<]
TUDelft

Delft University of Technology

Tensorial effective transport properties of Li-ion battery separators elucidated by
computational multiscale modeling

Zhuo, Mingzhao; Grazioli, Davide; Simone, Angelo

DOI
10.1016/j.electacta.2021.139045

Publication date
2021

Document Version
Final published version

Published in
Electrochimica Acta

Citation (APA)

Zhuo, M., Grazioli, D., & Simone, A. (2021). Tensorial effective transport properties of Li-ion battery
separators elucidated by computational multiscale modeling. Electrochimica Acta, 393, Article 139045.
https://doi.org/10.1016/j.electacta.2021.139045

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.electacta.2021.139045
https://doi.org/10.1016/j.electacta.2021.139045

Electrochimica Acta 393 (2021) 139045

journal homepage: www.elsevier.com/locate/electacta

Contents lists available at ScienceDireget ~|*=

Electrochimica Acta

Tensorial effective transport properties of Li-ion battery separators n
elucidated by computational multiscale modeling

Mingzhao Zhuo?®* Davide Grazioli®, Angelo Simone*P

A Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
b Department of Industrial Engineering, University of Padova, Padua, Italy

ARTICLE INFO

Article history:

Received 24 May 2021

Revised 24 July 2021

Accepted 2 August 2021
Available online 12 August 2021

Keywords:

Multiscale battery component modeling
Computational homogenization

Ionic transport in lithium ion battery
separators

Concentration-dependent transport
property

Time-evolving microstructure

ABSTRACT

Existing battery modeling works have limitations in addressing the dependence of transport properties
on local field variations and characterizing the response of anisotropic media. These limitations are tack-
led by means of a nested finite element (FE2) multiscale framework in which microscale simulations are
employed to comprehensively characterize an anisotropic medium (macroscale). The approach is applied
to the numerical simulation of transport processes in lithium ion battery separators. From the microscale
solution, homogenized fluxes and their dependence on the downscaled macroscale variables are upscaled,
thereby replacing otherwise assumed macroscale constitutive laws. The tensorial nature of macroscale
effective transport properties stems from the numerical treatment. The proposed approach is verified
against full-scale simulations. Several numerical examples are used to demonstrate the perils associated
with accepted procedures, leading in some cases to severe discrepancies in the prediction of field quan-
tities (from differences in the potential drop across the separator of about 27% for a fixed microstructure
to more than 100% in the case of an evolving microstructure). Despite the use of simplified assumptions
(e.g., synthetic microstructures), the numerical results demonstrate the importance of a tensorial descrip-

tion of transport properties in the modeling of battery processes.

© 2021 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Electrochemical models employed for battery cell performance
prediction are based upon assumptions that are functional to their
efficient numerical solution. A common assumption is that trans-
port properties are constant when calculating the effective trans-
port coefficients. Moreover, the effective transport properties are
usually represented by a scalar or, at best, by a tensor with null
cross-terms. The implication of this choice is that the role of the
microstructure is not fully reflected by the effective transport prop-
erties. This paper discusses these aspects by means of a nested
finite element (FE2) multiscale framework endowed with nonlin-
ear physics-based constitutive models at the microscale (pore-
scale) and well-defined information exchange between micro- and
macro-scales (cell level).
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The popular DFN model [1], also referred to as the pseudo two-
dimensional (P2D) model, describes porous battery cell compo-
nents as homogenized macroscopic continua using averaged mass
and charge transport equations. The impact of a component’s mi-
crostructure on the overall response is taken into account by
means of effective transport properties. These parameters are iden-
tified either through Bruggeman relationship [2], or through sets of
simulations independently performed on microstructural volume
elements. Although the direct application of the first approach is
straightforward, its accuracy in terms of battery response predic-
tion is limited [3,4]. For this reason, variants of Bruggeman rela-
tionship are available in the literature and are tuned through ex-
perimental investigations on a problem-specific basis [5] (an ex-
ample of such an approach relevant for lithium ion battery sep-
arators is represented by Cannarella and Arnold [6]). The second
approach reaches a compromise between computational cost and
a microstructure-informed analysis. This compromise is reached
through a simple multiscale computational strategy [3,7-9] in
which the macroscale formulation is analogous to that of the DFN
model as summarized in Sec 3.1.

Some problems however arise with the second approach. First,
the coupling between mass and charge transport is disregarded
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Nomenclature

Ce concentration at the pore-scale

(cm)e  intrinsic volume average of microscale concentra-
tiony

Ch homogenized concentration

Cm concentration at the microscale

Cm microscale concentration fluctuation field

(Cm)e intrinsic volume averages of microscale concentra-
tion

™ concentration at the macroscale

fe mean molar activity coefficient

Lapp applied current

ie pore-scale current density

im microscale current density

iv macroscale current density (averaged flux)

Nex outward unit normal vector to RVE boundary I'ex

Qe pore-scale lithium ion flux

qm microscale lithium ion flux

qum macroscale lithium ion flux (averaged flux)

t time

te transference number

tend end of simulation time

X point in RVE

Xr reference point in RVE

De bulk diffusivity

Dot effective bulk diffusivity

Dyef bulk diffusivity at concentration c. = 1.0mol/L

Dest macroscale diffusivity tensor

F Faraday constant

Kq, K;  consistent tangents summarizing the (numerical)
relationships between inputs (X) and outputs (qy
and iy) of the microscale simulations

R gas constant

T absolute temperature

Ve electrolyte domain

W ion-transport blocking phase domain

X vector containing macroscale concentration and po-
tential fields and their gradients

o Bruggeman exponent

) effective transport coefficient

é tensor of the effective transport coefficients

3ij effective transport coefficients in &

€ electrolyte volume fraction (i.e., RVE porosity)

Kp diffusional conductivity

KD.eff effective diffusional conductivity

Ke bulk conductivity

Keff effective bulk conductivity

Kref bulk conductivity at concentration c. = 1.0mol/L

T tortuosity

de electric potential at the pore-scale

bn homogenized electric potential

dm electric potential at the microscale

bdm electric potential at the macroscale

(f)m microscale potential fluctuation field

(¢m)e  intrinsic volume averages of microscale potential

Cep interface between electrolyte and ion-transport
blocking phase

Iex RVE boundary

[eex RVE boundary associated to the electrolyte

Dhex RVE boundary associated to the ion-transport block-
ing phase

A¢ potential drop

V.f divergence of vector field f

v gradient operator

when a simulation is performed on the microstructure volume el-
ement. Second, microscale simulations are performed with a con-
stant bulk transport property. The omission of the concentration
dependence leads to the question of whether we can safely use the
same concentration dependence function for the effective transport
properties at the macroscale (this aspect is discussed in Sec 3.1.1).
Finally, the dimensionality of the effective properties is understood
differently. Some authors [3,7,8] treat effective properties as scalar.
Others [4,5,9-12] report different properties in through-plane and
in-plane directions (i.e., the direction of transport between elec-
trodes and those directions orthogonal to it [9], respectively), but
do not make reference to cross-terms (effective transport coeffi-
cients that describe the occurrence of flux in one direction when
a gradient of the field variable is applied in the orthogonal direc-
tion). Cooper et al. [4] suggest to describe local heterogeneities in
the microstructure using a vectorial tortuosity. Even if this treat-
ment is unconditionally applicable to isotropic media, it is not nec-
essarily adequate for porous battery components. In fact, experi-
mental evidence indicates that transport properties in battery elec-
trodes are sensitive to the direction of the applied gradient [5,10].
A tensorial description thus appears more adequate [13-16]. Fur-
thermore, as the battery components morphology changes with
electrochemical cycling (due, for example, to the deformations of
constituents [17]), initially isotropic porous structures might not
remain isotropic during battery operations.

Single-scale simulations (also referred to as direct numerical
simulations) fully resolve the microstructure [18-20] and can be
employed to address some of the issues illustrated above. How-
ever, a detailed numerical representation of porous battery com-
ponents (up to their microstructure) requires a significant com-
putational effort, especially when the pore/particle size is two to
three orders of magnitude smaller than the typical size of a battery
cell [4,21]. Direct microstructure-resolved approaches are computa-
tionally expensive and are therefore deemed unsuitable for battery
performance improvements through model-instructed microstruc-
ture manipulation if an entire battery cell is considered and in the
case of performance optimization studies.

To address the limitations just described, we propose the use
of a FE2-based computational homogenization scheme and present
a proof-of-concept two-scale framework with simple information
exchange between macro- and micro-scale levels. The approach is
also used to extract effective properties as a by-product of the nu-
merical procedure as discussed in Sec 3.1.2. Although the FE? ap-
proach has been successfully applied to many problems, ranging
from mechanical equilibrium [22-24] and transport [25] problems
to multi-physics problems [26-29], the analyses reported in this
manuscript have been performed on academic, yet plausible, ex-
amples for the sake of verification of the framework. Its application
to engineering-relevant problems does however require the use of
ad-hoc procedures [30,31].

