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Summary

Photonic sensors have recently attracted much attention in both industry and academia.
High accuracy, low weight and the possibility of building a large sensor network are
key benefits of photonic sensors. Another benefit is installing optical sensors in
harsh environments where electronic sensors’ usage is not plausible: aerospace
applications where ionizing radiation is present or gas and oil pipes are some ex-
amples.

Integrated photonics brings new challenges to the interrogation of multiplexed
sensors in WDM. Unlike FBG sensors, whose resonance wavelength can be cho-
sen to an accuracy better than 1.0 nm, the resonance wavelength of integrated
micro-ring resonators cannot be chosen during the design stage. The main reason
is the imperfections of the manufacturing process. The fact that the resonance
wavelength is unpredictable is a problem for interrogators based on interferome-
try. Such interrogators perform the demultiplexing and demodulation in different
stages: first, a spectrometer separates the optical channels; subsequently, outputs
of the spectrometer are conveyed to interferometers. From the photo-receiver volt-
ages connected to MZI outputs, the signal from the sensors can be demodulated.
As the resonance value of sensors cannot be determined during design, two sen-
sors may have their resonances in the same spectrometer’s channel. As a result,
the demultiplexing step fails, compromising the interrogator’s operation.

In Chapter 4 of this thesis, a new interrogation method is proposed. Much of
the effort of interferometric interrogators is to separate the spectrum of the sensors
correctly. In the Fourier Transform Interrogator, the spectrum of all sensors is sent
to an array of Mach-Zehnder interferometers (MZI) with different OPDs. Using the
output voltages from the photo-receivers attached to the MZIs, we derive a sys-
tem of non-linear equations, whose solution provides the signal from each sensor.
The demodulation and demultiplexing steps are performed simultaneously for the
Fourier interrogator, which guarantees the interrogator’s unique flexibility. On the
other hand, the computational cost is high since the system of non-linear equa-
tions is solved using Newton’s method. For each set of voltages sampled over time,
a different system of equations is obtained. Chapter 4 leaves some unanswered
questions:

1. Does the system of non-linear equations have a unique solution?
2. How many solutions are there?
3. What is the physical meaning of each of the solutions?

4. Is it possible to solve non-linear systems of equations for fast sensors in real-
time?



X Summary

All these questions are answered in Chapter 5. As a consequence of the new
algebraic formulation, it is possible to solve about 1 000 000 algebraic systems of
equations in 10 ns, i.e., allowing the real-time interrogation of high-speed sensors.
The interrogator is a candidate for interrogating arrays of ultrasound ring resonator
sensors in the tens of MHz range.



Samenvatting

Fotonische sensoren krijgen de laatste tijd veel aandacht in zowel de industrie als
de academische wereld. Hoge nauwkeurigheid, laag gewicht en de mogelijkheid
om een groot sensornetwerk te bouwen zijn belangrijke voordelen van fotonische
sensoren. Een ander voordeel is het installeren van optische sensoren in onbew-
erkte omgevingen waar het gebruik van elektronische sensoren niet aannemelijk is:
ruimtevaarttoepassingen waar ioniserende straling aanwezig is of gas- en olielei-
dingen zijn enkele voorbeelden.

Geintegreerde fotonica brengt nieuwe uitdagingen voor de ondervraging van ge-
multiplexte sensoren in WDM (wavelength division multiplexing) met zich mee. In
tegenstelling tot Fiber Bragg-sensoren (FBG-sensoren), waarvan de resonantiegolflengte
kan worden gekozen met een nauwkeurigheid die beter is dan 1,0 nm, kan de
resonantiegolflengte van geintegreerde microring resonators niet worden gekozen
tijdens de ontwerpfase. De belangrijkste redenen zijn de onvolkomenheden van
het productieproces. Het feit dat de resonantiegolflengte onvoorspelbaar is, is een
probleem voor ondervragers op basis van interferometrie. Dergelijke ondervragin-
gen voeren de demultiplexing en demodulatie uit in verschillende fasen: eerst
scheidt een spectrometer de optische kanalen; Daarna worden de outputs van de
spectrometer getransporteerd naar interferometers. Van de foto-ontvanger span-
ningen die zijn aangesloten op de MZI-uitgangen, kan het signaal van de sensoren
worden gedemoduleerd. Omdat de resonantiewaarde van sensoren tijdens het on-
twerp niet kan worden bepaald, kunnen twee sensoren hun resonantie in hetzelfde
spectrometerkanaal hebben. Als resultaat mislukt dan de demultiplexingstap, waar-
door de werking van de ondervrager in gevaar komt.

In hoofdstuk 4 van dit proefschrift wordt een nieuwe ondervragingsmethode
voorgesteld. Een groot deel van de inspanning van interferometrische ondervragers
is om het spectrum van de sensoren correct te scheiden. In de Fourier Transform
Interrogator wordt het spectrum van alle sensoren naar een reeks Mach-Zehnder-
interferometers (MZI) met verschillende OPD’s gestuurd. Met behulp van de uit-
gangsspanningen van de foto-ontvangers die aan de MZI’s zijn bevestigd, leiden
we

een systeem van niet-lineaire vergelijkingen af, waarvan de oplossing het sig-
naal van elke sensor levert. De demodulatie- en demultiplexingstappen worden
gelijktijdig uitgevoerd voor de Fourier-ondervrager, wat de unieke flexibiliteit van
de ondervrager garandeert. Aan de andere kant zijn de rekenkosten hoog omdat
het stelsel van niet- lineaire vergelijkingen wordt opgelost met behulp van de meth-
ode van Newton. Voor elke set spanningen die in de loop der tijd is bemonsterd,
wordt een ander systeem van vergelijkingen verkregen. Hoofdstuk 4 laat een aantal
onbeantwoorde vragen achter:

Xi
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1. Heeft het stelsel van niet-lineaire vergelijkingen een unieke oplossing?
Hoeveel oplossingen zijn er?

Wat is de fysieke betekenis van elk van de oplossingen?

B owoN

Is het mogelijk om niet-lineaire stelsels van vergelijkingen voor snelle sen-
soren in realtime op te lossen?

Al deze vragen worden beantwoord in Hoofdstuk 5. Als gevolg van de nieuwe al-
gebraische formulering is het mogelijk om ongeveer 1 miljoen algebraische stelsels
van vergelijkingen in 10 ns op te lossen, d.w.z. de real-time ondervragen van
hogesnelheidssensoren mogelijk te maken. De ondervrager is een kandidaat voor
het ondervragen van arrays van ultrasone ring resonator sensoren.



Introduction

This thesis focuses on the interrogation of photonic sensors. The goal of this
Chapter is to introduce the principles of photonic sensors and some basic
concepts of the different interrogation methods. The key idea is that the sen-
sors work as modulators, encoding the external signal to be sensed into one
of the fundamental properties of light such as amplitude, phase or polariza-
tion phase. The interrogators, in contrast, work as demodulators and de-
multiplexers: they separate the information of each sensor and convert the
modulated light signal into an understandable value, in general, proportional
to the intensity of the external signal. The thesis is divided into three parts:
Chapters 1 and 2 introduce the key concepts, Chapter 3 presents the demod-
ulation of a ring resonator sensor using a Mach-Zehnder interferometer, while
in Chapters 4 and 5 a new interrogation method based on Fourier transform
spectroscopy is proposed.

1.1. Preface

Photonic sensors, sensors based on light technology, have recently attracted much
attention in industry and academia. They can offer high accuracy, low weight and
the possibility of building an extensive sensor network. Photonic sensors can be
employed in various situations and can be used in harsh environments where elec-
tronic sensors are not suitable [1]. Sahota et al. identify [2] two main types of
photonic sensors: distributed sensors in which a certain quantity is continuously
sensed along a fiber optic cable; and point sensors at which a quantity is sensed at
the specific position where the sensor is located. As an example of the application
of distributed sensors, Schenanto et al. [3] reviews OTDR and OFDR techniques
for geo-hydrological applications. Attention is given in this thesis to point sensors
such as on FBG (fiber Bragg gratings) and integrated sensors. The spectrum of the
sensors is assumed to be finite and so that it can be multiplexed using wavelength
division multiplexing techniques (WDM).
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The fiber Bragg gratings (FBGs) have been first fabricated and characterized
at the end of the 1970s [4]. As detailed in Section 1.2.2, it consists of a peri-
odic modulation of the refractive index of the fiber's core, resulting in a dip into
the transmission spectrum and a peak in the reflection spectrum. The reflection
spectrum peak is modulated according to the applied strain or stress or any other
signal to be sensed [2]. FBG sensors can be easily multiplexed in a large WDM
network, forming quasi-distributed sensors. They are typically employed as strain
and temperature sensors in different situations, such as structural health monitor-
ing [5] and the oil industry [6]. Other examples of FBGs sensors application are in
acoustic sensing [7, 8], shape sensing [9-11], pH-sensing [1], and for monitoring
geohazards, landslides and Debris flows [12, 13].

The idea of fabricating optical components on chips date from the 1960s [14].
Integrated photonics allowed the development of a novel generation of sensors
and interrogators. Examples of applications are gas sensing [15, 16], strain sens-
ing [17, 18], biosensing [19-21]. In the health care field, possible applications are
ultrasound intravascular imaging [22, 23] and photoacoustic imaging [24]. While
most FOS are made of silica, integrated sensors can be manufactured using dif-
ferent waveguide materials. Silicon [25, 26], silicon nitride [27], and indium phos-
phide [14] are the most common materials used in photonic integrated circuits
(PIC). The recent rise in work with PICs can be mainly explained by [14]: (a) the
maturity of the fabrication process, both for CMOS platforms (silicon and silicon
nitride) and InP; (b) the availability of building blocks, i.e. a list of integrated com-
ponents usually provided by the foundry (or by a third party) which have been
fabricated and tested multiple times and can be easily added to the design. Most
foundries provide designs of input/output couplers, beam splitters, and if active
components are available, photodetectors, modulators or light amplifiers (for III-
V semiconductors); (c) the possibility of fabrication under the multi-project wafer
(MPW) regime, in which multiple users share the same wafer, reducing the fabri-
cation costs.

The field of Silicon photonics and silicon photonics sensors is currently under
intensive research [28]. The material is transparent at 1550 nm, and PICs based
on silicon-on-insulator (SOI) technology feature a high refractive index contrast be-
tween the waveguide core and cladding (it can be as high as 2). The larger the
refractive index contrast is, the more the light is confined within the waveguide
core, allowing an overall reduction of the footprint of the components. Therefore,
many integrated sensors can be fabricated in a single die. In contrast, the design
of thermally insensitive devices is challenging due to the large thermo-optical co-
efficients compared to other materials (silicon nitride, for instance). The drift of
the sensor’s resonance wavelength induced by temperature variations is typically
compensated using another integrated temperature sensor as reference [29, 30].
Components such as modulators based on the drift and diffusion of free carriers
or germanium photodetectors, which are useful for the design of interrogators, are
available and can be integrated into a Si platform. Monolithic light sources in silicon
(electrically pumped) is challenging due to silicon indirect bandgap, although much
progress has been made in hybrid Si/III-V integrated circuits [31] and in silicon
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Raman lasers [32].

One of the key properties of indium phosphide and other III-V semiconductors
is its direct bandgap, allowing for the design of active components. High-quality
semiconductor optical amplifiers, continuous [33, 34] and pulsed lasers [35, 36]
have already been demonstrated in integrated InP chips. Compared to silicon, the
footprints of the components are much larger due to a reduced contrast between
the core and cladding materials'. Since fully passive sensors are often desirable,
the platform faces strong competition from silicon and silicon nitride in the de-
sign of passive sensors. Nevertheless, InP is quite an attractive platform for the
development of interrogators, as will be demonstrated in Chapters 4 and 5. In ap-
plications where active sensors are desirable, such as optical gyroscopes [37], InP
is a promising platform.

Finally, silicon nitride features reduced thermo-optical coefficients compared to
Silicon and InP, allowing for the design of nearly thermally insensitive sensors. The
material is transparent from 400 nm — 3700 nm, making the platform flexible. Prop-
agation losses in silicon nitride waveguides as low as 2.25 dB/cm (at 1 =532 nm),
0.04 dB/cm (at 2 =1550 nm), 0.16 dB/ cm (at 2 =2630 nm) and 2.10 dB/cm (at
A =3700 nm) have been reported [38, 39]. In addition, the refractive index contrast
is high compared to other platforms such as InP and silica, enabling the fabrication
of devices with a reduced footprint. Although high-speed modulators? and pho-
todetectors are not available in the silicon nitride platform (or its development is
in an early stage), the material is compatible with the CMOS fabrication process.
Thus, silicon nitride can to monolithically integrated with silicon platform [40, 41].

