+ 

1 

τz 

)−1 

. (A.2) 
14 
ased on the investigation performed in Sec 3.1.2 , we propose the 

lternative measure of anisotropy 

 M 

= 

max (δi ) − min (δi ) 

2 

, with i = X, Y, Z, (A.3) 

here δi indicates the principal components of the tensor of effec- 

ive transport coefficients; the capital letters X , Y , and Z indicate 

he principal directions. 

We analyze i) the microstructures considered in Sec 3.1.2 with 

llipses randomly distributed in space (insets in Fig. 3 a and 3 b 

hows the microstructures for the two aspect ratio values consid- 

red), and ii) the microstructure considered in Sec 3.2 (described 

hrough the unit cell represented in Fig. 4 ). The following assump- 

ions are made to perform the comparison: 

1. We assume that the values of tortuosity provided in the ref- 

erences correspond to the principal directions because none of 

the references provide off-diagonal values. 

2. Since we perform two-dimensional simulations, we assume 

that the effective transport coefficient is equal to 1 in the di- 

rection not considered in this study (we therefore use δz = 

1 ). From a three-dimensional perspective, the two-dimensional 

ion-transport blocking phases considered in this study are 

equivalent to cylinders with axes parallel to the third di- 

rection ( z) and elliptic cross-sections. This assumption about 

the third direction is needed to evaluate the measure of 

anisotropy proposed by Cooper et al. [4] without modifications 

to Eqs. (A.1) and (A.2) . We stress that by setting δz = 1 we

identify the upper bound value for σC , as any other choice 

of δz ≥ min (δx , δy ) leads to smaller values of σC (i.e., to lower 

degrees of anisotropy). 

The results reported in Table A.1 can be summarized as fol- 

ows. With the anisotropy measure σC (A.1) , the largest value ob- 

ained with our geometries is 2.56 (for randomly distributed el- 

ipses with aspect ratio a/b = 3 , Fig. 3 b). This value is 20% larger

han the largest value reported for electrode components (2.07, for 

raphite [10] ) and 4.6 times smaller than the largest value reported 

or separators (11.8, for PP [9] ). With the anisotropy measure r M 

A.3) , the largest value obtained with our geometries is 0.13 (for 

egularly distributed ellipses with aspect ratio a/b = 2 . 5 , Fig. 4 ).

his value is 31% larger than the largest value reported for elec- 

rode components (0.09, for graphite [10] ) and 46% larger than the 

argest value reported for separators (0.07, for PP [9] ). Our geome- 

ries are definitively plausible according to the anisotropy metric 

roposed by Cooper et al. [4] as their values of σC fall within the 

ange of real battery materials. Actually, the metric proposed in 

his study leads to a more severe evaluation of our own geome- 

ries and, in our opinion, this adds value to the metric proposed. 

From this rough comparison, the outcomes of the metrics σC 

nd r M 

appear consistent, but with some differences. Both metrics 

gree about the identification of the most anisotropic material for 

lectrode (graphite [10] ) and separator (PP [9] ) components, even 

f they disagree about the material that shows the highest degree 

f anisotropy. A desirable feature of metric r M 

is that it is bounded 

etween 0 and 1 because each component of δ ranges between 

 and 1. This can be helpful for the classification of porous bat- 

ery material as it makes comparisons immediate. Further analyses 

hould be performed for a thorough comparison of the two met- 

ics, but this falls beyond the scope of this study. 

To conclude, we stress that r M 

(A.3) quantifies the maximum 

ossible value of the off-diagonal terms of δ (20) for a given 

orous material (refer to Fig. 3 c and 3 d). The last column of 

able A.1 shows the ratio between the maximum value achiev- 

ble by the off-diagonal term and the maximum principal effective 

oefficient. From this estimate, we once more conclude that the 

ff-diagonal terms of the transport tensor are not a priori negli- 

ible for real materials used in batteries. The actual value of the 
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Table A.1 

Transport properties and degree of anisotropy. References [5,9,10] provide porosity ε and three-dimensional tortuosity values in terms of τx , τy , and τz . 

Relationship (18a) is used to convert tortuosity values into effective transport coefficients and vice versa. 

Component material ε τx τy τz δx δy δz τc σC r M 
r M 

δmax 

(A.2) (A.1) (A.3) 

electrode [5] a LiMn 2 O 4 0.36 8.29 2.31 4.97 0.04 0.16 0.07 3.97 1.50 0.06 0.36 

LiMn 2 O 4 0.38 6.50 2.22 3.96 0.06 0.17 0.01 3.50 1.22 0.06 0.33 

electrode [10] LiCoO 2 0.51 3.02 2.23 2.17 0.17 0.23 0.24 2.42 0.35 0.03 0.14 

graphite 0.40 6.12 1.70 1.60 0.07 0.24 0.25 2.18 2.07 0.09 0.37 

separator [9] PE 0.40 2.78 2.92 3.04 0.14 0.14 0.13 2.91 0.09 0.01 0.04 

PP 0.35 2.32 3.24 48.7 0.15 0.11 0.01 3.95 11.8 0.07 0.48 

this work Fig. 3 c b 0.50 1.43 1.92 0.50 0.35 0.26 1.00 0.93 1.53 0.05 d 0.13 e 

Fig. 3 d b 0.50 1.25 2.94 0.50 0.40 0.17 1.00 0.96 2.56 0.11 d 0.29 e 

Sec 3.2 c 0.50 1.14 2.78 0.50 0.44 0.18 1.00 0.93 2.46 0.13 d 0.30 e 

a The values from Ref. [5] are indicated with τ 2 therein and are consistent with relationship (18a) . 
b The values of δx and δy refer to the principal directions, with δi j = 0 for i � = j according to the Mohr’s circles of Fig. 3 c and 3 d. 
c The microstructure considered in Sec 3.2 is such that the orientation of the ellipse is θ = 0 ◦ , and the effective coefficients are δ11 = δ22 = 0 . 31 and δ12 = 

δ21 = 0 . 13 (refer to (24) ). The values of δx and δy are thus calculated as δx = 0 . 31 + 0 . 13 = 0 . 44 and δy = 0 . 31 − 0 . 13 = 0 . 18 for compatibility with the other 

geometries (refer to note b above). 
d Calculated as (δx − δy ) / 2 . This is consistent with the fact that a two-dimensional framework is discussed in the manuscript. As such, the third compo- 

nent δz does not play any role. In fact, the Mohr’s circles shown in Fig. 3 do not take into account the contribution of the third direction. Moreover, the 

off-diagonal term δxy , that affects the results described in Sec 3.2 , arises from the interaction between transport components in x and y directions only. 
e Calculated as (1 − δy /δx ) / 2 for compatibility with the arguments in note d above. 
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ff-diagonal terms depends on the orientation of the coordinate 

ystem with respect to the principal coordinate system (the one 

or which diagonal terms vanish). An estimate of the maximum 

chievable value is useful because the main direction of transport 

) may not coincide with one of the principal axis, and ii) may co- 

ncide with one of the principal axis for the as-produced porous 

omponent, but this might not be the case for the entire battery 

ife. 

We assumed that the properties listed in Table A.1 refer to 

he principal directions (i.e., that they have been evaluated along 

he directions for which the off-diagonal terms are indeed zero). 

hould this not be the case, the radius of the Mohr’s circle associ- 

ted to them could be even larger, with a correspondingly higher 

aximum value of the off-diagonal terms. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.electacta.2021.139045. 
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