The theoretical framework of a computational homogenization
approach for battery applications has been recently developed by
Salvadori et al. [32,33] to account for the multi-physics nature of
processes taking place in battery cells, including diffusion, migra-
tion, intercalation, and mechanics. In this paper, we present an al-
ternative FE2 framework focused on ionic transport through porous
battery cell separators (Sec 2). In the separator only two con-
stituents coexist: a liquid electrolyte filling the pores of an inert
and electrochemically inactive membrane (e.g., polyolefin [9]). The
absence of active materials results in significant modeling simpli-
fications, as no lithium exchange occurs between the constituents.
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This allows capturing the most fundamental phenomena and as-
sess the applicability of the FE2 method to the battery setting.

Battery cell separators can have a macroscopically anisotropic
response [9,12] and undergo deformation during battery cycling
(as a result of either electrode deformations [34] or externally ap-
plied mechanical loads [6]), just like any other battery compo-
nent. The design of the separator is not secondary to that of elec-
trodes, as experimental and numerical investigations indicate that
it is the transport-limiting component of a cell when subject to de-
formations [6,9]. We thus employ the proposed multiscale frame-
work to simulate charge processes and focus on the battery sep-
arator response. For simplicity, we consider two-dimensional (2-
D) microstructures only and do not discuss procedures [30,31] to
reduce the simulation costs of the FEZ approach. In Sec 3 the
features of the FE2 approach are discussed in the light of the
limitations of existing models, under conditions that allow also
simpler approaches to be examined in Sec 3.3. Furthermore, we
perform simulations of battery separators both with single-scale
(microstructure-resolved) and FEZ approaches and show that the
same level of accuracy is achieved (Sec 3.2), thus verifying our
approach. Finally, Sec 3.4 demonstrates the potential of the ap-
proach to describe the consequences of different microstructure
deformation paths of a separator during the charge process. The re-
sults show that alteration of the microstructure morphology alone
(i.e., at constant porosity) results in a significant alteration of the
macroscopic response of the system.

2. Multiscale approach

Next, the FE2 approach employed in this study is summarized,
and the governing equations at the two scales together with the
corresponding information-passing procedures are reported. De-
tails about the numerical implementation are provided in Sec S4
in the Supplementary Material (SM). In the remainder of the pa-
per, quantities at the microscale and macroscale are identified by
subscripts ‘m’ and ‘M’, respectively.

2.1. Macroscale model

We restrict our scope to ionic transport through the battery cell
separator where there is no mutual interfacial flux between elec-
trolyte and porous membrane. A schematic of the problem is re-
ported in Fig. 1a. The ionic transport in the electrolyte is governed
by mass conservation of lithium ions and electric charge balance,
expressed as

eaaL;v'+V~qM=0 and (1a)
V-iMZO in QX(Oatend)’ (1b)

respectively, where € is the electrolyte volume fraction (i.e., the
membrane porosity), qy is the lithium ion flux, iy is the cur-
rent density, and cy; represents the macroscale concentration. The
macroscale governing equations can be derived through a volume-
averaging approach applied to the single scale governing equations
as shown in Sec S3 in the SM.

Equation (1) expresses the macroscale balance equations over
the homogenized domain € (Fig. 1b). It is remarked that
macroscale concentration ¢y and potential ¢y (not explicitly
present in Eq. (1b)) are the two field variables to solve for, and that
the macroscale constitutive relations for qy and iy are numeri-
cally obtained through the information exchange between the two
scales (Sec 2.4). As schematically depicted in Fig. 1, the macroscale
solution fields cy; and ¢y and their gradients are downscaled to
the microscale problem, and the macroscale fluxes and their tan-
gents are evaluated from the microscale solution and upscaled to
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separator cathode

g 06 :

w Y

(c) RVE

Ki, Kq
(b) homogenized separator

Fig. 1. Schematic of the multiscale approach showing (a) a battery cell with porous
anode, separator, and cathode (the porous electrode and separator domains are
filled with the electrolyte occupying domain V.), (b) the homogenized domain at
the macroscale, and (c) a microscopic representative volume element (RVE) of bat-
tery separator, consisting of blue-shaded electrolyte domain V. and gray-shaded
ion-transport blocking phase domain V;. The blocking phases represent the separa-
tor membrane. The information exchange between macro- and micro-scales is de-
picted in panels (b) and (c). The potential (¢) and its gradient (V¢y), and the con-
centration (cy) and its gradient (Vcy) at a point of the macroscale domain €2 (inte-
gration point in the context of FEM) are transferred to the microscale to define the
boundary conditions, while the averaged fluxes (iy, quv) and their dependence (K;,
K,) on the downscaled quantities are transferred back after the microscale quan-
tities (¢m and cp) are evaluated. The RVE boundary I, is divided into two parts,
each associated with a phase, such that I',, =T, T, with I, N[, =@.

eex eex

the macroscale problem. Initial and boundary conditions complete
the macroscale problem definition and are provided in Sec 3 for
each example considered.

2.2. Downscaling

The boundary conditions enforced at the microscale level are
obtained by downscaling macroscale quantities at each integration
point of the macroscale mesh: concentration cy;, potential ¢y, and
their gradients Vcy and V ¢y, respectively. For conciseness, these
quantities are stacked in the column vector

T T T
X=[(Ve) o (Véw)' ou]- )
2.3. Microscale model

The microscale problem is defined on a representative volume
element (RVE), as shown in Fig. 1c, associated to a macroscale in-
tegration point of the homogenized separator (Fig. 1b). The bal-
ance equations at the microscale, analogously to those used at the
macroscale (Eq. (1)), are expressed as

V. qu=0 and (3a)

V.in=0 in V, (3b)

where Ve is the electrolyte domain bounded by I'e, UTe, with
Ieey NTep = @ (Fig. 1c). Subscripts ‘e’ and ‘b’ refer to electrolyte
and ion-transport blocking phase (porous membrane), respectively.
The ion-transport blocking phase is not modeled because no trans-

port processes occur within it (in this study the blocking phase is
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merely an obstacle that is impenetrable to ions). At the microscale
we neglect the time variation of the concentration field assuming
that the RVE is sufficiently small to allow the steady state con-
figuration to be suddenly attained. This condition is met in bat-
tery separators where the characteristic size of the pores is or-
ders of magnitude smaller than the typical thickness of porous
membranes [21] (a discussion is provided in Sec S8 of the SM).
We remark that simulations of porous battery electrodes within a
FE2 framework might call for a concurrent time modeling between
macroscale and microscale, as discussed by Salvadori et al. [33].
Indeed, diffusion in active material can be so slow that the time
evolution of microscale fields becomes comparable to that of the
macroscale counterparts. The low diffusivity of the active materi-
als is indeed recognized as one of the limiting factor towards the
full exploitation of the theoretical battery energy over a range of
operating conditions, as the thorough investigation performed by
Du et al. [35] demonstrates.

Constitutive equations are explicitly provided at this scale,
where the ionic transport processes is modeled through the con-
centrated solution theory [1]. The lithium ion flux, and the current
density read

te .
Qm = —De Ve + Felm, (4a)
and
imn = —ke Véom +kp VIncp, (4b)
respectively, with the diffusional conductivity defined as
2RT k. dln fe
o= —F <1+ Jinc. (1-te). (4c)

The coupled set of differential Eq. (3) is solved in terms of
lithium ion concentration ¢y and electric potential ¢n. In the
above equations, De and k. denote bulk diffusivity and ionic con-
ductivity (i.e., quantities actually related to the material), respec-
tively, te is the transference number, and fe is the mean molar ac-
tivity coefficient. Finally, F, R, and T represent the Faraday constant,
the gas constant, and the absolute temperature, respectively.

Next, we derive the microscale boundary conditions from the
macroscale quantities X in Eq. (2). Without loss of generality, mi-
croscale fields can be decomposed into linear contributions consis-
tent with macroscale quantities (cy, ¢y, and their gradients) and
fluctuation fields ¢, and qﬁm as in

m=Ccm+ Vou - (X—X;) + C, (5a)

Gm = P+ Vdu - (X —Xe) + P, (5b)

where x and x; denote the spatial coordinates of a point and a
reference point in the RVE domain, respectively.