Integrated photonic technology provides large flexibility in designing photonic
sensors based on different components. For instance, Hallynck et. al. [17] com-
pare the performance of a ring resonator (RR) and Mach-Zehnder photonic sensors,
Rosenthal [42] demonstrates an ultrasound sensor based on integrated Bragg grat-
ings and Tadayon [43] shows the characterization of a polymer high-Q integrated
Fabry-Perot cavity, which can be used as a sensor. This work focuses on RRs, es-
pecially in Chapter 3, where the interrogation of an ultrasound sensor based on an
integrated silicon RR is demonstrated. Similarly to FBGs, the transmission spectrum
of the RR is a peak (or a dip depending on the output port) whose resonance is
modulated according to the intensity of the external signal.

1.2. Principle of photonic sensors based on ring res-

onators and on Fiber bragg gratings
Dutta et al [44] classified photonic sensors into three categories according to their
external excitation signal type: (a) Physical sensors, which detect physical proper-
ties such as temperature, strain, ultrasound or acceleration, (b) chemical sensors,

LAn InP deep etch waveguide fabricated in the COBRA/Smart Photonics foundry (see Fig. 4.1(c) in
Chapter 4) features a high lateral refractive index contrast between InP core waveguide(3.367) and a
polymer (1.5) and a low vertical refractive index contrast between the InP layers (3.367 and 3.17). As
a result, a low loss 90° bend has a radius of about 100 um, while in silicon, this radius is 5 um, 20
times smaller.

2Thermal based modulators are available in silicon nitride.
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which detect the concentration of chemical species or gases and (c) biosensors,
used to determine concentrations of biological media such as bacteria, viruses or
antibodies [19-21]. Photonic sensors act as modulators, in which the signal to be
sensed is encoded in one of the fundamental properties of the input light signal,
such as the amplitude, wavelength, phase or polarization phase. For the sensors
of interest here, the signal to be sensed does not directly interact with the light
signal’® but with the waveguide materials instead. Fig. 1.1(a) shows a schematic of
a situation where a section of a waveguide is exposed to an external signal which
induces a modulation of the refractive index of the waveguide materials and of the
length L. As shown in the following subsections, this yields a modulation of the
resonance wavelengths for RR sensors and FBGs. For instance, Zhang et al. [46]
reported an ultrasound sensor whose refractive index changes according to the in-
tensity of an ultrasound wave. Westerveld and Leinders [18, 22] report a strain
and ultrasound sensor in which the waveguide is elongated and the refractive in-
dex changes according to the pressure. [19, 20] reports several types of label-free
biosensors whose waveguide refractive index changes according to the presence of
relevant biochemical materials.

1.2.1. Ring Resonators

Ring resonators (RRs) are photonic components widely used as sensors. The struc-
ture of a RR is shown in Fig. 1.1: it consists of a waveguide loop connected to
itself (usually in a ring shape) where light is coupled via evanescent fields. Fig. 1.1
shows two input ports of the ring (input port and add port, the second one is not
used for sensor applications) and two output ports (pass port and drop port). The
transmission spectrum of the ring resonator pass ports and drop ports [47] is given
by:

r? +r?a® — 2r2acosé

1+ r*a? — 2r2acosf’
a(l—1r?)?

1 —2r2acos@ + r*a?’

Tpass =

Tdrop = (1.1)
where 7 is the coupling coefficient from the waveguide to the ring, a is the single
round-trip amplitude transmission and @is the accumulated phase along the length
L, given by:

21

0= TneffL’ (12)

where L is the ring length, n.., the waveguide effective index and A the optical
wavelength. The resonance condition is defined as:

OP = neffL = m/lr, (1.3)

where OP is the optical path length within the ring, m is an integer and 4, is the
resonance wavelength. If the resonance condition is satisfied, i.e., the optical path

3In some sensors such as gas sensors [45] the sensing is based on light absorption. Thus, the signal to
be sensed interacts directly with the light.
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is an integer multiple of the wavelength, the optical field interferes constructively
within the ring. Mathematically, this occurs when 8 = m2m, leading to cos(8) = 1
in Eq. (1.1), which results in a peak at the drop port and a dip in the pass port as
as shown in the Fig. 1.1(b). The RR spectrum features multiple resonances in the
C-band.” As explained in Chapter 2, this is an issue when multiplexing an array
of RR sensors in the wavelength domain. Claes et al. [48] solves this issue using
another RR as an optical filter (See Section 2.1 for further details). The spectral
distance between two dips (or two peaks) is defined by the free spectral range,
given by:

(1.4)

where A,. is one of the resonances and n, the effective group index of the waveguide
of the ring. Eq. (1.4) implicitly assumes that the RR waveguides are monomaode,
which is the case of most RR sensors. A multimode waveguide would introduce
undesirable extra resonances.

The external excitation signal x.,; (which could be pressure, temperature, the
concentration of a chemical substance, or any other signal to be sensed) may
change the ring length L or the refractive indices of the waveguide materials, caus-
ing the effective index to change. By deriving the resonance condition (Eq. (1.3))
with respect to the external excitation, we obtain:

1 dneff dL
Al = —|(L —— | Axpyt- 1.5
T m ( dxext +neff dxext Xext ( )

For strain and ultrasound sensors, according to Westerveld [18], the two terms in
Eqg. (1.5) have opposite signs, but dL/dx.,; is dominant. The effective index can

be written as:
Meff = z Tjnj, (1.6)
j

where n; is the refractive index of the ring j-th material and T; is the confinement
factor of light in the j-th material, defined as [49]:

_ [ [0 E(x,y) - E*(x,y)dxdy
f—oooo f—oooo E(x' y) : E*(X, y)dxdy'

where 9Q s the area of the waveguide cross-section occupied by the j-th material
and E(x, y) is the electric field. Differentiating Eq. (1.6) with respect to the external

signal, we obtain:
I n; +I—— (1.8)
0Xext 7 0Xext J ]axext

4The optical conventional band (C-band) ranges from 1530 nm to 1565 nm and corresponds to the gain
bandwidth of erbium-doped fiber amplifiers.
5In the following derivation, optical dispersion is neglected. For a complete analysis, see [18].

; (1.7)
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Placing Eq. (1.8) into Eq. (1.5):

A= LZ( AV anj)+ i Y (1.9)
= — —nNn; i n — | Xyt .
m 7 axext / / axext err dxext ext

For most chemical and biological sensors, the dL/dx,,; term is zero, and the
resonance wavelength depends only on the variation of the refractive indices. Typ-
ically, the waveguide of the core material remains unchanged, while one of the
cladding materials is designed to sense the specific biological or chemical compo-
nent, as reported in [19, 20]. For strain, acoustic and acceleration sensors, all the
terms of Eq. (1.9) are non-zero: the elasto-optical effect induces a modification of
the refractive indices while the local strain changes the waveguide length and width.
The change of the waveguide width alters the waveguide cross-section and induces
changes in the confinement factor, according to the term see the term drI'/dx,,;,
as seen in Eqg. (1.9).

1.2.2. Fiber Bragg gratings

Photonic sensors based on FBG components are widely used nowadays and have
many applications in industry. The fabrication of the first gratings dates from the
late 1970s [4], but a major improvement on the FBG fabrication process is achieved
in the end of the 1980s. Meltz et. al. [50] reported in 1989 the fabrication of a
grating within the fiber using the interference of a monochromatic UV light source.
As a result, a periodic modulation of the refractive index of the fiber core was
obtained. Here, the refractive index modulation is modelled as a single harmonic

function:
2
’[T\m z>] , (1.10)

where §n is the refractive index modulation, z is the coordinate corresponding to the
light propagation direction, A is the grating period, An is the average refractive index
within a grating period, v, is the visibility of the refractive index modulation and
m is the grating diffraction order (typically m = 1). The variation in the refractive
index is in the order of 107> to 1073 [51] and causes the input light signal to
be continuously reflected along the grating. Thus, two optical beams propagate
simultaneously through the FBG: a forward beam, which propagates in the direction
of the input signal, and a backward beam, induced by the grating reflections. The
fiber is assumed to be monomode. It can be shown using coupled-mode theory
that the reflection spectrum for an uniform fiber Bragg grating is given by [52, 53]:

sn(z) = An [1 + (v,/2) cos<

k|2 sinh®(/|x|? — A(A)?L)

Rppg(A) = , (1.11)
ree |2 cosh? (/[i2 = A2 ) — A(A)?
where
AQY) = 2n An + 2 t_1 1.12
L= 7 VpAn + 2mnep g 1) (1.12)
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ness is the effective index of the LP,; mode and « is the coupling coefficient of the
forward and backward propagating modes, defined by the overlapping integral:

oo oo v E i
K= wneffgof J- nTELPm(X,}’)ELPm (x,y)dxdy, (1.13)

where ¢, is the vacuum permittivity, w the angular frequency, and Eppg1(x,y) is
the normalized transversal component of the LPy,. The reflection spectrum Rpp; (1)
has a peak lineshape as shown in Fig. 1.1(c). A, is defined as the wavelength at
which the reflection spectrum has a maximum, which occurs for A = 0in Eq. (1.12):

iy v L_1)p (1.14)
}lr vpan T[neff Ar /,{B = U. .
Isolating 4, in Eq. (1.14), we obtain:
An
A = g (1 4 "), (1.15)
Nefs

where Az = 2An, is the so-called Bragg wavelength® In contrast to RRs, FBGs
have a single resonance in the whole optical C-band. They can be used as opti-
cal filters by extracting the wavelengths close to A, from the input spectrum. In
contrast, FBGs can be used as sensors by modulating 2, with an external signal
Xext- REpeating the steps performed for the RR, Eq. (1.15) is derived with respect

to xexe:
. oA, 925
—Axpy = mAxext. (116)
ex

By substituting in the definition of Az = 2n,sfA:

oA 6neff

AL, =2 — AxX gyt 1.17

T neff axext + axext Xext ( )

The two terms in Eq. (1.17) have opposite signs, but azA is dominant for strain

ext
sensors [51]. ‘;Zﬂ is dominant for temperature sensors [54] (the thermal expan-
ext
oA

sion causes

to be different than zero).

Xext

1.3. Thesis outline

In this Chapter, thus far, the basic concepts of photonic sensing have been intro-
duced. Photonic sensors work as modulators, which encode the external excitation
into the light signal in the sensor. Interrogators, in contrast, work as demodulators
and demultiplexers.

6SSome authors refer to the Bragg wavelength as the wavelength at which Rpgg (1) is maximum. Here,
we keep the notation of [52], where A5 = 2An,s. A, reduces to Ag as An tends to zero.
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Figure 1.1: (a) Schematic of a waveguide section which is exposed to sense an external signal. (b)
Schematic of a RR sensor. On the left, the input, the pass and the drop ports are shown. On the right,
the typical spectra of the drop and pass ports are shown. (c) Schematic of an FBG sensor. The illustration
on the top shows the cladding and the core of the fiber. The FBG refractive index modulation, which is
also exposed to the external excitation, is also shown. On the lower left, the cross-section of the fiber
is shown. On the lower right, typical reflection and transmission spectra are shown.
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Chapter 2 provides an overview of the different interrogation techniques in
the wavelength domain. The interrogation methods are classified into three main
groups: induced power modulation and edge filter interrogators, interrogators
based on spectrometers and interrogators based on interferometry. The basic oper-
ation principle for each case is presented. The different interrogators are compared
based on five different parameters, all defined in Chapter 2: maximum interroga-
tion resolution, sensitivity, dynamical range/ wavelength operation range, maxi-
mum speed, and flexibility. Special attention is given to interferometric techniques
in order to introduce the concepts used in Chapters 3-5.

In Chapter 3, the interrogation of an ultrasound sensor based on a RR sensor
using a Mach-Zehnder interferometer is detailed. The basic concepts of interfer-
ometric interrogation for a single sensor are introduced, and no demultiplexing is
performed. In order to calibrate the interrogation method, an induced power mod-
ulation interrogator, described in Chapter 2, is used. The appendix of Chapter 3
provides the key ingredients and an inspiration for the Fourier transform interroga-
tor.

In Chapter 4, the method presented in Chapter 3 is generalized, and a novel
interrogation method is proposed based on an integrated Fourier transform spec-
trometer. It is demonstrated that the number of interferometers needed is only
as many as the number of sensors, which results in a reduced footprint device.
Although the spectrometer features a reduced spectral resolution (about 50 pm)
compared to other integrated FT-spectrometers, signal excursions as small as 400
fm could be demodulated, two orders of magnitude lower than other integrated
FT-spectrometers.