To design the boundary conditions of the microscale prob-
lem, we assume that the volume average of the gradients of mi-
croscale variables over the whole RVE is equal to the correspond-
ing macroscale gradients in analogy with the kinematical averaging
relation used in solid mechanics to establish the macro-to-micro
coupling:

1 / VendV = Ve, (6a)
Vv

1
V/‘/qumdv — Vo, (6b)

where the RVE volume V is such that V =V. UV, with Ve NV, =
@. The electrolyte volume fraction can thus be explicitly defined
as € =Ve/V. Note that by analogy with the problem of a RVE
with holes under mechanical loading [36], the domain of the
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ion-transport blocking phase needs to be included in the aver-
ages (6) because the RVE is considered as a macroscale point
as a whole. Substituting Eq. (5a) into the left-hand side of
Eq. (6a) yields

1 17
V/VchdV=VcM+V[Vchdv. (7)

According to the divergence theorem, the second term in the right-
hand side of Eq. (7) can be reformulated as

1o 17 .
V/VchdV: V/ex En NexdT, (8)

where I'ex is the RVE boundary (Fig. 1c¢). Comparing Eq. (7) with
Eq. (6a) and considering Eq. (8) lead to

/ Cmn,dl' =0 and (9a)

$mn.dT =0, (9b)
FEX

where the relation for ¢, has been obtained by analogy. Although
constraint (9) can be satisfied through different sets of bound-
ary conditions, we employ periodic boundary conditions according
to Ref. [37] as discussed in Sec S2 in the SM. To uniquely solve
the microscale problem, we impose two additional conditions: the
intrinsic volume averages of microscale variables, as defined in
Sec S1 in the SM, are set equal to the corresponding macroscale
quantities:

(Cn‘l)e =Cm, <¢m>e = ¢M- (10)

A substantial difference exists between the above constraints.
While the former (conservation of mass between macro- and
micro-scales) must be enforced because the microscale solution
depends on the actual concentration value (the material proper-
ties in Eq. (4) are concentration-dependent), the latter is enforced
for consistency and is not essential provided the uniqueness of the
solution is ensured.

2.4. Upscaling

In this section we describe how the homogenized quantities,
based on the microscale solution and needed in the macroscale
computation (Fig. 1b), are upscaled. In a continuum mechanics
context it is customary to derive the micro-to-macro transition
by enforcing either energy [38] (Hill-Mandel condition) or en-
tropy [39] consistency across scales. An extended version of the
Hill-Mandel condition tailored for battery cell modeling was pro-
posed by Salvadori et al. [32,33], who equated ‘the microscopic vol-
ume average of the virtual power on the RVE and the point-wise
one at the macroscale’ [32]. An alternative strategy is used here:
we enforce

l/ch-qde:VCM-qM, (11a)
Vv

%/V(ﬁm.imdv — Vi - i, (11b)
v

This approach presents similarities with the works of Keip,
Steinmann, and Schréder [26-28] and Lee and Sundararaghavan
[29]. The former focuses on the electromechanical coupling in
piezoelectric and electro-active materials at multiple scales, and
the authors considered the mechanical and electrical contribu-
tions independently in the scale transitions. The latter makes
use of restriction (11a) to identify the micro-to-macro scale tran-
sitions for the mass flux in the context of diffusion-reaction-
induced degradation of composites. Numerical evidence reported
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in Sec 3.2 indicates that the micro-to-macro scale transitions ob-
tained from Eq. (11) (given in Eq. (14)) are sound for the class of
problems considered in this study.

Macroscale fluxes are obtained by following the procedure de-
scribed below. By making use of Eq. (3) and the divergence theo-
rem, the left-hand side of Eq. (11a) is expressed as

1 1 1
— | Ve - de=7/‘V~ Cm Gm dV=7/ Cm Qm - Nexd . 12
V/v q v V- mam) v I, ma (12)

Due to the adoption of periodic boundary conditions (S.5), the
term qm-Ne takes opposite value on opposite edges. This term
is referred to as the anti-periodic normal flux boundary condi-
tion [37]; such a meaning can be clearly inferred from the use
of Lagrange multipliers to enforce periodic boundary conditions in
the microscale FE implementation discussed in Sec S.5 in the SM.
Considering mass conservation Eq. (3a), periodic boundary condi-
tions S.6, and the anti-periodic normal flux leads to (refer, e.g., to
Ref. [37] for derivation details)

= Cm qm-nexdr‘=VCM-1 X Qm - Nex dI. (13)
V Jre V Jre
Comparing Eq. (13) with Egs. (11a) and (12) we obtain
1
Q=7 | X Nex dI. (14a)
FEX

An analogous procedure leads to the definition of the

macroscale current density

iy = %/ X im - Nex dT". (14b)
The consistent tangents
(Sq]v[ 81M
Ky = X and K= X (15)

are matrices that summarize the (numerical) relationships be-
tween inputs (X) and outputs (qy and iy) of the microscale sim-
ulations. Terms Kq and K; are determined according to the proce-
dure described in Sec S4.3 in the SM.

2.5. FE? procedure summary

In the FE? framework, nested finite element simulations are
performed, and a microscale numerical simulation is executed at
each integration point of the macroscale problem. Every microscale
problem is solved by downscaling the macroscale values of the cor-
responding macroscale point (vector X defined in Eq. (2)) and ap-
plying boundary conditions according to the procedure described
in Sec S5.

The constitutive equations of the macroscale problem are not
a priori-defined and are replaced by numerically obtained con-
stitutive relations. Upon solving the microscopic boundary value
problem, the macroscopic quantities qy and iy and the macro-
scopic constitutive tangents Kq and K; are determined from the
microstructural analysis through Eqs. (14) and (15), respectively.
From the numerical implementation perspective, the counterparts
of Egs. (14) and (15) are Eqgs. (S.31) and (S.38), respectively.

Once the constitutive relations are known, the macroscale prob-
lem is solved through standard FE procedures. The solution of the
non-linear problem is determined through a Newton-Raphson it-
erative procedure, making it necessary to define the macroscale
constitutive tangents (15). The values stored in the X vectors cor-
responding to each macroscopic integration point are updated to
move the macroscopic computation further. This set of operations
is repeated for each time step of the macroscale simulation. An in-
troduction about computational homogenization procedure can be
found, for example, in Ref. [40]. Details about the numerical im-
plementation of the FE2 framework are given in Secs S4 and S5 in
the SM.

Electrochimica Acta 393 (2021) 139045

Table 1
Field variables and their physical meaning.

Approach symbol physical meaning
DEN bn homogenized electric potential
Ch homogenized concentration
bm electric potential at the macroscale
FE2 M concentration at the macroscale
bm electric potential at the microscale
Cm concentration at the microscale
. electric potential at the pore-scale
single-scale Pe pot p
Ce concentration at the pore-scale

3. Results and discussion

The FE2 framework does not require an explicit definition of ef-
fective transport properties since the constitutive equation are nu-
merically obtained from the analysis at the RVE level (Sec 2.1).
As the FE2 naturally takes into account the effect of the mi-
crostructure on the macroscopic response, in Sec 3.1 we show how
information about the microstructure is embedded in the scale
transition scheme. Multiscale simulations for separators made of
nanoporous materials [41] are discussed in Sec 3.2, where FE? sim-
ulation results are verified against results obtained from a single-
scale simulation. Exploiting the findings of the first application,
a simplified alternative strategy to the concurrent computation
of a microstructured separator is illustrated in Sec 3.3. Finally,
Sec 3.4 focuses on the application of the FE? framework in the
study of time-evolving microstructures. Table 1 lists the notation
used for the field variables in the DFN model and the FE? frame-
work.

We remark that bulk properties are isotropic (scalar terms) in
all the examples considered, and thus the macroscopic anisotropy
exclusively results from the microstructure geometry.

3.1. Effective transport properties

In this section we show that a generalization of the effective
properties used in the DFN model [1] is embedded in the tangent
matrices Kq and K; (Eq. (15)). For completeness we recall the basic
concepts of the DFN model.

For battery cell separators, a DFN model is obtained by replac-
ing the bulk diffusivity De and conductivity xe with their effective
counterparts (Degs and kg, respectively) in Eq. (4) and inserting
the so-obtained constitutive equations into Eq. (1). Since the DFN
model describes the separator as an homogenized continuum, the
homogenized variables ¢, and ¢y, replace cy;, cm, and ¢, in all the
equations leading to

ac
GT; +V. (—DeffVCh) =0, (16a)
V. (—Keffv¢h + KD'effV In Ch) =0. (16b)

Equatio (16a) is obtained by substituting Eq. (4a) into Eq. (1a),
taking into account that the current density is divergence free
(Eq. (1b)), and considering a constant transference number te.
The effective diffusivity Deg and ionic conductivity k. are de-
termined adjusting bulk properties De and k. through the coeffi-
cient § that accounts for the effect of the microstructural geometry
(e.g., transport-blocking phases that are part of porous battery cell
components) on the macroscopic transport response. The effective
transport coefficient § is implicitly defined through the relations

Defsze 8, Keff = Ke d. (17)
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The effective diffusional conductivity «per is defined by means of
Eq. (4c) by replacing ke with k.

Note that the notion of an effective transport coefficient is in
principle valid only when D. and «. are constant. Since the ge-
ometrical features of the microstructure are often described in
terms of porosity € and tortuosity t (that ‘quantifies the resistance
to diffusion caused by the convolution of the pore network’ [4]),
the effective transport coefficient is described through the rela-
tion [4,41,42]

€
usually expressed as
§=¢“. (18b)

The last expression is obtained by describing the correlation be-
tween porosity and tortuosity through an exponential law (an ap-
proach attributed to Bruggeman [5,43]).

Three major concerns emerge with the procedure just described
((16)-(18)). First, the homogenization strategy implicitly used in
the DFN model implies that the effective properties (Dqg and kefr)
can only be related to the homogenized concentration ¢, when
concentration-dependent bulk properties need to be accounted
for [44]. Indeed, any information about the pore-scale concentra-
tion ce is lost when using the DFN model. The question then arises
as to how well relation (17) with De(cy,) and ke(c,) approximates
the actual dependence of the effective properties on the homoge-
nized concentration cy,. Second, even if in most applications of in-
terest the relationship T = €'~ describes the dependence of tor-
tuosity on porosity to a good approximation [5], the value of coef-
ficient « is problem-specific. Microstructures with identical poros-
ity yield different exponents, and thus different transport proper-
ties, depending on their actual morphology and transport direc-
tion. Numerical simulations performed on microscopic volume el-
ements (either numerically generated or reconstructed from real
battery microstructures) have been used to determine either tor-
tuosity 7 [4,9-12,45,46], exponent « [8], or the effective transport
properties (17) [3,7,8] for porous battery cell components with ar-
bitrary microstructures. The reader can refer to Tjaden et al. [5] for
a recent review on tortuosity evaluation strategies in electrochem-
ical devices. Furthermore, since battery cell components undergo
deformation during charge/discharge processes, effective proper-
ties should be updated according to the morphology evolution
throughout the process. Third, § should account for cross-terms
in a multidimensional framework. In the numerical frameworks
used for instance in Refs. [3,4,10,45] for determining the effective
transport coefficient 8, the authors applied boundary conditions
to a pair of opposite boundaries and insulated the others. These
boundary conditions enable the determination of transport prop-
erty in one specific direction implicitly assuming the absence of
cross-terms, a treatment adequate for isotropic media only (whose
effective transport properties can be characterized by a scalar §).
Although a tensorial description [13-16] appears appropriate, the
description of transport properties through a vector that defines
the tortuosity along three arbitrarily selected orthogonal directions
is a widespread practice in the characterization of electrochemi-
cal devices [5]. A notable exception is represented by the contri-
bution by Ebner and Wood [47], even if they do not discuss the
relevance of cross-terms on the performance prediction of battery
cell components. For media with arbitrary microstructures (result-
ing in anisotropic macroscopic responses), cross-terms vanish only
if effective properties are evaluated along the principal directions,
which is not necessarily the case for through-plane (main direction
of transport between the electrodes) and in-plane directions in
porous battery components. It follows that, in general, the evalu-
ation of effective properties along the through-plane direction and
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two in-plane directions [4,9-12] does not provide a comprehensive
evaluation of the transport properties.

We now show that the three concerns just described are prop-
erly addressed through our FE2 approach. The consistent tan-
gents Kq and K; (Eq. (15)) incorporate the most general depen-
dence of mass flux qy and current density iy; on concentration,
potential, and their gradients. Nonlinear microscale constitutive re-
lations are thus transferred from the micro- to macro-scale avoid-
ing the inconsistencies related to the use of simplified effective
transport properties in Eq. (17). To prove this, we show that our
homogenization approach naturally accounts for the dependence
of the macroscopic response on i) concentration-dependent bulk
properties (Sec 3.1.1), and ii) the contribution of the geometri-
cal features of the microstructure. The tensorial nature of the
relationship between macroscopic fluxes qy and iy and driving
forces Ve and Vg is discussed in Sec 3.1.2. To this end, we de-
termine Ky through the numerical procedure described in Sec S4.3
in the SM and we analyze the components that express the re-
lationships between qy and Vcy (recall the definitions of Kq in
Eq. (15), and X in Eq. (2)). We thus define the macroscale diffusiv-
ity tensor [16] as

D11 D1y
Dess = , 19
eff I:Dz1 D22i| ( )

where D;; with i,j=1,2 are the components of Kq according
to Eq. (S39a). Moreover, we name the tensor

_Der o 012
§= De [521 322]’ (20)

which contains the effective transport coefficients d;;, the ‘tensor
of effective transport coefficients’. We stress that since diagonal Dj;
and off-diagonal D;; (with i # j) components are, in general, non-
zero, the same holds for the components of tensor §. Off-diagonal
terms D;; (8;;) with i+ j are simply the cross-terms previously
mentioned; these terms are also referred to as rotatory diffusiv-
ity coefficients [16]. The same procedure applied to iy and Voy
leads a tensor of effective transport coefficients & that is numer-
ically identical to Eq. (20). In passing, it is worth stressing that
the off-diagonal terms of the diffusivity tensor are a typical ex-
ample of structure-material property relationship. They have to be
considered as the numerical objective evidence of an anisotropic
response stemming from an underlying non-homogeneous micro-
scopic structure, a non homogeneous distribution of material prop-
erties, or a combination or both.

The results shown in Secs 3.1.1 and 3.1.2 were obtained with
simulations performed at the microscale level, where the mi-
croscale boundary conditions for the determination of the effec-
tive transport properties are defined by the downscaled macroscale
quantities
X=[112x 10°mol/m* 0 ¢y T

600mV/m 0 1mV]

(21)

Concentration and potential gradients are two-components vec-
tors because of the two-dimensional setting. In Sec 3.1.1 we
evaluate the dependence of the macroscale properties on the
macroscopic concentration for ¢y in the range [0 — 3000]mol/m?,
while the simulations reported in Sec 3.1.2 are performed set-
ting ¢y = 1000 mol/m3. As we will show, the results discussed in
Secs 3.1.1 and 3.1.2 are independent of the selection of the values
in X (except for ¢y in Sec 3.1.1). For completeness, the values used
in the numerical simulations are listed in (21).

A first verification about the properties extracted from tan-
gents Kq and K; is provided in Sec S6 in the SM, where the
numerically obtained § — € relationship for an isotropic medium
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Table 2
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Modeling parameters. Note that concentration c. is expressed in mol/L.

Parameter symbol value

unit ref.

diffusivity De
ionic conductivity Ke
transference number te 0.4
thermodynamic factor 1+ 3}2{5 1
Faraday constant F 96485
gas constant R 8.31
absolute temperature T 298.15

5.34 x 10~10 g~065¢ m?/s 3]
0.0911 + 1.9101ce — 1.052C§ + 0‘1554C3 S/m [3]

[52]
[1]
C/mol
J/(K mol)
K

is compared against ‘Bruggeman approach’. With ‘Bruggeman ap-
proach’ we identify an approximation of the effective properties of
porous electrodes obtained calculating § from Eq. (18b) with o =
1.5 (determined by Bruggeman [43] for spherical non-overlapping
transport obstructing phases). The evaluation of transport effective
properties of porous battery components through Bruggeman ap-
proach was already in use at time of the seminal modeling work of
Doyle et al. [1], and it still is a popular simple-to-compute first ap-
proximation (see, for example, Refs. [48-51]). Even if many strate-
gies for the estimation of effective properties are available in the
literature [5], the popularity of Bruggeman approach is such that
it enables a straightforward comparison. For this reason the results
obtained with Bruggeman approach are presented along with the
results of the proposed approach.

All the results involving a RVE have been obtained considering
RVEs with 16 ion-transport blocking inclusions, corresponding to a
RVE size that ensures converged transport properties (refer to the
study in Sec S7 in the SM for the case of elliptical inclusions).

3.1.1. Concentration-dependent transport properties

This section attempts to answer the previously raised question
of how accurately Eq. (17) represents the dependence of the ef-
fective diffusivity Deg and ionic conductivity k. on the homog-
enized concentration c;,. We consider a liquid electrolyte consist-
ing of LiPFg dissolved in EC-DMC (a mixture of ethylene carbon-
ate and dimethyl carbonate). Bulk transport properties, listed in
Table 2, are chosen according to Refs. [1,3,52]. In the microscale
FE computation, we calculate the effective transport properties at
varying macroscale concentration values cy. The chosen RVE in-
cludes 16 randomly distributed circular inclusions (that represent
the ion-transport blocking phase). Based on the § — € relationship
obtained through our numerical study on microstructures with cir-
cular inclusions (Sec S6), a coefficient § = 0.31 applies to x and y
directions when € = 0.5. It is remarked that § = 0.31 is calculated
using constant diffusivity and ionic conductivity and, therefore, it
results from the microstructure.