In Chapter 5, the non-linear equations proposed in Chapter 4 are solved us-
ing semi-analytical methods. Under the transformation z, = exp [i(®) — P,ef)],
where @, is a phase which encodes the external signal detected by the k-th sensor
and &, a constant, an algebraic system of polynomials have been obtained. To
solve it, we compute the Grobner basis of the polynomial ideal using a lexicograph-
ical order, resulting in an algebraic system which can be easily solved. However,
the algebraic system features multiple solution sets per instant of time where, in
general, only one of them gives the actual modulation provided by the external
signal. The algebraic equations have been solved using a graphical processing unit,
resulting in a processing time per equation of about 9 ns. This allows for real-
time interrogation of high-speed sensors such as an array of ring based ultrasound
sensors. A conclusion is presented in Chapter 6.
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Review of the most common
methods for interrogating
photonic sensors

In this Chapter, a brief review of the different interrogation techniques is
presented. The spectra of the sensors are assumed to be finite, typically
with a peak lineshape, so that the photonic sensors can be multiplexed in
the wavelength domain. The interrogation methods are classified here into
three main groups: induced power modulation and edge filter interrogators,
interrogators based on spectrometers and interrogators based on interfer-
ometry. Despite the simplicity of induced power modulation and edge filter
interrogators, they usually feature a limited dynamic range. Moreover, these
interrogators may introduce distortions in the interrogated signal due to non-
linear components. Spectrometer based interrogators feature a high interro-
gation resolution, are pretty flexible but usually limited to reduced speeds.
Finally, interferometric interrogators feature high-resolution and can be used
to demodulate high-speed sensors. As explained along with this Chapter,
the performance of interrogators based on interferometry can be strongly af-
fected by variations of resonance wavelength of the sensors introduced by
the fabrication process.

2.1. Review introduction

One of the key benefits of sensors based on photonic technology is the possibility
of multiplexing them and building a large sensor network. Many applications re-
quire an extensive array of sensors. For instance, for structure-health monitoring
applications, which aim to evaluate the degradation of structures such as buildings
or bridges, Xiao Wei et al.[1] and Dai et al. [2] perform the interrogation of 64 and
100 FBG sensors. Larger sensor networks are presented by Hu et. al [3] and Wang
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et. al[4], who report the interrogation of 843 and 1000 FBG sensors. There are dif-
ferent techniques described in the literature to multiplex photonic sensors, and the
most common approaches are time-division and wavelength division multiplexing.
Refs. [5—7] demonstrated that a combination of these techniques could be used in
order to accommodate more sensors in the network.

Fig. 2.1 shows three schemes for interrogating FBG and ring resonator sensors
using Wavelength Division Multiplexing (WDM) [5, 8]. The optical source used to
illuminate the photonic sensors is typically broadband, but tunable coherent sources
can also be used (see Section 2.4.2). The key idea of WDM is to keep the resonance
wavelengths of the photonic sensors sufficiently separated so that their combined
output spectra do not overlap, as shown in Fig. 2.1 (d). As discussed along with the
Chapter, the different interrogators provide a different tolerance to how close the
resonance wavelengths can be to each other. A typical scheme for interrogating
FBG sensors is shown in Fig. 2.1 (a) [5, 8-10]: the light signal from the source
is conveyed, using a circulator, to the FBGs, and their reflection is sent to the
interrogator. For ring resonators, the input optical signal is sent to the ring input
port, and the signal from the ring pass port (see Fig. 2.1 (b)) [11-13] or by the
drop port [14] is collected and conveyed to the interrogator (see Fig. 2.1 (c)). RRs
have a finite spectrum, and multiple resonances may occur within the C-band. In
Chapter 3, an FBG is employed as an optical filter to select the spectrum from a
single resonance. Fig. 2.1(d) shows an example of the combined spectrum S(4,t)
for K photonic sensors, which can be written as:

K

S = ) 5@ = A (0)) 2.1)

k

where K is the number of sensors and s, (1) is the lineshape of the output spec-
trum ! of the k-th photonic sensor centred at the resonance wavelength 4, (t).
The resonance wavelength of the sensor is modulated according to the intensity
of the external signal to be sensed. S(4,t) is conveyed to the interrogator, which
determines the resonances A, ,(t) as a function of time.

A schematic of time-division multiplexing (TDM) is shown in Fig. 2.2. Instead
of illuminating the photonic sensors with a continuous light signal, optical pulses
are sent to a photonic sensor array, which are typically FBGs. The source can be
either coherent [4, 5, 7, 8] or broadband [2, 15, 16]. In order to generate the
pulses, an optical intensity modulator (OIM) is coupled to the output of the optical
source. The OIM works as an optical switch that blocks or allows the transmission
of the optical signal depending on an external voltage applied to it. The OIM is
kept in its off state most of the time, except for a short period when it allows the
transmission of the light signal, producing a pulse. The fiber couplers, shown in
Fig. 2.2, split the input pulse into K pulses, which are subsequently sent to the K
photonic sensors. The resonance wavelengths of the photonic sensors (without the
excitation of an external signal) are typically the same unless the sensor network

1For FBGs, the output spectrum refers to the reflected spectrum. The output spectrum for arrays of ring
resonator sensors may refer to the drop or the through port, according to the ring array design.
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Figure 2.1: Schematic of the wavelength division multiplexing (WDM). The spectrum of each sensor
must be limited so that resonances can be accommodated in the wavelength domain without overlap.
Different interrogators have different tolerances about how distant the resonances must be kept apart.
(a) Interrogation of an FBG array. (b) Interrogation of an array of ring resonators, connected via the
through port. In this case, the combined spectrum is an array of dips, as explained in Chapter 1. (c)
Interrogation of an array of ring resonators connected via the pass port. The combined spectrum is an
array of peaks. (d) Example of the combined spectrum of the sensors.
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Figure 2.2: Schematic of the time-division multiplexing of the photonic sensors. A pulse coming from
the optical source is divided in K pulses using the fiber couplers. The fiber lengths L, (k = 1,..,K),
through which the K pulses travels, must be sufficiently large so that the recombined optical signal does
not overlap in the time domain.

is designed in such a way as to combine TDM and WDM methods [6, 7]. The k-th
photonic sensor encodes the information of the external signal into the k-th part of
the original pulse. The output pulses from the photonic sensors are then conveyed
to the interrogator.

For TDM to work correctly, the duration of the pulses must be sufficiently short,
and the distance L, (shown in Fig. 2.2), through which the light pulse travels, is
sufficiently large. L, amounts about a few meters, while the pulse durations are of
the order of ns [2, 4, 16]. Thus, the optical pulses travelling back from the photonic
sensors can be recombined without overlap, allowing the interrogator to perform
the demultiplexing properly. Moreover, ultra-low reflectivities (-35 dB in [3] and -40
dB in [4]) have been reported, reducing multiple reflections in between the FBGs
and the cross-talk among the sensors.

In this Chapter, a review of the different interrogation techniques is presented.
Although the sensors are assumed to be multiplexed in the WDM scheme, the
interrogators presented in Chapters 3, 4 and 5 can be operated using the TDM
approach. The choice of the proper interrogation method depends on the proper-
ties of the photonic sensors: as discussed in the following sections, sensor speed,
dynamic range and sensitivity strongly depend on the interrogation method.

2.2. Criteria of analysis of WDM photonic interroga-

tors

As discussed in Chapter 1, the goal of the interrogator is to determine the resonance
wavelength of the photonic sensors as a function of time. The interrogation meth-
ods were classified into three main groups: induced power modulation and edge
filter interrogators, interrogators based on spectrometers and interrogators based
on interferometry. In order to better compare the different interrogation methods,
the following parameters are introduced [17]:

¢ Interrogator resolution. Let s, (1) be defined as the lineshape of the out-
put spectrum of k-th photonic sensor. The external excitation sensed causes
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the s, (1) to be shifted to s, (1 + A1), where A is the resonance wavelength
shift. The resolution is the minimum value of A1 which the interrogator can
resolve.

« Interrogator sensitivity.” Defined by the derivative dy/dx,,,, where y
is one of the interrogator output parameters. For edge and induced power
modulation interrogators, y is the interrogator output voltage. For interfero-
metric sensors, the signal is encoded in a phase ®(t) of the complex voltage:
V ~ exp (i®(t)); thus y = &(t) and the sensitivity is given by dd/dx,,,
(see Section 2.5 for details). For interrogators based on spectrometers, this
parameter is defined according to the post-processing algorithm used (see
Sections 2.4).

¢ Interrogator Dynamic range. The range of values that the interrogator
can resolve. For temperature sensors, the dynamic range is defined by the
minimum and maximum temperature, which the interrogator can evaluate.
The sensor properties typically determine the dynamic range. However, since
interrogators may limit the dynamic sensor range, it is worth defining an over-
all dynamic range for sensors and interrogators. °

* Wavelength operation range. The range of resonance wavelength val-
ues which the interrogator can retrieve for each sensor. Since the resonance
wavelength is assumed to be linearly related to the external excitation, the dy-
namic range is defined by the sensor sensitivity and the wavelength operation
range. *

» Interrogator response time and speed. It is defined as the response
time from which the interrogator takes to react from the external excitation.
Specifically, [17] defines this parameter as the time taken by interrogator
output to reach a certain level of the stable value (95 %, for instance) when
exposed to the signal to be sensed. A high-speed interrogator features a short
response time.

¢ Flexibility. The interrogator tolerance concerning variations in the sensor pa-
rameter. In some cases, the interrogators expect the resonance wavelengths
and the FWHM of the sensor to operate around certain pre-established val-
ues. It describes how the interrogator may handle variations in the sensor
parameters.

2Sensor sensitivity is a different parameter. For photonic sensors such as rings and FBGs, the sensitivity
is defined as 04, /0x.y:, Where A, is the resonance wavelength shift.

3Some authors [18] define the dynamic range as the ratio of the maximum and minimum value that can
be resolved. Here, we use the definition presented by [17].

4Some authors (See Fig. 4 of [19]) use this parameter as wavelength dynamic range. Here, dynamic
range refers to the range of values the signal to be sensed, according to to [17] .
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2.3. Induced power modulation and edge filter in-

terrogators

The principle of interrogators based on induced power modulation and edge filter
interrogators is to convert the modulation of the resonance wavelength into optical
intensity modulation. The voltage obtained by the photoreceivers ° is assumed to
be linear related or can be linearized to the resonance wavelength of the sensors.
Fig. 2.3 shows on the top an interrogator based on laser-induced power modulation,
while on the bottom, an interrogator based on edge filtering. Induced power mod-
ulation and edge filter interrogators do not provide any mechanism to demultiplex
photonic sensors. Thus, a WDM filter or a dispersive spectrometer (see Section 2.4)
should be used in combination with the interrogators for this purpose.

2.3.1. Interrogation based on laser-induced power modulation
Fig. 2.3(a) shows a schematic of an interrogator based on laser-induced power
modulation, in which a tunable laser is used as the optical source. The method is
used by Refs [11, 12, 20-22] and also here in Chapter 3 [23]. The laser wavelength
is set at the flank of the photonic sensor spectrum, where the sensor lineshape is
typically linear. As an external signal modulates the resonance wavelength of the
photonic sensor, a power modulation is imprinted onto the light signal as indicated
in the scheme of Fig. 2.3(a). The output optical signal is sent to a photoreceiver.
The photoreceiver output voltage vy, (t) is given by:

Upp (t) = griaRpnPos (Ao + AA(D)), (2.2)

where gr;4 is the photoreceiver transimpedance gain, R,, is the photodetector
responsivity, P, the laser power, 1, the laser wavelength and s(1) the spectrum
of the sensor. The external signal to be sensed induces the spectrum s(1) to be
shifted to s(1 + AA(t)), where AA(t) is the resonance wavelength modulation. By
expanding the function s(1 + AA(t)) in a Taylor series around A = A,, Eq. (2.2) can
be rewritten as:

as(A)

Vpp (£) = griaRpnPo [s(Ao) + AA(L) a1

+ O(A/'l(t)z)], (2.3)
A=1,

By rearranging Eq. (2.3), we obtain:

ds()
Avpp () = vpp () — gr1aRpnPos(Ao) = DA() griaRpnFo o1

(2.4)
A=1o

Thus, the resonance wavelength modulation is proportional to the modulation of
the detected voltage Avpp (). Eqg. (2.4) can be simplified by differentiating both
sides of Eg. (2.2) with respect to the laser wavelength, in absence of an external
excitation (Ax = 0):
0vpp(4) ds(1)
I;} = ‘ng,quhpo—a/1 ) (2.5)

3A transimpedance amplifier(TIA) is usually connected to the output of the photodetectors. Here, the
photoreceiver is the set photodector+TIA.
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as() _ ds(A+AA(D)

where we assumed that around 1,. The function vy, (1) can be

easily obtained by sweeping the laser wavelength along the spectrum of the pho-
tonic sensor and by recording the photoreceiver output. Substituting Eq. (2.5)(for
A =1p) into Eq. (2.4):
AA(E)
AUPD(t) = W (26)
04 =21,

Eqg. (2.6) does not depend on the photoreceiver parameters gr;, and R, or on the
applied laser power.

The main advantage of the technique is its simplicity since it only requires a
photodetector and a tunable laser. As long as the laser power is sufficiently high,
a high interrogation resolution can be achieved. Since the interrogator speed is
limited only by the speed of the electronics, high-speed photonic sensors can be
demodulated using this technique, such as ultrasound sensors [11, 12, 21, 22]. On
the other hand, the main disadvantage of this method is that the technique limits
the dynamic range of the sensor. As the modulation of the resonance wavelength
increases, the relation between Avp, and AA,.(t) becomes non-linear, and the non-
linear terms can be compensated only up to a certain extent.

2.3.2. Interrogation based on edge filtering

Examples of edge-filter interrogators are provided by [19, 24-28]. A schematic of
the edge filtering method is shown in Fig. 2.3(b). Instead of using a monochromatic
light source as in the previous case, this method employs a broadband source. The
output spectrum of the photonic sensor is sent to an optical filter whose transfer
function is linear and known around the region of interest, as shown in the schematic
of Fig. 2.3(b). The voltage measured at the photoreceiver is given by:

wﬂo=gnmmﬁ E;()s (A + A()dA, 2.7)

where E(4) is the spectrum of the edge filter. Expanding E(4) in a Taylor series
up to the first order around the resonance wavelength of the sensor 4, when no
excitation is applied gives:
® 0Ef(A)

ErOp) + (A= 2) —22=

vpp (t) = griaRpn fo s(A + AD)dA. (2.8)

A=2y

By changing the integration variable A - u = A + A4 and rearranging the terms, we
obtain:

(00

IEF(A)

Er(Ar) + (u— A, — AA(D)) aa

Vpp () = griaRpn fo ]S(u)du. (2.9)

A=Ay
Eq. (2.9) can be rewritten as:

vpp(t) = AAA(t) + B (2.10)
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where:

(o)

J s(w)du
=2, 70

JE- (4
(Ef(ar)+(u—ar) gﬁ)

JE- (1)
A= —griaRpn 5—/1

o

B = gTIARpth )s(u)du

A=1,

[ee]

)f s(uw)du+
2=,/ 70

J- us(u)du. (2.11)
=2, 70

~ 9EF(2)
- gTIARph Ef()'r) - Ar EY

OE; (1)
+ griaRpn g—/l

The voltage modulation Av(t) = vpp (t) — B is proportional to the resonance wave-
length modulation, and the coefficients A and B can be experimentally deter-
mined [24, 27].

Authors report edge filtering technique as an inexpensive interrogation method [25,
28]. Tiwari et al. [26] used an erbium-doped fiber as the edge filter; Aulakh et al.
uses another FBG [28], while Diaz et al. [25] uses the linear region of a Fabry-Perot
interferometer produced by a catastrophic fuse effect. The demultiplexing can be
performed using WDM filters [19, 24] or the TDM method [16]. The dynamic range
and the sensitivity strongly depend on the properties of the edge filter. A highly
sensitive interrogator, i.e., with a large value of |4]|, compromises the wavelength
operation range. This can be observed in Fig. 2.3(b): the higher the slope |4] is,
the more voltage vy (t) is attenuated as the resonance wavelength shifts towards
to +oo.

2.4. Interrogators based on spectrometers

2.4.1. Interrogators based on dispersive spectrometers

Despite their simplicity, interrogators based on induced power modulation and edge
filter interrogators can impose strong limitations on the dynamic range of the sen-
sor. A schematic of interrogators based on spectrometers is shown in Fig. 2.4(a):
a broadband light source is used to illuminate an array of photonic sensors, and
their combined spectrum is sent to a spectrometer. In this section, we focus on
dispersive spectrometers, i.e., spectrometers which detect the spectrum using dis-
persive optical components such as gratings and prisms [29] (interrogators based
on Fourier transform spectrometers are discussed in the next section). Guo et.
al. [30] demonstrated a spectrometer using an integrated echelle, while others
[31-33] employed integrated arrayed waveguide gratings. Interrogacation can be
performed using commercial spectrometers [34-36]. For instance, the commercial
spectrometer IBSEN I MON 512 HS [37] gives an operation range of 90 nm, while
the spectral resolution is about 170 pm.

Xiau et al.[33] modelled the lineshape of the AWG channels as a gaussian func-
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tion, given by:

2
A—Aechm
Tenm(4) = exp l—4 log(Z)(Wz—h’) , (2.12)

chm

where T, ,, (1) is the transmission function of the m-th spectrometer channel, A.p, ,,,
is its central wavelength and w,y, ,,,, its FWHM. Thus, the output voltage obtained
by the k-th photodetector, connected to the k-th spectrometer output is given by:

2
(/1 - )lch,m)
czh,m

Vepm(t) = gT,ARphf S(A,t) exp|—41log(2) dA (2.13)
0

Assuming that the FWHM of the spectrometer channels is much smaller than the
FWHM of the photonic sensors, T ., (1) can be approximated to a Dirac delta, and
Eq. (2.13) can be written as:

Vch,m (t) = gTIARph f S(/L t)5(/1 - lch,m)dl = gTIARphS(Ach,mr t)' (214)
0

where §(4) is the Dirac delta function. Thus, the set of voltages {v.p, 1, vcp 2 - Venm}
is proportional to S(A.,m,t) sampled at the points A.p 4, ... Acpm, Where M is the
number of spectrometer channels.

After retrieving the spectrum of the combined photonic sensor array, a postpro-
cessing algorithm needs to be applied in order to determine the resonance wave-
lengths, as described by Tosi et al. [34]. In most cases, however, the assumption
that the FWHM of the spectrometer channels is much smaller than the FWHM of
the photonic sensors does not hold, as illustrated in case 1 of Fig. 2.4(b). The
spectrometer resolution plays a key role in the interrogation: FBGs have a typical
FWHM of hundreds of picometers, which is comparable, or at the most, one order
of magnitude larger than the spectrometer resolution [23, 38]. A high spectrome-
ter resolution, in this case, comes with the disadvantage of having a large device
footprint. Tosi et al.[34] listed techniques for determining the resonance wave-
length using the measured spectrum of the sensors. The most robust techniques
are those based on applying transformations (such as the Fourier transform) to the
measured spectrum. Although a subwavelength resolution can be achieved [36],
the implementation of these algorithms can be computationally expensive.

Pustakhod and other authors [30-32] use a different approach to obtain the
resonance wavelength modulation: the spectrometer is designed in such a way
that the FWHMs of its channels are much larger than the FWHMs of the sensors, as
indicated as case 2 of Fig. 2.4(c). Thus, the resonance wavelengths are expected to
operate close to the border of the AWG channels, where the lineshape of T, , (1)
can be linearized. The AWG channels work as an edge filter: although the spectrum
of the photonic array cannot be obtained, the modulation of each sensor can be
determined using Egs. (2.10,2.11), as defined in the previous section. The spec-
trometer is designed in such a way that the lineshapes of two adjacent channels
overlap, avoiding a strong attenuation in the case that the resonance wavelength
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of one of the sensors is exactly in the centre of the two channels. Pustakhod [31]
reports a minimum modulation amplitude smaller than 1 pm, which is much smaller
than the AWG resolution. This comes with the disadvantage of reduced flexibility:
using the AWG channels as an edge filter defines regions at which the resonance
wavelengths must be placed. As discussed in detail in the following sections, this
could be an issue for integrated sensors since the resonance wavelengths cannot
be exactly defined during the design. Moreover, the dynamic range increase of the
photonic sensors is limited by the regions at which the lineshape of the spectrometer
channels can be linearized. Similarly to the edge filter interrogators, non-linearities
can be compensated only up to a certain extent.

Another issue for interrogators based on dispersive spectrometers is a large
number of outputs. Spectrometers such as [37] feature a resolution of 170 pm with
a 90 nm bandwidth, leading to 500 output channels. Having many outputs requires
a large number of channels to be sampled, which enhances the complexity of the
electronic circuits for high-speed sensors. Some of the commercial spectrometers,
such as [37], serializes the sampled data and reducing the maximum sampling
speed of the photonic sensor array to the kHz range.

2.4.2. Spectral scanning interrogators

In order to overcome the issues with interrogators based on dispersive spectrom-
eters, the spectral scanning technique can be used. Such an interrogator features
a high resolution and large wavelength operation range. A broadband light signal
is coupled to photonic sensors, and their output spectrum is conveyed to a high-Q
optical cavity such as an RR [39—41] or a Fabry-Perot [42]. Alternatively, instead of
a broadband source and a tunable filter, a tunable laser can be employed [43]. The
output of the photonic cavity is then sent to a photoreceiver, as shown in Fig. 2.4(b).
The operation principle of this method consists of tuning the resonance wavelength
of the optical cavity using a known modulation signal. The voltage measured by a
photoreceiver is given by:

Upp(€) = Rondria fo ST, (A)dA, (2.15)

where Tr (1) is the spectrum of the tunable optical cavity and S(2) is the combined
spectrum of the photonic sensors. Assuming that the FWHM of the tunable filter is
much smaller than the FWHM of the photonic sensors, the voltage measured by a
photoreceiver is given by:

Vpp(t) = RphgTIAJO S — A(1))dA = RppgriaS(Ao (1)), (2.16)

where §(1) is the Dirac delta function and 1,(t) is the resonance wavelength of
the tunable filter. The voltage measured by the photodetector is proportional to
the combined spectrum of the photonic sensors. If the modulation speed of the
optical cavity is much faster than the speed of the external signal to be sensed by
the photonic sensors, S(4,t) can be accurately obtained. A postprocessing step is
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needed; the same algorithms described by Tosi et al.[34] can be used in order to
retrieve the resonance wavelengths.

In general, the spectral scanning technique gives a much better resolution than
interrogators based on dispersive spectrometers. A tunable laser, for instance, may
have a FWHM ranging from hundreds of kHz [44] to a few Hz [45], and the wave-
length can be set at a sub-picometer accuracy [43, 46]. In contrast, the resolution
of dispersive spectrometers is in the order of tens of pm (in the wavelength do-
main). However, most spectral scanning interrogators are based on thermal tuning
[39, 40] or micromechanical systems [41], limiting the speed to the few kHz range.
Kim et al.[40] presented an optimized design of a thermally modulated RR whose
speed could reach 100 kHz. In spite of this improvement, the assumption that the
tuning speed of the optical cavity needs to be much higher than the speed of the
photonic sensors limits the interrogation to sensors with speeds up to one order
of magnitude slower than the maximum tuning speed of the optical cavity. More-
over, this method faces a trade-off between wavelength operation range and tuning
speed: a higher tuning speed comes at the cost of a lower wavelength operation
range.