Figure 2 shows the effective transport properties as a func-
tion of the macroscale concentration (i.e., ¢, in the DFN model
and cy in the proposed FE2 approach). The effective transport
properties D.g and kg, denoted by dashed lines, are calculated
via Bruggeman approach and with bulk transport properties de-
scribed as a function of concentration in Table 2. This implies that
the concentration dependence does not change from microscale
to macroscale and a scaling factor is sufficient to reflect the mi-
crostructure geometry effect. The solid lines represent the effective
transport properties (Eq. (17)) that are equal to the bulk properties
multiplied by the effective transport coefficient § = 0.31 (Fig. S2).
The simulated effective transport properties denoted by circles are
the component D;; in Eq. (S39a) and k14 in Eq. (S39b) at dis-
crete macroscale concentrations cy;. Note that these effective prop-
erties are normalized by the bulk properties at concentration ce =
1.0mol/L and denoted as Do and K ef.

The microscale FE simulation results overlap with those ob-
tained with concentration-dependent bulk properties multiplied

T
\ ----Bruggeman approach
N —— Eq. (17) with § = 0.31

FE simulation of RVE

N o

0.31

Keff[Kref

¢ (mol/L)

Fig. 2. Effective diffusivity Deg (a) and ionic conductivity k¢ (b) normalized by the
bulk values at c. = 1.0mol/L (i.e., D;s and ke, respectively) versus the macroscale
concentration c¢ (¢, in the DFN model combined with Bruggeman approach or ¢y in
the FE2). The dashed lines are calculated via Bruggeman approach, the solid lines
represent the bulk properties multiplied by 0.31 (Fig. S2 in the SM), while circles
are Dy and k14 in Eq. (S5.39) at each macroscale input cy. The RVE porosity € = 0.5.
The bulk properties can be found in Table 2.

by the effective transport coefficient § = 0.31. This agreement ad-
dresses the first concern and verifies the incorporation of mi-
crostructure effect by directly scaling the concentration-dependent
bulk properties by a microstructure-related factor (Eq. (17)). It
is remarked that this observation is consistent with the volume-
averaging analysis by Quintard et al. [53], and a similar relation
to Eq. (17) can be reproduced based on Egs. (24), (25), (98), and
(102) in their paper. According to Quintard et al. [53], the func-
tional relation at the macroscale can safely use the microscale one
provided a length scale constraint (Eq. (26) in Quintard et al. [53]):
Irve < lyy, Where Ie represents the RVE length scale and Iy is the
macroscale distance over which significant variations of volume-
averaged field variables occur. This scale constraint will naturally
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Fig. 3. Effective transport coefficients §;; in Eq. (20) versus the orientation @ of the ellipses at aspect ratio a/b = 1.5 (a) and 3.0 (b). The subscripts 1 and 2 are associated
with the x and y directions, respectively. The diagonal components §;; and &, are the transport coefficients in the x and y directions, respectively, while the off-diagonal
components &1, and J,; reflect the influence of concentration gradient in the y direction on the mass flux in the x direction and vice versa. In the simulation the bulk
properties (D. and k) are isotropic and constant. The porosity is held constant at 0.5 (i.e., the total area of the ellipses is fixed). Panels (c) and (d) show the Mohr’s circles

in the §,
6.

iy

be satisfied when the principle of scale separation [32,37] of the
FE2 method holds.

3.1.2. Anisotropic effective transport properties

The morphology of the ion-transport blocking phase (e.g., sep-
arator membranes [54]) is crucial for the overall ionic transport
process taking place in battery cell separators as the microstruc-
ture of the porous separator determines the macroscopic response
of the system. In this section we aim to investigate the capability
of our multiscale framework to capture this dependence, especially
for microstructures that determine an anisotropic macroscopic re-
sponse.

The study is performed by generating microstructures with
porosity € = 0.5 characterized by different morphologies, and an-
alyzing the components of & in Eq. (20). We consider RVEs filled
with randomly distributed elliptical inclusions (representing the
ion-transport blocking phase) surrounded by the electrolyte. In
these RVEs, the position of an ellipse is random but its orienta-
tion 6 is fixed, ranging from 0 to 90°. For each orientation we gen-
erate 100 RVE configurations taking isotropic and constant (i.e., not
concentration-dependent) microscale bulk properties De and ke.
Two families of morphologies are generated considering transport-
blocking ellipses, characterized by semi-major axis a and semi-

— 8ij, (i2j) coordinate system related to the results in panels (a) and (b). Subscript 6 indicates that coefficients d;; (; j_1.2) relate to the microstructure inclination

minor axis b, with aspect ratio a/b values equal to 1.5 and 3. Each
point in Fig. 3 represents the average of 100 RVE (the standard de-
viations is also shown).

Figure 3 a shows that the diagonal component §;; in the x di-
rection is maximized at 8 = 0, that is, when the major axis of the
ellipse is aligned along the x direction. As the major axis is pro-
gressively aligned with the y direction (6 increases), §;; keeps de-
creasing and reaches the minimum at 6 = 90°. The effective trans-
port coefficient 8, in the y direction show an opposite trend with
respect to §q1; their behavior reverses at 6 = 45° where their val-
ues coincide. These observations are consistent with the outcome
of the three-dimensional investigation performed in Ref. [46]. Yan
et al. [46] show that the alignment of ellipsoidal particles along
a certain direction results in a lower tortuosity along the direc-
tion of alignment compared to directions orthogonal to it (recall
the inverse proportionality (18) that relates tortuosity t and effec-
tive transport coefficient &). The values of the off-diagonal com-
ponents 31, and §,; coincide, in agreement with theoretical pre-
dictions for (uncoupled) diffusion phenomena in anisotropic me-
dia [16], reach a maximum at € = 45°, and show a symmetry with
respect to 6 = 45°,

In the simulations, we fix the coordinate system and rotate the
angle of alignment of the elliptical phase for the sake of compu-
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tational convenience. The outcome is analogous to a rotation of
the coordinate system. This observation and the results reported
in Fig. 3a allow us to draw a parallel with solid mechanics in the
sense that the numerically evaluated & can be understood as a ten-
sor, i.e., an object that is used to describe physical properties and
obeys certain transformation rules. More specifically, the connec-
tion of & to physical properties is rooted in its definition (the ef-
fective transport coefficients §;; are extracted from Kq (Eq. (539a))
according to Egs. (19) and (20)). Whether or not § can be consid-
ered representative of the actual effective transport properties as-
sociated to a given microstructure can be ascertained by means of
an analysis of the results reported in Fig. 3a. The results indicate
that these properties do not change with rotations of the coordi-
nate system as demonstrated by the invariance of the mean value
of 811 and 85, (0.30 and 0.29 for a/b = 1.5 and 3.0, respectively)
with respect to 6. It can also be shown that the spectrum of § is
invariant, implying that 8 is indeed a sound representation of the
effective transport coefficients for a given microstructure. The defi-
nition of § as ‘tensor of effective transport coefficients’ is therefore
justified.

In solid mechanics, Mohr's circle is a two-dimensional graphical
representation of the state of stress at a point. Since the transfor-
mation of 811, 877, and 81, with 6 should be consistent (at least
in theory [16]) with the coordinate transformation of tensor com-
ponents, Mohr’s circle [55] can be used to represent transport co-
efficients in multidirectional transport processes, an approach re-
cently taken in Yang and Qin [56]. Figure 3b shows the Mohr’s cir-
cles for the data represented in Fig. 3a. For convenience, the an-
alytical expressions of the circles is defined with reference to the
microstructures oriented at 6 = 0 or 90°. At these orientations, the
off-diagonal terms &1, = 637 = 0 and the direct terms §1; and §,;
are used to define center (as their mean value) and diameter (as
their difference). As a confirmation of the validity of the coordi-
nate transformation rules of tensor components, the application of
Mohr's transformation rules to each data point in Fig. 3a results
in the placement of these points on the circles. In analogy with
the use of Mohr's circle in stress analysis, as soon as the effective
transport coefficients at a point are known, it is therefore immedi-
ate to identify the principal directions (i.e., the directions such that
the off-diagonal terms §;; are zero) and the effective transport co-
efficients acting on a plane at a generic inclination passing through
that point.

We recognize that restricting the numerical simulation to a
two-dimensional setting is rather simplistic and might affect the
interpretation of the results and their generalization to the char-
acterization of porous media. In fact, the description of porous
structures that result in macroscopic anisotropic properties can
sensibly vary if a three-dimensional investigation is performed in
place of a two-dimensional one (refer, for example, to Yan et al.
[57]). Nevertheless, in spite of the simplified representation of the
microstructure, our numerical results are consistent with Ebner
et al’s [10] experimental observations about the effect of parti-
cle shape and orientation on the tortuosity of three-dimensional
battery electrode microstructure. Ebner et al. [10] report values of
tortuosity T (Eq. (18a)) around 1.46 for NMC electrodes consist-
ing of spherical active particles. By converting the values of § ob-
tained through our numerical simulations into t, we obtain a tor-
tuosity equal to 1.61 for a RVE filled with random circular inclu-
sions (Fig. S2). Ebner et al. [10] observe that, if elongated parti-
cles make up the electrodes, the particles tend to align with their
longest axis parallel to the current collector (perpendicular to the
direction of flow). We thus focus on the values that pertain to
the x direction at 6 = 90° (Fig. 3) for the comparison. Ebner et al.
[10] report through-plane tortuosities for LCO (ellipsoide-like parti-
cles) and graphite (platelets-like particles) electrodes equal to 1.77
and 3.76, respectively. The increase of tortuosity for increased par-
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ticles aspect ratio is in good agreement with our results: taking
the value of §;; at & =90°, we observe that the tortuosity in-
creases from 1.9 to 2.9 as the aspect ratio increases from 1.5 to
3 (Fig. 3), respectively. The qualitative agreement in terms of tor-
tuosity change validates the proposed numerical approach.