2.5. Interrogators based on interferometry

2.5.1. Interrogator based on interferometry in combination with
a dispersive spectrometer

Fig. 2.5(a) shows a schematic for an interrogator based on interferometry. Light
from a broadband source is sent to a photonic sensor array, whose combined spec-
trum is conveyed to a dispersive spectrometer in order to demultiplex the sensor
spectra. If a single sensor is being interrogated (see Chapter 3), no dispersive
spectrometer needs to be used. Following the schematic of the figure, the demul-
tiplexed output spectrum of each sensor is sent to an unbalanced Mach-Zehnder
interferometer, through which the modulation of the resonance wavelengths is con-
verted to a phase modulation. By first assuming that the MZI has a single output,
its transmission spectrum is given by:

2m 2m
Tyzi(A) =p + qcos [TOPD + <pe] =p+qcos [ml + l/)e], (2.17)

where the constants p and g which define the interferometer visibility p/q. FSR is
the MZI free spectral range, and v, is a phase whose value changes according to
local variations in temperature. The derivation of Eq. (2.17) is presented in Chapters
3 and 4. The relation between the MZI optical path difference (OPD) and its free
spectral range is given by:

2

AO
FSR = 505, (2.18)

where 1, is a reference wavelength, typically close to 1550 nm for sensors that
operate in the C band. The output voltage of the photoreceiver connected to the
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Figure 2.4: Interrogators based on spectrometers: (a) Schematic of an interrogator based on a dis-
persive spectrometer. The figure illustrates the two situations discussed in the main text. In (b), the
FWHM of the photonic sensors (shown in gray) is smaller than the FWHM of the spectrometer channels
(shown as different colors); in (c), The FWHM of the photonic sensors is much larger than the FWHM of
the spectrometer channels. (d) Interrogator based on tuning filter. The illustration shows the spectra
of the photonic sensors and of the tuning filter.
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MZI is given by:

Upo(8) = Rongris jo Tk (DS Tz (V) A, (2.19)

where T, (1) is the transmission spectrum of the k-th spectrometer channel.
For such case, it is desired for the spectrometer lineshape to be flat, so that
Ten ik (A)S(A) = s, (4). Substituting this expression into Eq. (2.19):

[ee)

Voni® = Rynria | 5e Tz (). (2.20)
0
For a peaked lineshape sensor, the voltage is given by:

Uprk(t) = Acos (q)k(t) + l/)e,k) B (2.21)

where A is a constant, v, . is a phase proportional to ¢, ;, and the phase modulation
is given by:
_ 2 (D)

where 2, (¢t) is the resonance wavelength of the k-th sensor.

As indicated in Eq. (2.22), the sensitivity of @, (t) with respect to 1, (t) and the
external signal increases as the MZI free spectral range decreases. A larger value
for the OPD is accompanied by a smaller value for the FSR, as these two quantities
are inversely proportional. It is shown in Chapters 3 and 4 that if the FSR is smaller
than or equal to the sensor FWHM, the visibility of the interferometric fringes and
the voltages v, ; are strongly attenuated. Therefore, the choice of the OPD value
needs to consider both the sensitivity and the attenuation of the interferometric
fringes.

Retrieving @, (t) from Eq. (2.21) can be difficult since the phase is wrapped into
the cosine. For instance, assuming for t = t,, @, (ty) = 0 and my, , = mm (where
m is an integer), vpp,(t) gives an ambiguous response [5]: both positive and
negative variations of @, (t,+dt) produce the same value of vpp, ; (t). This happens
because the voltage signal, which is proportional to sin(®(t) + ¥, ), is unknown.
If the MZI has a single output, the best option would be tuning ., = m/2 (using
a phase modulator, for instance) so that Eq. (2.21) gives an approximately linear
response for small modulations of @, (t). Two other approaches are commonly used
instead: (a) active modulation or (b) passive modulation using a 3 x 3 coupler.

The idea of active modulation [47, 48] is to place a phase modulator into one
of the MZI arms. In this case, Eq. (2.21) is rewritten as:

Upp i (t) = Acos (P (t) + ¢y (1) + Pex), (2.23)

where ¢y (t) is the induced phase proportional to an external voltage applied to the
modulator. Typically, ¢y, (t) = Asin(2nfyt), where f; is much higher than the speed
of the sensor. Let #pp i (f) = F{vppi(t)} be the Fourier transform of vpp (6.
Marin et. al. [48] demonstrated that ¥pp, , (fy) is proportional to sin (P (t)), while

(2.22)
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Upp x (2f) is proportional to cos (@, (t)). Since both the sine and the cosine of the
angular deflection are known, @, (t) can be determined using Eq. (2.27) (presented
later).

In most situations, however, the usage of active modulation is undesirable since
such interrogators depends on a high-speed phase modulator. An alternative is the
interrogation using a 3x3 coupler: the optical signals coming from the arms of the
MZIs typically interfere within a 3x3 coupler, producing three 120° phase shifted
output signals. It is shown in Chapters 3 and 4 that the output voltage v, ; (j =
1,2,3) of the photoreceiver connected to the j-th MZI output is given by:

Ry
V1 () = 3 cos(®y(t) — 2m/3 + Pei) + ax,

R
V2 (8) = 5 cos(Pe(t) + Pe) + i,
R
Vs (t) = ?" cos(Py(t) + 27/3 + e i) + Cis (2.24)

where Ry, ay,by, and ¢, are constants. Linear combinations of the outputs give 90°
phase shifted voltage signals. Let’s introduce

Ve (t) = 2V, 1 — Vg2 — Vi3

Uiy () = V3 (k2 — Ui 3), (2.25)

where v, (t) and v, (t) are 90° phase shifted phase signals. By substituting
Eqg. (2.24) into Eq. (2.25) and manipulating, one obtains:

Vgex (t) = Ry cos(@y (t) + e x) + Xo,
Vg,y(t) = R sin(@y (t) + Yer) + Yo, (2.26)

where x, and y, are constants which depend on a, b, and c,. Eq. (2.26) describes
a parametric equation of a circle with radius R;, and centre (x,,y,). The angle @, (t)
is given by:

@y (t) = unwrap(arctan; (vi,y (t) = Yo, Vix () = X)) — Yer- (2.27)

The phase, however, is still wrapped so unwrap algorithms needs to be employed.
Nevertheless, the ambiguous response for small modulations of ®(t) no longer
occurs. In contrast, the ambiguous response faced for small modulations of @, (t)
no longer occurs. ©

According to Orr. et. al. [49], interrogators based on interferometry give the
best resolution of all methods. However, the interferometry method requires for the
phase v, ,, which drifts as the temperature of the MZI locally changes, to be stable.
For low-speed sensors, this is an issue, as accurately controlling the temperature

5For the example given previously, take miy, = mm (Where m is an integer). Both positive and
negative modulations of @ (t) lead to positive variations of the value of vy ,(t) but lead to values of
vy (t) with opposite signs. Nevertheless, the interrogator is still unable to distinguish variations of
@ (t) larger than 2m.
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of the MZI is required. For high-speed sensors, the effect can be compensated by
applying a high pass filter. This is the approach used in Chapter 3. In spite of the
high resolution of this method, attention should be paid in order to properly align
the outputs of the spectrometer to the sensor spectrum. In the case of photonic
sensors based on FBGs, this is not an issue since the Bragg wavelength can be
chosen with an accuracy better than 1 nm. Nevertheless, Orr. [49] reports that
if one of the FBG sensors in the network shown in Fig. 2.5(a) fails, it needs to be
replaced by another sensor with the same resonance wavelength, indicating a lack
of flexibility with this method.

For integrated RR sensors, the alignment between the outputs of the spectrom-
eter and the sensor spectra is critical. For most foundries, it is not possible to
predict the resonance wavelength of the rings during the design stage [50]. Up
to certain extend, this can be solved by tunning the integrated spectrometer using
the thermo-optic effect [51]. As a side effect, this could trigger the interferometer
thermal drift of the phase v, . Selvaraja et al. [52] reports a standard deviation
of the resonance wavelengths of silicon micro-rings of about 1.8 nm for devices
distant 20 mm apart within the wafer. A flexible interrogator method is key so that
sensors fabricated from different parts of the wafer can be interrogated.

2.5.2. Interrogator based on Fourier transform

The main focus of this thesis is on an interrogator based on the Fourier transform.
This method comes as an alternative to the passive interferometric interrogator,
offering unprecedented flexibility and resolution. Even under large variances of the
nominal value of the photonic sensor resonances, the sensor’s response can be
demodulated. Moreover, this method also provides a meaningful reduction of the
interrogator footprint. No dispersive spectrometer is used, and demultiplexing and
demodulation steps are performed simultaneously. A schematic of the interrogator
design is shown in Fig. (2.5)(b). A broadband source is used to illuminate the
photonic sensor array. Its output spectrum is sent to an MZI array integrated on an
InP chip. The combined spectra of the sensors is shared among M interferometers
with progressively higher optical path differences (OPD,, = mOPD,). The two 90°
phase-shifted voltages are given by:

M
Vem() = D R cOS(MPi(6) + )
k=1

M
Dy (£) = Z Rye SIn(my () + e ) (2.28)
k=1

where the coefficients R, (k = 1,..,K) are to be determined during a calibration
procedure. Eq. (2.28) can be obtained from Eqg. (2.26) by superimposing the indi-
vidual contributions of the photonic sensors. In Chapter 4, it is demonstrated that
vm and v, ,, are coefficients of a Fourier series so the combined spectrum can be
retrieved. Instead of calculating the combined spectrum, a system of non-linear
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Interrogators based on interferometry

Photonic Dispersive
(a) BBS 1 sensors | | Spectrometer | | MZIs + PDs

PD
PD
PD
input PD
PD
PD
PD
PD
PD

Photonic Multiple beam
(b) BBS | sensors | |Splitters MZIs + PDs

PD

=< PD

% PD

=3 PD

® PD

input ?j PD

3

(%)

S

:': LI B

'(—D" PD

» PD
PD

Figure 2.5: Schematic of interrogators based on interferometers (a) Spectrometer + MZI Interferometer
(b) Fourier transform Interrogator.
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equations is solved. Let
VU = Vm (t) + ivy m (0), (2.29)

where 1}, is the complex voltage and i the imaginary unit. Substituting Eq. (2.28)
into Eq. (2.29), we obtain:

M
D.(6) = elter Z Ry exp(imdy (b)), (2.30)

k=1

Eq. (2.30) represents a system of non-linear equations. The number of MZIs
must be at least as large as the number of sensors so that we have a system
of K unknowns and K < M independent equations. Using one of the sensors as a
reference, one could also compensate for the drift of the phases 1, . The flexibility
of the method comes with the disadvantage of a high computational cost. The non-
linear system of Eq. (2.30) needs to be solved at each time step . In Chapter 5, we
propose semi-analytical methods to solve Eq. (2.30), allowing the interrogation of
high-speed sensors.

2.6. Review conclusion

In this Chapter, an overview of the different interrogation techniques was given.
The choice of the interrogation method depends on the property of the photonic
sensor array since the interrogator affects the sensitivity, the dynamic range and
the speed of the photonic sensors. Induced power modulation and edge filter
interrogators are, in general, among the simplest methods. They work for both low-
speed and high-speed sensors, whereas they may impose hard limitations on the
sensor dynamic range. Interrogators based on spectrometers have high flexibility
and are usually employed in large sensor networks. The minimum modulation depth
that can be detected by this method depends on the spectrometer resolution. In
order to achieve a higher resolution, a post-process step is required, which may
affect the interrogation speed. An alternative is interrogators based on tunable
filters that provide a higher resolution but limited speed.

The interrogators based on interferometry feature the highest resolution of all
methods. However, highly accurate control of the MZI temperature is needed to
avoid the thermal phase drift, which can plague the interrogation of low-speed
sensors. This method requires the resonance wavelengths to be known during
the design stage in order to properly align the spectrum of the sensors with the
spectrum of the channels of the dispersive spectrometer. In order to handle those
issues, an interrogator based on the Fourier transform is proposed. This is probably
the most flexible method, providing a high resolution while the drift of the phases
can be compensated using a reference sensor. A detailed comparison of the FT-
interrogator with other common interrogation methods is presented in Chapter 5,
section 5.5.3.
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Interrogation of a
ring-resonator ultrasound
sensor using a fiber
Mach-Zehnder interferometer

We experimentally demonstrate an interrogation procedure of a ring-resonator
ultrasound sensor using a fiber Mach-Zehnder interferometer (MZI). The sen-
sor comprises a silicon ring resonator (RR) located on a silicon-oxide mem-
brane, designed to have its lowest vibrational mode in the MHz range, which
is the range of intravascular ultrasound (IVUS) imaging. Ultrasound incident
on the membrane excites its vibrational mode and as a result induces a mod-
ulation of the resonance wavelength of the RR, which is a measure of the
amplitude of the ultrasound waves. The interrogation procedure developed
is based on the mathematical description of interrogator operation presented
in Appendix A, where we identify the amplitude of the angular deflection
@, on the circle arc periodically traced in the plane of the two orthogonal
interrogator voltages, as the principal sensor signal. Interrogation is demon-
strated for two sensors with membrane vibrational modes at 1.3 and 0.77
MHz, by applying continuous wave ultrasound in a wide pressure range.
Two optical path differences (OPDs) of the MZI are used. Thus, different in-
terference conditions of the optical signals are defined, leading to a higher
apparent sensitivity for the larger OPD, which is accompanied by a weaker
signal, however. Ultrasound is detected at a pressure as low as 1.2 Pa.