The Mohr's circle representation captures the degree of
anisotropy: the more pronounced the anisotropy (the higher the
aspect ratio a/b), the bigger the radius of Mohr's circle (in the
limit case of isotropic response, the circle collapses to a point).
Two conclusions follow. First, the measure of anisotropy proposed
by Cooper et al. [4], based on the difference between the max-
imum and minimum transport properties along arbitrary orthog-
onal directions, may not provide a comprehensive representation
of anisotropy. The anisotropy degree can be evaluated as the dif-
ference between the maximum and minimum principal trans-
port properties along the principal directions only (i.e., when off-
diagonal components are null) [56]. Second, since the transport
direction between electrodes is in general not the principal, the
off-diagonal components of the effective diffusivity tensor should
not be disregarded a priori. In Appendix A the metric proposed by
Cooper et al. [4] and Mohr’s radius are used to evaluate the degree
of anisotropy of a selection of porous battery materials.

3.2. Comparison with single-scale simulation results and DFN model
prediction

In this section we employ the multiscale approach to charac-
terize ionic transport in a battery cell separator with a microstruc-
ture that yields an anisotropic macroscopic response. As a verifi-
cation of the FE? framework, the multiscale simulation results are
compared with those obtained from a single-scale simulation in
which the separator microstructure is fully resolved. The single-
scale simulation is performed by substituting Eq. (4) into balance
equations

%-}—V-qezo and (22a)
V.ie=0 in Ve x (0, tenq). (22b)

In such case, ce = Cm, Qe = qm, and ie = ip. Notice that neither
homogenization strategies nor effective properties are used with
this approach. This example shows the ability of the FE2 method
to properly account for all terms of the effective transport property
tensor and highlights the relevance of the off-diagonal terms for
a proper evaluation of the macroscopic response. The prediction
capabilities of the DFN model, which uses scalar effective transport
properties, are also discussed.

We simulate a porous separator consisting of a regular array
of unit cells. Each unit cell contains an elliptical ion-transport
blocking phase surrounded by the electrolyte as shown in Fig. 4a.
Figure 4b shows the discretization of the multiscale problem do-
mains at both scales. At each integration point of the macroscale
mesh, we attach the microscale RVE, which is equal to a unit cell.
For the single-scale simulation, we consider 100 x 40 unit cells
as shown in Fig. 4c. Numerical studies (not reported here) con-
firm that the results obtained with each approach can be consid-
ered converged. Here we use the concentration-dependent trans-
port properties listed in Table 2.

The RVE of choice is not representative of the morphology of
a real separator; as such, the numerical results are not meant to
replicate the response of a real battery separator. The RVE shown
in Fig. 4 has been selected for numerical convenience only and it
is functional to our purpose (verification of the FE2 framework).
The steady state assumption for the microscale formulation (3) is
discussed in Sec S8 in the SM with reference to the geometrical
setting considered here.
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Fig. 4. Panel (a) illustrates the problem setting. The RVE porosity is 0.5, and the
electrolyte properties are listed in Table 2. Panel (b) shows the computational
mesh for the FE2 method: 10 x 4 four-node quadrilateral elements are used for the
macroscale mesh and 204 three-node triangular elements for the RVE mesh. The
single-scale discretization in panel (c) consists of 100 x 40 unit cells, with each unit
cell discretized as the RVE.

In accordance with the galvanostatic charge process, a constant
current density Iypp and a constant lithium ion mass flux are en-
forced. In addition, the electric potential at the leftmost bound-
ary (x = 0) is set to zero as the reference value. Boundary and ini-
tial conditions are expressed as

iM'“|x:lSep = —lLpp. Pmlx=0=0, (23a)
I I

aunly, = *%’ qQun|,_o=-"2 forte (0,tenq). (23b)

and

cMm=C att=0ing, (23¢)

respectively. We apply a current density lpp = 300A/m?, equiva-
lent to a 10 C charge rate for commercial graphite-NMC battery
cells [9,58]. The initial concentration ¢y in the whole separator do-
main € is specified at 1000mol/m?3. The simulation ends at topq =
4s when steady-state is achieved. The above boundary and initial
conditions for the multiscale problem also hold for the single-scale
approach.

The results are reported in Fig. 5. Panels (a) and (c) show the
steady-state ionic concentration and electric potential distribution,
respectively, along three horizontal lines (bottom: y = 0, middle:
y=>5um, and top: y = 10um), while panels (b) and (d) show the
concentration and potential profiles, respectively, along three verti-
cal lines (leftmost: x = 0, middle: y = 12.5um, and rightmost: y =
25um). The circles represent the macroscale solution ¢y and ¢y
from the FE2 method; the solid lines denote the single-scale simu-
lation results, i.e., the intrinsic volume averages (c). and (¢),. Ini-
tially, the concentration is uniform in the x and y directions; as the
current flows, a concentration gradient starts to develop, resulting
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in a concentration decrease at the leftmost edge and a concen-
tration increase at the rightmost boundary. Since the off-diagonal
terms of the tensor of effective transport coefficients (20) are not
null (refer to (24)), both components (in x and y directions) of
the macroscopic flux qy are affected by both components of the
macroscopic gradients. It follows that, despite the insulated top
and bottom boundaries, field variable gradients develop in the y
direction to counterbalance the contribution by the off-diagonal
terms (812 and &1 in Fig. 3). A discussion about this effect is pro-
vided in Sec S9 in the SM.

Besides the steady-state profiles, we show the concentration
evolution at the middle points of the vertical edges in panel (e).
Panel (f) reports the temporal evolution of the potential drop from
point B to A and provides an indication of the ohmic loss at-
tributable to the separator. The figure shows that the multiscale
simulation results adequately match the single-scale simulation re-
sults, verifying the multiscale framework (and the scale transitions
described in Secs 2.3 and 2.4). In this example, we specifically
choose the inclination 6 = 45° for the inclusion in order to max-
imize the off-diagonal values (according to Fig. 3), causing evident
concentration and potential gradients in the y direction. The vari-
ation in the y direction is obviously not seen in the results per-
taining to the DFN model combined with Bruggeman approach
(dashed lines in all the panels).

For the morphology at hand, the evaluation of the tensor of ef-
fective transport coefficients by means of the proposed approach
leads to

(24)

0.31
§= [0.13

0.13
031

Two remarks are needed at this stage. First, the values reported
in (24) are comparable with those shown in Fig. 3b, where §;; =
822 =0.29 and 8]2 = 821 =0.11 at 6 =45° (the relative differ-
ence is approximately 7% and 15% for diagonal and off-diagonal
terms, respectively). We stress that the geometry of the transport-
blocking phase considered in this section is similar to that of
Sec 3.1.2 (aspect ratio of the ellipse is a/b = 2.5 and a/b = 3.0, re-
spectively), while the spatial distribution of the transport-blocking
phase is remarkably different (the arrangement is regular in this
section, and random in Sec 3.1.2). The effect of orientation and
shape (of transport-blocking inclusions) on the tensor of effective
transport coefficients is dominant with respect to the effect of the
spatial arrangement (recall that porosity is unchanged, € = 0.5 in
both investigations). This observation is consistent with the con-
clusion of Ebner et al. [10,47]. Second, if the off-diagonal terms of
(24) are dropped, the tensor of effective transport coefficients re-
duces to § = 0.311. Bruggeman approach with € = 0.5 leads to § ~
0.31 (refer, to Fig. S2), i.e., § ~ 0.31I (a scalar § is equivalent to
a transport property tensor with equal diagonal terms 811 = 5, =
0.31 and 813 = 85; = 0). This means that (for the morphology at
hand) any approach incapable of taking the off-diagonal terms into
account leads to a response prediction that is equivalent to that of
Bruggeman approach, and it is thus characterized by the same level
of (in)accuracy. In this regard, panels (b) and (d) in Fig. 5 show
the differences in the concentration and potential field prediction
caused by the absence of off-diagonal terms; the 27% discrepancy
in the prediction of the potential drop across the separator with
respect to single-scale and FE2 approaches shown in panel (f) is
noteworthy.