Parts of this chapter have been published in Fellipe Grillo Peternella, Boling Ouyang, Roland
Horsten, Michael Haverdings, Pim Kat, and Jacob Caro , Interrogation of a ring-resonator ul-
trasound sensor using a fiber Mach-Zehnder interferometer Optics Express, Vol. 25, Issue 25, pp.
31622-31639 (2017).
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3. Interrogation of a ring-resonator ultrasound sensor using a fiber
40 Mach-Zehnder interferometer

3.1. Introduction

Integrated photonics is an enabling technology for important application fields, such
as telecommunication [1, 2], optical signal processing [3] and various types of
photonic sensing [4]. In the field of sensing the main advantages of integrated
photonics sensors are small size, mass producibility, low cost and electromagnetic
immunity. The lab-on-chip approach to chemical sensing and particle identification
also benefits strongly from integrated photonics. This is demonstrated for example
by recent advances in excitation and collection of spontaneous Raman scattering
near silicon nitride waveguides [5] and in optical trapping and Raman spectroscopy
of micro-particles using a dual-beam trap made from composite silicon oxide-nitride
waveguides [6].

In the field of sensing for health and medicine, integrated silicon photonics is
used in our department for an ultrasound sensor based on a ring resonator (RR)
located on a thin membrane [7]. Ultrasound waves make the membrane vibrate
and as a result induce a modulation of the optical resonance wavelength of the RR,
which characterizes the waves. The sensor is very promising for medical ultrasound
imaging, in particular for intravascular ultrasound (IVUS) imaging, which is widely
used to diagnose atherosclerosis in humans. For IVUS, important advantages of our
RR ultrasound sensor are its high sensitivity [7], the possibility to realize an array of
sensors on a single chip, which is spontaneously enabled by the CMOS fabrication
technology, and the absence of electrical wiring as needed for piezoelectric IVUS
sensors. Wiring has the disadvantages of being rather cumbersome for an array
of piezoelectric sensors and susceptible to cross-talk, while making the sensors
incompatible with magnetic resonance imaging.

Here, we present an interrogation procedure of a RR ultrasound sensor of the
type introduced in [7] using a passive fiber Mach-Zehnder interferometer [8, 9].
The procedure yields a well-defined relation between the sensor signal and the
applied ultrasound pressure, thus qualifying a sensor of this type for IVUS. For am-
plitudes of the ultrasound-induced resonance-wavelength modulation smaller than
the bandwidth of the spectrum incident on the RR, the signal is proportional to the
applied ultrasound pressure. The MZI employs a 3x3 fiber output coupler, of which
at least two of the three outputs are non-zero for any optical phase difference be-
tween the MZI arms. This is beneficial for the signal-to-noise ratio of the quadrature
signal components defined with the three outputs. We demonstrate detection of
ultrasound waves of a pressure amplitude as small as 1.2 Pa. The interrogation
method we present for a single sensor is the first step towards interrogation of an
array of sensors. A complete mathematical description of the operation of the in-
terrogator, resulting in the interrogation procedure we apply, is given in Appendix
A.

3.2. Silicon ring-resonator sensor for ultrasound

The heart of the ultrasound sensor is a silicon RR of the racetrack type, coupled to
two bus waveguides, as depicted in Fig. 3.1. Ring and waveguides are located on a
thin silicon oxide membrane designed to have its lowest vibrational mode in the MHz
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range. Typically, to mimic the situation of IVUS imaging of an artery, the sensor is
operated in water. Ultrasound waves of the proper characteristics impinging upon
the membrane excite the vibrational mode and thus periodically deform the RR,
leading to encoding of the optical signal with information of the ultrasound waves for
imaging, in particular modulation of the RR resonance wavelength at the ultrasound
frequency. The modulation results from the combined effect [10] of elongation of
the racetrack’s straight part, change of the ring cross section due to the Poisson
effect, change of the refractive indices of silicon and of silicon oxide of the cladding,
and finally change of the effective index of the waveguide mode circulating the ring
due to the elasto-optic effect. The RRs were fabricated at ePIXfab, Imec [11] on

Figure 3.1: Schematic view of the silicon ring-resonator sensor fabricated on a circular silicon oxide
membrane. Width of coupling waveguides and racetrack is w=400 nm, while the gap of the directional
couplers is 200 nm. Radius of bends is R=5 um. The length of the straight part of the racetrack ¢,
varies among the devices.

silicon-on-insulator wafers thinned to 250 um. The silicon device layer and the
buried oxide (BOX) layer are 220 nm and 2 um thick, respectively. The width of
the ring and the bus waveguides is 400 nm, implying these are single mode around
the operational wavelength of 1550 nm. The gap of the two identical directional
couplers of the RR is 200 nm. The length ¢, of the straight part of racetracks is in
the range 20-100 um, while the bending radius is 5 um. For light coupling from and
to external fibers we use grating couplers (GCs), to which 10 um wide waveguides
are connected. The GCs are polarization sensitive, implying that the modes coupled
into and out of the waveguides and circulating the ring are TE polarized, according
to the building block specification [11]. Between GCs and RR, the 10 um wide
waveguides are adiabatically tapered down to 400 nm in two steps. The fibers are
permanently connected to the sensor via angled and aluminium coated Pyrex mirror
blocks glued to the chip [12]. The mirror blocks reflect the in-plane light leaving the
fiber towards the grating coupler. Only the pass port is fiber-connected, implying
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that the transmission spectrum shows a series of dips (see Fig. 3.2).

The current sensors result after the fabrication (in Kavli Nanolab Delft) of a
membrane, which vibrates in the MHz range, in the backside of the chip. At the
position of a RR a membrane is created by deep reactive ion etching (Bosch pro-
cess) of a circular hole in the handle wafer. This etching from the backside stops
selectively at the BOX layer, and thus a membrane is formed spontaneously. In this
procedure a 2.5 um PECVD oxide layer is used as a hard mask and the photonic
circuitry on the front side is protected by a 0.5 um thick PECVD oxide layer, which
also serves as upper cladding. The resulting membranes thus have a thickness of
2.5 um. The cavity under the membrane is closed by gluing a glass platelet to the
chip’s backside, entrapping air (see Fig. 3.3). The sensor thus effectively operates
with a membrane that is water loaded on one side.

The silicon waveguiding platform, owing to its high index contrast, allows for
small bending radii, which is advantageous for small footprint sensors. This ad-
vantage has been recognized before in [13], which reports pressure sensors us-
ing a silicon RR on an oxide membrane. This work, however, is focused on the
demonstration of sensing of static pressures, while the reported RR is relatively
large. Ultrasound detection with polymer RRs is reported in [14]. These RRs are
not located on a membrane and thus only rely on the elasto-optic effect. Further,
the polymer waveguides have a relatively low index contrast with respect to the
cladding, implying that bending radii are more limited than for silicon RRs.

We concentrate on two sensors: sensor #1 with £, = 30 um located on a 66
um diameter membrane (vibrational mode at 1.3 MHz) and sensor #2 with £, = 40
um located on a 124 um diameter membrane (vibrational mode at 0.77 MHz). For
sensor #1, the transmission spectra without applied ultrasound are shown in Fig.
3.2. The resonance dips captured in Fig. 3.2(a) give a free spectral range Py =
6.01 nm. Fig. 3.2(b) is a zoom-in of the central dip at 1550.19 nm, which we use
for experiments with the interrogator (Section 3.4). The setup for measuring the
dips is addressed in connection to the modulation method (Appendix B).

To analyze a single resonance, we start from the expression for the transmission
to the pass port for two identical directional couplers, which is [15]

r2 +1r2a® — 2r2acosé
1+7r%a? —2r2acos8’

Tpass(g) = (3.1)
Here r is the self-coupling coefficient of the directional coupler, a the single round-
trip amplitude transmission, and 6 is the accumulated phase of the mode for a
single round trip in the ring. When concentrating on a single resonance of the
overall spectrum, the phase can be approximated by

2m A=A

0 = —nesrl = 2nm — 2nngl —5—
Ay

. (3.2)

Here 1 is the wavelength, 1, the resonance wavelength, L the round-trip length and
m an integer. n.¢r and n, are the wavelength dependent effective index and the
group index at resonance, respectively. The right-hand side of Eq. (3.2) results from
keeping only the first order term of the Taylor expansion of the function n,,(1)/2
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Figure 3.2: (a) Transmission spectrum of a ring resonator on a silicon oxide membrane, showing three
resonance dips. (b) Zoom-in of the central dip in (a). The blue curve is a fit of Eq. (3.3) to the data
points. On the linear part of the dip’s left flank the operation point 44, is shown, the static wavelength
to which the laser is tuned in the modulation method (see Appendix B).

around A, and implementing the resonance condition n.¢(4,)L = mA, . Eq. (3.1)
simplifies further by using cos @ = 1 — #%/2 near the resonance phase 6 = 2mm,
which for the cosine is equivalent to 6 = 0, and by using Eq. (3.2). This yields the
single-dip transmission

A —24)% + e /2)?

Trass®) = G 7+ (/27 (3:3)
Here y, and ¢ are defined by, respectively
221 —ar?)
2 1-— 2
_rd-a (3.5)

€= (1 —ar?)?z’

In Eq. (3.4), y,,=FWHM is the full width at half minimum of the resonance dip.
The line shape function of Eq. (3.3) corresponds to [1 — (1 — ¢&)L(A)], with L(1)
a Lorentzian function of maximum value unity, centred at 1,. We note that using
Eg. (3.3) instead of Eq. (3.1) is not really needed for analysis of a single dip.
However, we already introduce Eqg. (3.3) in view of later analyses, which are strongly
simplified by it.

A fit of Eq. (3.3) to the measured dip of Fig. 3.2(b) yields the blue curve in
that figure, giving fit parameters ¢ = 0.043 and y,. = 122 pm. Thus, the quality fac-
tor Q = A,./y, is 12706. The value of ¢ being close to zero, the ring operates close to
critical coupling, which holds for [15]
a=1,ie &=0. With n, = 437 derived from the free spectral range Py =
22/(ngL) = 6.01 nm, Egs. (3.4,3.5) give the values r = 0.975 and a = 0.987.

0 "
1545 1550 1555 1549.6 1550.0 1550.4 1550.8
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3.3. Fiber interrogator

3.3.1. Circuitry and signal flow of the interrogator

The interrogator is a fiber optic circuit based on a Mach-Zehnder interferometer
(MZI) with a 2x2 input coupler and a 3x3 output coupler. A schematic of the circuit
is shown in Fig. 3.3. Light from a broadband source (BBS, EXALOS EXS210069-
01 superluminescent diode, maximum output power 14 mW) is guided to the RR
sensor, via a circulator, a fiber Bragg grating (FBG, from TeraXion, FWHM 200 pm)
and an EDFA set at gain of 24 dB (Amonics, AEDFA-PM-33-B-FA, noise figure ap-
prox. 3.5 dB at 1 dBm). The width of the FBG reflection spectrum is such that a
single resonance of the sensor can be selected, in particular the one of Fig. 3.2(b).
Selection is by tuning the center of the FBG spectrum to the sensor’s resonance
wavelength in the absence of ultrasound, by applying axial strain with a mechan-
ical stretcher and temperature using a thermo-electric cooler. The light from the
sensor is guided to the MZI, of which one arm has a variable length air gap, thus
providing a variable optical path difference (OPD). The air gap is realized using two
lenses (ThorLabs FiberPort collimators), one of which can be accurately translated.
One input of the 3x3 coupler is left open. Each coupler output is connected to
a combination of a photodetector (Fermionics, FD100, max dark current = 3 nA)
and a transimpedance amplifier (TIA, ADA4899-1 from Analog Devices with gain
2.2 kV/A, noise: 1nV/vHz), after which further amplification (gain=196) and high
pass filtering (f. =1.0 kHz) are applied (last two operations not shown in Fig. 3.3).
The resulting output voltages V; are sampled by a data acquisition system (based
on National Instruments NI 5734, max. sampling rate 120 MSa/s). The sensor is
immersed in a water tank. Glued to a stick, it is mounted on one side of a frame
(see Fig. 3.3). On the other side, coaxial with the sensor and at a distance of
135 mm, a transducer is mounted for sending ultrasound waves, which is actuated
by an arbitrary waveform generator (AWG, Rigol DG1022). The fibers of the optic
circuit are standard connectorized fibers for telecom wavelengths. Prior to ultra-
sound measurements with the sensor, the amplitude of the ultrasound pressure is
calibrated with a hydrophone (Precision Acoustics, SN2082, 1.0 mm) placed in the
sensor’s position.

The power transmission T; (i = 1,2,3) of the MZI, supposed lossless, at the
optical outputs is given by [16]

1 2m
Tyzri = 3 [p + g cos <70PD +@; + (pe)] . (3.6)

The parameters p and g determine the fringe visibility q/p. OPD is the optical
path difference between the MZI arms. For an ideal 3x3 coupler p = 1 and ¢; =
0°,120°,—120° for i = 1,2,3. The phase ¢, is a so-called environmental phase
[9], that drifts slowly in time. Its origin is temperature instability of the fiber optic
circuit. Owing to the three phase shifted cosines in Eq. (3.6), at least two of the
voltages V; are non-zero for any total argument of the cosines, thus avoiding signal
fading [9]. For further analyses we rewrite Eq. (3.6) for wavelengths A close to the
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Figure 3.3: Schematic of the fiber interrogator, based on a Mach-Zehnder interferometer with a 2x2
coupler and a 3x3 coupler. BBS is the broad band source, FBG the fiber Bragg grating, EDFA the
erbium doped amplifier and AWG the arbitrary waveform generator. The lenses L1 and L2 are part
of the variable optical path length of one MZI arm, ranging from 4 to 13.5 mm. PD + TIA denotes
combination of photodetector and transimpedance amplifier. V;, V, and V; are the three output voltages
sampled by the data acquisition system. At the BBS, after the circulator and before the MZI the signal
spectrum has been indicated. The water tank with sensor and transducer shows the setup for ultrasound
measurements.

resonance wavelength A,., using a first order Taylor expansion of 1/A. This gives

1 OPD 4m
Tyzii = 3|p+acos ZHAA—Z - TOPD — i — @,
T r

1
§m+qwﬂﬂ+%+¢M- (3.7)

Here we have used ¢ = 2rOPD/A%2 = 2m/FSR, with FSR the MZI's free spectral
range. Further, y, is defined by ¢, = —4mOPD /A, — ¢,, which thus shows the same
drift as ¢,.. Renumbering the outputs has removed the minus sign of ¢,. Retaining
only the Taylor expansion’s first order term is justified, as the deviation of A from
A, is about 100 pm, to be compared with 4, = 1550 nm.

Tyzi,: Of EQ. (3.7) is a main ingredient in the mathematical description leading
to the output voltages V; of the overall circuit in Fig. 3.3. For the total description
we refer to Appendix A, from which we have extracted the interrogation procedure
summarized in Section 3.4.1 and applied in Section 3.4.2.
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3.3.2. Characterization of the fiber Bragg grating and Mach-

Zehnder interferometer
The FBG was characterized by measuring its reflection spectrum, using an optical
spectrum analyzer (OSA, Yokogawa AQ6315A) coupled to port 3 of the circulator
(see Fig. 3.3). Fig. 3.4(a) shows the measured spectrum (blue data points), which
has a top-hat shape and decays steeply. We have fitted a super-Lorentzian function
to the data points. This function, also used to describe the transverse profile of

optical beams [17], is given by
l - /10 )
1+
(J/FB'G/2

Here y,,,. is the FWHM of the line shape with central wavelength 1,, and the integer
N is the order of the super-Lorentzian. N = 8 gives the best fit result. In Fig. 3.4(a)
we also show the fitted function, which yields y,,. = 207 pm, in agreement with
the specification.

The combined spectrum of the FBG and sensor #1 is presented in Fig. 3.4(a)
as well (green data points). It was measured in the configuration of Fig. 3.3, but
with the difference that the OSA instead of the MZI is coupled to the sensor’s pass
port. Alignment of the FBG spectrum is close to symmetric with respect to the
resonance dip, which here is broader than in Fig. 3.2b. The increase of ring FWHM
results from the OSA resolution and the higher power applied to the RR in this
measurement configuration, due to non-linear optical absorption [15, 18]. This
changes the effective index of the ring waveguide, which explains the dip’s shift to
longer wavelength as compared to Fig. 3.2b. The normalization of the two curves
shown in Fig. 3.4(a) causes an apparent broadening of FBG reflection spectrum.
The combined spectrum indicates a latitude of about 100 pm before the dip moves
out of the FBG reflection spectrum as a result of applied ultrasound.

The MZI was characterized by directly connecting a tunable laser (Santec TSL-
210VF, set at output power 500 uWW) to the MZI input, to measure the output
voltages V; as a function of wavelength. The wavelength was swept from 1550
to 1551 nm at a rate of 1.2 nm/min, giving a measurement time of 50 s. This
time, unlike the very short measurement times in the actual ultrasound experiments
(Section 3.4.2), is comparable to the time scale of the environmental phase drift’.
Therefore, to exclude the drift, a stabilization time of the setup of several hours
was observed before the measurements, with the laser on. The characterization
was done for five OPDs, i.e. five positions of lens L2 in Fig. 3.3. In agreement with
Eq. (3.8), the resulting five sets of V(1) traces are cosines, each oscillating around
a non-zero average.

Traces for OPD = 12.9 mm are shown in Fig. 3.4(b), together with fits of the
function

N1~

Rppe(D) = (3.8)

1Thermal fluctuations along the MZI are the main cause of the phase drift. This effect can be mitigated
by fabricating the MZI on a chip: since the chip dimensions are much reduced, it is easier to control its
temperature. However, MZIs can be extremely sensitive to temperature depending on its OPD, and a
different strategy is used in Chapter 4.
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Figure 3.4: (a) FBG reflection spectrum and combined FBG reflection and RR transmission spectrum,
both normalized to their maximum value, and a fit of Eq. (3.8) to the FBG spectrum for N = 8. (b)
Traces of the interrogator outputs V; as a function of wavelength, with data points shown as crosses.
Due to the way of plotting, the DC component of the V; is not visible. The oscillatory functions are fits
of A;cos(éA + @, + Y,) to the data points. The fits give: 4; = 63.4, 68.9, 68.7 mV (i = 1,2,3) and
Qe+ = 176°,59° and -67° (i = 1,2,3). The traces were used in obtaining the correction factors and
in Egs. (9) and (10). (c) Corrected (Vy,V,,) points, together with the fitted circle. The circle radius is
181 mV.

V, = A;cos(éA + ¢; + Y.) to the traces, from which first the average was sub-
tracted. The fits are performed for the five sets, treating A4; and the sum ¢; + 1,
as fit parameters. The fits indicate that the amplitudes of the three cosines of a set
are not equal (see caption), which contradicts Eq. (3.8). This implies that the circle
defined by voltages V, and V;, in Egs. (3.32) and (3.33), respectively, is deformed
to an ellipse. As explained in Appendix A, the circular shape defined by these equa-
tions plays a central role in the interrogation procedure. Taking for the traces of
Fig. 3.4(b) the fitted phase of output V; as a reference (¢, + . = 0), we obtain
@, + Y = —117° and @5 + P, = 117°. Thus, the phases deviate somewhat from
the nominal values. We note that slight non-ideal behavior of amplitude and phase
of 3x3 fiber couplers is not uncommon and has been reported before [8, 19]. The
measured traces also yield the relation between the FSR and the setting of the dial
for choosing the OPD.

In order to make the amplitudes of the cosines equal, we modified Egs. (3.32)
and (3.33) by including correction factors ¢, and c5:

Ve(®) =2V — coVp — 313 (3.9)
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V() = V3 (csVs — 1) (3.10)

Initially, we set ¢, = ¢; = 1 for the traces in Fig. 3.4(b). Using these start values
the equation of the ellipse given by the locus of points (V,,V;) defined by Egs.
(3.9) and (3.10) is obtained by least square fitting [20], giving the ellipse semi-
axes a and b. Next, using an optimization algorithm [21] the function f(c,,c3) =
[1—a(cy, c3)/b(cy, c3)| is minimized, yielding the circle aimed for. The initial ellipse
semi-axes a and b serve as start values. The result is ¢,=0.85 and ¢;=0.86, for
minimum f(c,, c3) = 0.001. The corrected (14, V;) points have been plotted in Fig.
3.4(c), together with the fitted circle. The correction factors ¢, and c¢; are used in
the interrogation procedure of Section 3.4.2.

3.4. Interrogation of the ultrasound sensor

3.4.1. Interrogation procedure
The goal of the interrogation procedure of the sensor is quantitative extraction of
the ultrasound-induced optical signal of the sensor from the three output voltages
V.(t) (i = 1,2, 3) of the interrogator. Appendix A is the basis of the procedure. Here,
we give the main data-processing steps for the case of continuous ultrasound waves
of frequency f,. We start from slightly modified versions of Egs. (3.35) and (3.36)
for the mutual orthogonal voltages V,(t) and V,, (t) constructed from the measured
Vi(8):

Ve () = 2V =V, = V3 = 3Rg cos (P() + ) + xo(1e) (3.11)

V,(£) = V3 (5 — 1) = 3Ry sin (D(t) + ¥.) + yo (Ye)- (3.12)

As compared to Egs. (3.35) and (3.36) the madifications in Eqgs. (3.11) and (3.12)
comprise neglect of constant parameters in the argument of the cosine and sine,
and in the functions x, and y,. It is understood that these are absorbed in .. This
simplifies the analysis, but has no consequences for the final result. Egs. (3.11) and
(3.12) are parametric equations of a circle of radius 3Ry and with center (x,, y,)-
d(t) = @, sin(2mfyt) is the instantaneous angular deflection of the point (V;, 1) on
an arc of the circle, which is periodically traced at the frequency f; of the ultrasound.
Ry is constant for constant total gain of the interrogator circuit, independent of the
applied ultrasound pressure, but dependent on the OPD of the MZI. Dependence
of V,.(t) and V,(t) on the environmental phase 1, is not an issue for the analysis,
since 1, is constant on the time scale of a single interrogation of the sensor.

The data-processing steps are as follows. First, for a reference ultrasound pres-
sure of high enough amplitude, implying a long enough arc of the circle, the radius
3Ry and the center (x,, y,) are determined using the fit procedure already described
for an ellipse in Section 3.3.2. The fitted value of 3Ry then holds for all other pres-
sures of a measurement series. We typically use a rather high reference pressure
of a series of pressures (in Section 3.4.2 we use 2280 Pa for sensor #1 and 312 Pa
for sensor #2), since a high pressure gives a long arc and thus an accurate fit result
for 3Rg.

Next, the fitted 3Ry is used to retrieve the circle center (x,,y,) for each amplitude
pressure p, of the series by minimizing [20, 21] the average squared deviations of
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the locus of points (V;, V) from a circle of radius 3R.

Subsequently, for each pressure of the series we determine the instantaneous de-
flection. In more detail, we obtain the wrapped deflection from Egs. (3.11) and
(3.12) according to

D(6)yr. = atan2 (V, — yo, Ve — X%0) — Y. (3.13)

Here atan2 is the four-quadrant arctangent function. Upon input of the coordinates
of a point in the plane, atan2 returns the angle of the point in the range (—x, 7 ].
®(t),r in principle oscillates regularly in time around —y,, but may be discontin-
uous in view of the limited range of atan2, even for small resonance-wavelength
modulation. Therefore, we unwrap ®(t),,,. using the unwrap function of MATLAB
[22], which returns the smooth unwrapped deflection. After subtracting from the
unwrapped deflection its average —y,, we arrive at the proper instantaneous de-
flection @(t), which describes the periodic tracing of the circle arc in the right way.
Fourier transformation of ®(t) then yields the amplitude ®,, the quantity sought
for.

As a last step, again following Appendix A, the amplitude &, of the resonance-
wavelength modulation is obtained from

o Ao
60 = K_O = —T 0

F = 320PD" (3.14)

Here k is the correction factor introduced in Appendix A, where its values are de-
rived. In the next section we will follow an experimental approach for obtaining
K.

The data-processing just described is performed offline, which is adequate for
the present purpose. Various scenarios can be conceived for real-time data pro-
cessing, which is required for later application to IVUS imaging.

3.4.2. Interrogation experiments

We interrogated sensors #1 and #2 according to the above procedure, using OPD
values of 6.9 and 12.9 mm, which almost span the available range. We applied
two series of pressures amplitudes, which become apparent in Fig. 3.6 below. For
each pressure we acquired time traces of the three voltages V;(t) during 300 ms,
sampled at 30 MSa/s.