An estimate of the extent of the off-diagonal terms in
real porous battery material is provided for reference in
Appendix A (Table A.1).
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Fig. 5. Comparison between FE? calculation and single-scale simulations. Panels (a) and (c) show concentration ¢ and potential ¢, respectively, along the x direction at
y=0, 5, and 10um in the steady state (t = 4s); correspondingly, panels (b) and (d) show concentration ¢ and potential ¢ along the y direction at x = 0, 12.5, and 25um.
Here ¢ and ¢ refer to cy and ¢y for the FE2 method, ¢, and ¢y, for the DFN model with Bruggeman approach (Table 1), and the intrinsic volume averages (c), and (¢),
for the single-scale simulations. Panel (e) shows the temporal evolution of the concentration at point A and B, which are located at the center of the leftmost (x = 0) and
rightmost (x = 25m) boundaries of the separator, respectively. Panel (f) shows the temporal evolution of the potential drop A¢ from point B to A across the separator, i.e.,
the potential at point B with reference to a prescribed null potential at the leftmost boundary.

3.3. A simplified alternative strategy to the FE2 method defining effective transport properties as
The results described in Secs 3.1.1, 3.1.2 and 3.2 suggest that the Desr = De(ch) 8, and  Kegr = ke (Ch) 6, (25)
description of the most general transport processes (concentration-

dependent bulk properties and anisotropy) can be attained by where De(ch) and ke(cy) are concentration-dependent bulk prop-

erties, and using Eq. (25) in a DFN model. In this section, we as-

1
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Fig. 6. Comparison of the results obtained with the simplified alternative strategy and the concurrent FE2 approach. The problem setting is reported in Fig. 4a. The results
of the concurrent FE2 approach and the DFN model with Bruggeman approach are shown in Fig. 5a and b. The simplified alternative strategy results are obtained by solving
Eq. (16) with the effective transport properties evaluated according to Eq. (25) and the tensor & with a single microscale simulation (RVE in Fig. 4a) according to Sec 2.4 (and

the numerical implementation described in Sec S4.3 in the SM).

sess the validity of such a simplified approach by pre-computing §
with a single microscale simulation according to Sec 2.4 (and the
numerical implementation described in Sec S4.3 in the SM). To this
end, we consider the problem setting of Sec 3.2.

The results obtained with the simplified approach and those
of the FE2 method, contrasted in Fig. 6, show a perfect agree-
ment. The agreement suggests that the effective transport prop-
erties (Eq. (25) with pre-computed §) perfectly match the numer-
ical tangents in Eq. (15) computed through the FEZ and confirm
that the conclusions drawn in Sec 3.1.1 for the isotropic macro-
scopic response hold true also when the macroscopic response is
anisotropic. The results of the DFN model combined with Brugge-
man approach (dashed lines in Fig. 6) are reported to show the
outcome of a generic approach that evaluates 8;; and 8, without
taking the off-diagonal terms into account. The (erroneous) con-
clusion would be that the response is isotropic because 811 = J5».
However, the single-scale simulation show that this is not the
case. The response of the material is not isotropic because the off-
diagonal terms do not vanish in the coordinate system of choice.
This means that the coordinate system that results in &q; = 85 is
not the principal reference system. Thanks to the analogy with the
results of Sec 3.1.2 we can refer to Fig. 3c and 3 d and deduce that
the principal coordinate system, the one for which 615 = §12 =0, is
such that 811 # &,y (either for & = 0 or 90°). The macroscopic re-
sponse is actually anisotropic. The ‘simplified alternative strategy’
properly addresses the macroscopic description of the medium as
it preserves the tensorial nature of the effective transport proper-
ties.

3.4. An example with time-evolving microstructure

The examples discussed in Secs 3.2 and 3.3 assume that the
microstructure does not evolve during a (dis)charge process. How-
ever, (dis)charge processes are often accompanied with expan-
sion/contraction of the electrodes [59], leading to dynamic mi-
crostructure changes of the separator membrane [34]. Moreover,
additional deformations may be induced by external mechanical
loading [6,9]. When the separator membrane deforms, a concur-
rent porosity € and tortuosity T change takes place [9], thus af-
fecting the overall system response (recall relation (18a)). Lagadec
et al. [9] showed that when the separator membrane is subject to

12

a significant deformation level (up to 40%), the effective transport
coefficient reduces by 96% in the through-plane direction of the
separator layer, thus making the separator the limiting component
of the cell operations even at a modest C-rate of 0.75 C.

As the FE2 approach ensures that the tensorial nature of the
transport properties is correctly captured, it can be employed to
address the effect of an evolving microstructure. The FE? frame-
work presented in this contribution allows accounting for trans-
port properties changes through morphology changes in a consis-
tent manner. For simplicity, we show an example where the mi-
crostructure morphology evolves at constant porosity € = 0.5. The
macroscale problem setting is that of Sec 3.2, but the RVE con-
tains 16 ellipses. We consider two morphology evolutions with
coincident initial and final configurations, but different evolution
patterns (I and II according to Fig. 7a and b). The morphology
change is introduced by changing the aspect ratio a/b of the el-
lipses from 3 to 1/3. For each aspect ratio value, we generate 50
RVE samples and calculate the average transport properties; we
then select a RVE with transport properties that are closer to the
average values. The total simulation time (t.,q = 4s) is about three
times larger than the time required to achieve the steady state
with a non-evolving microstructure (dashed line in Fig. 7). Pattern |
and II are implemented by updating the RVE geometry at different
stages. In pattern I the RVE is updated at regular intervals of time
from t =0 to t = 4s (Fig. 7 a). In pattern II the final configuration
is attained at t = 2s and remains unchanged until t = 4s (Fig. 7 b).
Since the semi-major axes of the ellipses are always aligned with
the x and y directions (Fig. 7a and b), we stress that these direc-
tions are principal and hence the off-diagonal components (§;, and
821) are null (Fig. 3).

The temporal evolution of the maximum/minimum concentra-
tion and potential drop across the separator are plotted in Figs. 7¢
and d. The dashed lines in Fig. 7 are the results of the DFN model
combined with Bruggeman approach, which does not account for
the microstructure evolution. Figure 7c and d show that when the
microstructure evolution is disregarded, the steady-state configu-
ration is attained after roughly 1s, while both ¢ and A¢ change
during the whole process when either one of pattern I and II is
considered. A noticeable difference between the system response
under the different morphology patterns is the energy loss. The en-
ergy dissipated during the simulated process is proportional to the
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Fig. 7. FE2 simulation of a separator with time-evolving microstructure. The 4s simulation time is discretized into 21 time steps. The microstructure evolves with time
following two different patterns (I in panel (a) and II in (b)) at constant porosity equal to 0.5. Panel (c) shows the temporal evolution of the maximum and minimum
concentrations computed by the FE2 method under pattern I and Il and by the DFN model that only considers porosity. Panel (d) shows the potential drop across the
separator. Here ¢ and ¢ refer to ¢y and ¢y in the FE> method and c¢;, and ¢, in the DFN model, respectively.

integral of the potential drop (A¢, Fig. 7d) with respect to time:
pattern II dissipates 58.6% more energy than pattern I.

Since we showed that a morphology change alone influences
the macroscopic response, we envisage that an even stronger mod-
ification of the macroscopic responses should be expected if a
porosity change takes place simultaneously. We stress that even if
we considered morphology evolution histories with identical initial
and final configurations, the evolution pattern itself determines a
remarkably different system response. This consideration empha-
sizes the need to monitor the microstructure evolution (and the
consequent transport property changes) at adequately close time
instants. On-the-fly transport property simulations based on im-
aged microstructures were also encouraged by Lagadec et al. [9] for
improved understanding of local effects in energy storage applica-
tions. However, they also recognized that the deformation of the
separator is elastic (no residual deformation upon loading removal)
under low applied loadings, rendering it a challenge to image
the separator microstructure at different stages of the deforma-
tion process. Our results suggest that a multiscale electrochemical-
mechanical coupled model should be used to achieve this goal.
In particular, a coupled FE2 model would enable tracking the mi-
crostructure deformation evolution and the concurrent change of
the electrochemical response.
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4. Conclusions

We employ a FE2 framework for the investigation of ionic trans-
port in porous battery cell separators during (dis)charge processes.
The methodology allows us to consider bulk transport proper-
ties dependent on local fields (e.g., ionic concentration within the
pores of the polymeric membrane) and to account for their impact
on the system response. The approach is general and is suitable
for isotropic and anisotropic media. We show that the numerical
framework allows simulating transport processes accounting for a
concurrent change of the separator microstructure (Sec 3.4).

Simplified strategies can be used in place of the FE2 method
when microstructure deformations are negligible, i.e.,, when the
microstructure geometry does not change during the process. Un-
der these conditions, the DFN model is as accurate as the FE? strat-
egy provided that the effective transport properties properly ac-
count for the contribution of the microstructure. To this end, the
effective properties should be computed as the product of a scalar
term accounting for the dependence of bulk properties on local
fields and the tensor of effective transport coefficients §. The latter
can be identified through a single simulation performed on a RVE
of the microstructure, with a remarkable reduction of the compu-
tational effort compared to FE2 simulations.
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At the battery cell level, transport processes mainly take place
in the through-plane direction. Despite the dominant unidirection-
ality our results show that in-plane transport components are, in
general, not null. For this reason, we emphasize the need to ac-
count for the tensorial nature of § and stress that both diago-
nal and off-diagonal components are relevant for the description
of transport processes through porous battery components. Actu-
ally, if the off-diagonal components of the tensor of effective trans-
port coefficients § are arbitrarily omitted, in-plane transport com-
ponents cannot be captured, thus leading to incorrect prediction of
the macroscopic response (Sec 3.2).

In general, morphology evolution with cycling is common to
all porous components of battery cells [34]. This means that even
if the ‘as-produced’ battery component shows an isotropic macro-
scopic response, some level of anisotropy may arise with cycling. A
relationship between morphology evolution and transport proper-
ties evolution is not easy to identify and a FE2 simulation strategy
can provide a useful asset (Sec 3.4).
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Appendix A. Transport properties and degree of anisotropy

Many examples of porous battery materials with direction-
dependent effective transport properties have been documented
in literature. We consider a selection of the data reported in
Refs. [5,9,10] and evaluate the degree of anisotropy with the met-
ric o¢ introduced by Cooper et al. [4] and through the radius ry of
the Mohr's circle associated to tensor §, as suggested in Sec 3.1.2.
The transport properties that result from the microstructure con-
sidered in our numerical simulations are assessed with the same
metrics to show that their degree of anisotropy is comparable with
that of real porous battery media.

Cooper et al. [4] propose the following quantity to measure
anisotropy:

max(t;) — min(t;)

oc= ———— =, with

i=x1Y, 2z
Tc Y

(A1)
where 7; represents the tortuosity evaluated along three orthogo-
nal directions (x, y, and z) that do not necessarily coincide with the
principal axes. The characteristic tortuosity 7. is defined as

-1
1 1 1
rc=3(++> .
T T

(A2)
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Based on the investigation performed in Sec 3.1.2, we propose the
alternative measure of anisotropy

max(§;) — min(6;)

M = 5 , with i=XY, Z (A3)

where §; indicates the principal components of the tensor of effec-
tive transport coefficients; the capital letters X, Y, and Z indicate
the principal directions.

We analyze i) the microstructures considered in Sec 3.1.2 with
ellipses randomly distributed in space (insets in Fig. 3a and 3 b
shows the microstructures for the two aspect ratio values consid-
ered), and ii) the microstructure considered in Sec 3.2 (described
through the unit cell represented in Fig. 4). The following assump-
tions are made to perform the comparison:

1. We assume that the values of tortuosity provided in the ref-
erences correspond to the principal directions because none of
the references provide off-diagonal values.

2. Since we perform two-dimensional simulations, we assume
that the effective transport coefficient is equal to 1 in the di-
rection not considered in this study (we therefore use §; =
1). From a three-dimensional perspective, the two-dimensional
ion-transport blocking phases considered in this study are
equivalent to cylinders with axes parallel to the third di-
rection (z) and elliptic cross-sections. This assumption about
the third direction is needed to evaluate the measure of
anisotropy proposed by Cooper et al. [4] without modifications
to Egs. (A1) and (A.2). We stress that by setting 6, =1 we
identify the upper bound value for oc, as any other choice
of §; > min(dy, 8y) leads to smaller values of oc (i.e., to lower
degrees of anisotropy).

The results reported in Table A.1 can be summarized as fol-
lows. With the anisotropy measure o¢ (A.1), the largest value ob-
tained with our geometries is 2.56 (for randomly distributed el-
lipses with aspect ratio a/b = 3, Fig. 3b). This value is 20% larger
than the largest value reported for electrode components (2.07, for
graphite [10]) and 4.6 times smaller than the largest value reported
for separators (11.8, for PP [9]). With the anisotropy measure ry
(A.3), the largest value obtained with our geometries is 0.13 (for
regularly distributed ellipses with aspect ratio a/b = 2.5, Fig. 4).
This value is 31% larger than the largest value reported for elec-
trode components (0.09, for graphite [10]) and 46% larger than the
largest value reported for separators (0.07, for PP [9]). Our geome-
tries are definitively plausible according to the anisotropy metric
proposed by Cooper et al. [4] as their values of o¢ fall within the
range of real battery materials. Actually, the metric proposed in
this study leads to a more severe evaluation of our own geome-
tries and, in our opinion, this adds value to the metric proposed.

From this rough comparison, the outcomes of the metrics oc
and ry; appear consistent, but with some differences. Both metrics
agree about the identification of the most anisotropic material for
electrode (graphite [10]) and separator (PP [9]) components, even
if they disagree about the material that shows the highest degree
of anisotropy. A desirable feature of metric ry is that it is bounded
between 0 and 1 because each component of § ranges between
0 and 1. This can be helpful for the classification of porous bat-
tery material as it makes comparisons immediate. Further analyses
should be performed for a thorough comparison of the two met-
rics, but this falls beyond the scope of this study.

To conclude, we stress that ry; (A.3) quantifies the maximum
possible value of the off-diagonal terms of § (20) for a given
porous material (refer to Fig. 3c and 3 d). The last column of
Table A.1 shows the ratio between the maximum value achiev-
able by the off-diagonal term and the maximum principal effective
coefficient. From this estimate, we once more conclude that the
off-diagonal terms of the transport tensor are not a priori negli-
gible for real materials used in batteries. The actual value of the



M. Zhuo, D. Grazioli and A. Simone

Table A1
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Transport properties and degree of anisotropy. References [5,9,10] provide porosity € and three-dimensional tortuosity values in terms of 7y, 7y, and 7.
Relationship (18a) is used to convert tortuosity values into effective transport coefficients and vice versa.

Component material € Ty Ty T, Sx Sy Sz Tc oc ™ (;M
(A2) (A1) (A3) e

electrode [5]* LiMn, 04 0.36 8.29 2.31 4.97 0.04 0.16 0.07 3.97 1.50 0.06 0.36
LiMn, 04 0.38 6.50 2.22 3.96 0.06 0.17 0.01 3.50 1.22 0.06 0.33

electrode [10] LiCoO, 0.51 3.02 2.23 217 0.17 0.23 0.24 2.42 0.35 0.03 0.14
graphite 0.40 6.12 1.70 1.60 0.07 0.24 0.25 2.18 2.07 0.09 0.37

separator [9] PE 0.40 2.78 2.92 3.04 0.14 0.14 0.13 2.91 0.09 0.01 0.04
PP 0.35 232 3.24 48.7 0.15 0.11 0.01 3.95 11.8 0.07 0.48
this work Fig. 3cP 0.50 143 1.92 0.50 0.35 0.26 1.00 0.93 1.53 0.05¢ 0.13¢
Fig. 3d° 0.50 1.25 2.94 0.50 0.40 0.17 1.00 0.96 2.56 0.11¢ 0.29¢
Sec 3.2¢ 0.50 1.14 2.78 0.50 0.44 0.18 1.00 0.93 2.46 0.13¢ 0.30¢

2 The values from Ref. [5] are indicated with t2 therein and are consistent with relationship (18a).

b The values of 8, and 8y refer to the principal directions, with §;; = 0 for i # j according to the Mohr’s circles of Fig. 3c and 3d.

¢ The microstructure considered in Sec 3.2 is such that the orientation of the ellipse is & = 0°, and the effective coefficients are 8;; = 822 = 0.31 and 81 =
81 = 0.13 (refer to (24)). The values of 8y and §, are thus calculated as §; = 0.31 +0.13 = 0.44 and §, = 0.31 — 0.13 = 0.18 for compatibility with the other

geometries (refer to note b above).

d Calculated as (8x — 8y)/2. This is consistent with the fact that a two-dimensional framework is discussed in the manuscript. As such, the third compo-
nent §, does not play any role. In fact, the Mohr's circles shown in Fig. 3 do not take into account the contribution of the third direction. Moreover, the
off-diagonal term 8,,, that affects the results described in Sec 3.2, arises from the interaction between transport components in x and y directions only.

¢ Calculated as (1 —68,/8x)/2 for compatibility with the arguments in note d above.

off-diagonal terms depends on the orientation of the coordinate
system with respect to the principal coordinate system (the one
for which diagonal terms vanish). An estimate of the maximum
achievable value is useful because the main direction of transport
i) may not coincide with one of the principal axis, and ii) may co-
incide with one of the principal axis for the as-produced porous
component, but this might not be the case for the entire battery
life.

We assumed that the properties listed in Table A.1 refer to
the principal directions (i.e., that they have been evaluated along
the directions for which the off-diagonal terms are indeed zero).
Should this not be the case, the radius of the Mohr’s circle associ-
ated to them could be even larger, with a correspondingly higher
maximum value of the off-diagonal terms.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.electacta.2021.139045.
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