In Fig. 3.5(a), as an example, we show for sensor #1 part of the V;(t) traces and
of the V,.(t) and V, (t) traces deduced from these, for OPD=12.9 mm and a pres-
sure of 2280 Pa, the reference pressure for determining radius 3Ry for this sensor.
Similar traces (not shown) were obtained for sensor #2 for reference pressure 312
Pa. The traces results after noise reduction, applying a Gaussian bandpass filter of
FWHM=80 Hz centred at the fundamental frequency and its harmonics. The ultra-
sound period of 0.77 us is clearly present in the traces, while the second harmonic
can be seen as well. In Fig. 3.5(b) the points (14,V;) are plotted, together with
the fitted circle of radius 3Ry = (191+ 6) mV. The spectral content of the V;(¢t) of
sensor #1 is more apparent in the Fourier transforms in Fig. 3.5(c), in which the
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Figure 3.5: (a) Part of traces of V;(t) (i = 1, 2, 3) for sensor #1, sampled while interrogating the sensor,
and of the mutual orthogonal voltages Vv, and vy, for OPD = 12.9 mm and p, = 2280 Pa. (b) Plot of
the points (Vy, V), which trace a circle arc, together with the fitted circle. (c) Fourier transforms of the
V;(t) and of the angular deflection ®(t) for OPD = 12.9 mm and p, = 2280 Pa (sensor #1) and p, =
312 Pa (sensor #2). The weak signals at the third harmonic are indicated as 3f; 4, and 35 4, for sensor
#1 and #2, respectively.
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transforms for sensor #2 are included as well for reference pressure 312 Pa. Apart
from the fundamental frequency (1.3 and 0.77 MHz for sensor #1 and #2, respec-
tively), the transforms also show peaks for the second and third harmonic, albeit
a very small peak for the third harmonic. Peaks at the harmonics agree with the
Bessel function expansion referred to in Appendix A. To obtain the angular deflec-
tion @®(t) we follow Section 3.4.1, leading to the Fourier transforms in Fig. 3.5(c),
upper panel. At the fundamental frequency the transforms show a sharp peak.
Its height is the angular deflection’s amplitude and amounts to ®, = (0.69 +0.04)
radian and @, = (0.62+0.05) radian for sensor #1 and #2, respectively. This is the
main interrogation result for these experimental conditions.

For all other pressures we determined the @(t) traces and the corresponding
amplitudes @, for both sensors. For sensor #1, Fig. 3.6(a) shows the main plot of
®, versus p,. The pressure rangeis 2.3 - 5750 Pa. Fig. 3.6(b) zooms in on the lower
pressures. The straight lines through the origin are fits to those data points showing
the linear behavior discussed in Appendix A. The slopes d®,/dp, of the fitted lines,
which are the sensitivities of sensor #1 for these OPDs, are given in Table 1, along
with the sensitivities of sensor #2 and other parameters of the two sensors. For
sensor #2, a comparable data set is shown in Fig. 3.6(c,d) for the pressure range
1.2 - 775 Pa. The plots indicate that sensor #2 is more sensitive than sensor #1.
This arises from the larger membrane diameter of sensor #1, which results in a
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Figure 3.6: Main results of the interrogation of the sensors: (a) amplitude of the angular deflection @,
for sensor #1 as a function of the pressure amplitude p, of 1.3 MHz ultrasound. (b) Zoom-in of (a) for
the pressure range 0-30 Pa. (c) Amplitude of the angular deflection @, for sensor #2 as a function of
the pressure amplitude p, of 0.77 MHz ultrasound. (d) Zoom-in of (c) for the pressure range 0-15 Pa.
In (a)-(d) OPDs of the MZI are as stated and the lines are fitted straight lines through the origin. (e)
Sensitivity as a function of frequency of sensor #2 for OPD = 12.9 mm.
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Table 3.1: Parameters obtained for sensors #1 and #2: d®,/dp, is the sensor sensitivity, d6,/9p, is
the amplitude of the resonance-wavelength modulation of the sensor per unit of pressure, while r.,p,
and kpe,. are the experimental and theoretical correction factors, respectively, which relate to Eq.(3.14).
The uncertainty in 85,/dp, was omitted, since its contribution to the uncertainty of k... is negligible.

OPD (mm) Parameter Sensor #1 Sensor #2
6.9 0D, /dp, 0.15+0.02 1.04 +0.06
12.9 (milliradian/Pa) 0.30 + 0.01 1.98 + 0.08

_ 960/0pg
(fm/Pa) 5.4 25.9
6.9 0.65+ 0.3 0.45 +0.03
12.9 Kexp. 0.60 + 0.02 0.44 + 0.02
6.9 1.07 1.03
12.9 Ktheo. 1.26 1.16

larger membrane deflection per unit of pressure. Further, the sensitivity is higher
for the larger OPD for both devices. This agrees with Eq. (3.14), which indicates
that the ratio ®,/0PD is constant for a constant §,. The sub-linear behavior in
the plots above a certain pressure indicates that in that range the amplitude of the
resonance-wavelength modulation is such that the bandwidth of the FBG becomes
limiting. The minimum pressures we succeed to detect in these measurements
are 2.3 and 1.2 Pa for sensor #1 and #2, respectively, detection limits comparable
to the one reported in [7]. The present detection limit is determined noise, both
electronic and shot-noise. We also observed sources of disturbing signals external
to the interrogator. The order of magnitude of the spurious signals is a few mV,
comparable to the voltage values for small pressure amplitudes.

The data shown in Fig. 3.6(a)-(d) were obtained using monochromatic con-
tinuous wave ultrasound, chosen at the frequency of the membrane’s maximum
deflection. The sensors, however, are broadband owing to the membrane’s intrin-
sic loss. This property is apparent from the sensitivity as a function of frequency,
which for sensor #2 is shown in Fig. 3.6(e). The function plotted is d®,/dp, ,
normalized to unity at its maximum. It was measured using continuous waves and
a frequency sweep. The function has the typical shape for a damped resonator.
The peak occurs at 0.77 MHz, while the -6 dB bandwidth is 14.5%. This sensitivity
curve and the one in [7] for the same sensor are very close to each other. We note
that the bandwidth of the sensor enables application of tailored ultrasound pulses,
as may be more appropriate for later imaging. If for certain applications a larger
bandwidth is needed, it can for example be increased by adding a lossy layer to the
membrane.

We now discuss the correction factor x occurring in Eq. (3.14) and finally, in
relation to x, make further comments on the sensitivities 0, /dp, listed in Table 3.1.
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From Eq. (3.14), the correction factor can be rewritten as:

1
as

Kk = 2mOPD—> [/13 , (3.15)
dpo

ad, ]
9po

where the missing ingredient is 86, /dp,. The pressure dependence of §, is derived
using the modulation method detailed in Appendix B, for low pressures leading to
linear behavior and the derivatives d®,/dp, listed in Table 1. For the two sensors
and for either OPD we thus obtain the experimental values «.,,, listed in Table 1, to
be compared with the listed values ;... taken from Appendix A (discussed there
in relation to Fig. 3.7). The k., values for sensor #1 exceed those of sensor #2, in
agreement with the behaviour of k., . Further, on average the ratio of the values
is 0.47 for sensor #1 and 0.61 for sensor #2. In our opinion, the agreement to
much better than one order of magnitude validates the mathematical description
of Appendix A in presenting the proper physics picture.

The ratio of the experimental sensitivities in Table 3.1 for the two OPDs equals
0.50 and 0.53 for sensor #1 and sensor #2, respectively. The ratio of the theoreti-
cal sensitivities can be obtained using the above relation between x and d®,/dp,
(where we use k;p.,.). This yields for the theoretical ratio 0.63 and 0.60 for sensor
#1 and sensor #2, respectively. The relative difference between the theoretical and
experimental sensitivity ratios is 18% on average. This indicates a high degree of
consistency of our description of the operation of the interrogator and the actual
interrogation experiments.

Conclusion

We interrogated two silicon ring-resonator sensors for ultrasound in the MHz range
using an interrogator based on a fiber Mach-Zehnder interferometer (MZI), by ap-
plying the procedure based on our mathematical description of the interrogator
operation in Appendix A. According to the geometrical interpretation of the opera-
tion, the amplitude of the angular deflection @, on the circle arc periodically traced
in the plane of the two orthogonal interrogator voltages, is the principal sensor sig-
nal. @, is proportional to the amplitude of the resonance-wavelength modulation
of the sensor in response to the ultrasound. The main interrogation results are the
linear relations between @, and the pressure amplitude of continuous wave ultra-
sound, in a broad pressure range and for optical path differences (OPDs) of the MZI
of 6.9 and 12.9 mm. The minimum detected pressures is 1.2 Pa. For sensor #1,
the sensitivity amounts to 0.15 and 0.30 milliradian/Pa, for OPDs of 6.9 and 12.9
mm, respectively. For sensor #2, the sensitivity is 1.04 and 1.98 milliradian/Pa for
these OPDs. This higher sensitivity for the larger OPD is accompanied by a lower
output voltages of the MZI, in agreement with the prediction in Appendix A. This
suggests a trade-off between sensitivity and signal strength, for which in future a
brighter broadband source will be helpful, also for avoiding the EDFA we use now.

This work on the fiber interrogator is an important step towards an integrated
photonics interrogator. The architecture of an integrated photonics version can be
similar to the fiber version but should be much smaller so that the environmental
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phase drift we have encountered here will be much less severe. The ultrasound
sensors should then be equipped with a drop port, which gives a peak in the trans-
mission. Interrogating a dip is a major issue. The optical background around the
minimum is also amplified by the EDFA and has no information about ring reso-
nance. As a result, a high-optical gain applied can quickly saturate the analogue-
to-digital converters of the acquisition system. To overcome this issue, we used a
high-pass electric filter (cut frequency at 1kHz) at the input of the data acquisition
system. The FBG filter has a very limited FHMW (200 nm) compared to the ring
FHMW (120 pm), limiting the sensor’s dynamic range. Furthermore, as the spec-
tra of the ring and the FBG filter feature similar FWHM, their coherence lengths
are similar, distorting the function #(é1,), as described in Appendix A. It can be
shown that such distortion is the cause of the circle centres to be dependent on
the thermal phase drift. These effects have been handled by fitting a circle to the
Lissajous (V(t),V,(t)) in order to retrieve the radius and the circle centre; and by
introducing a correction factor, accounting for the deformation of the circle arc.
The disturbance of the optical background could be avoided by using an FBG with
a wider FWHM, which reduces the coherence length of the optical background and
increasing the sensor’s dynamic range.

Appendix A : Mathematical description of the oper-

ation of the fiber interrogator

In this Appendix we present a mathematical description of the operation of the
fiber interrogator when interrogating a ring-resonator sensor in the pass-port con-
figuration. Based on the overall signal flow we arrive at the three outputs of the
MZI, of which specific linear combinations yield the signal that is a measure of the
amplitude of the applied ultrasound waves. The interrogation procedure we follow
in the main text is based on this Appendix. Reproducing Egs. (3.3), (3.7) and (3.8)
of the main text, the latter for N = 8 and 1, = 4., gives

(A= = 6T,0)" + e(rr/2)°

Thass(4, 62,) = — 5 (3.16)
(/1 - ’11” - SAr(t)) + (VT/Z)Z
1
Tuz1,i(A) = 3 [P+ qcos §A+ ¢; + @)l (3.17)
with ¢; = 0°,120°,—120° for i = 1,2, 3.
1
Repgg = ———- (3.18)

1 +< A )
Yrpg/?
Eq. (3.16) includes the resonance-wavelength modulation 81, = §7,.(t) = &, sin(2nf,t)
resulting from application of ultrasound waves of frequency f; . Following the signal

path in Fig. 3.3 and using the integrating property of the photodetectors, we can
write the time-dependent output voltage of the TIAs as
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Vi(62,) = aPsgsRpnG J- Rege (D) Tpass (L, 84:) Tiyz1, (A d A (3.19)
0

Here Rsgs is the power density of the broadband source, supposed constant in
the range the FBG spectrum. Ry, is the responsivity of the photodetectors, G the
combined gain of the EDFA and TIA, while « is a transmission coefficient of the
overall fiber optic circuit. In the following we drop the prefactors of the integral,
since later these cancel when extracting ®,, which is the principal sensor signal
defined below. Cancellation of prefactors becomes clear in Section 3.4.1 of the
main text. Also dropping the factor 1/3 of Tj,; ; and the subscripts FBG and pass,
this leads to J; (671,), the it" component of the integral proportional to the voltage
Vi(64y)

I = f R)T (4,65 [p +q cos (€ A+¢; + )] dA
0

(o8] oo

= pf R T (4,62,)dA+ qf R(A) T (4,62,) cos (§ A+q; +p,)dA (3.20)
0 0
= pla(57r) + qlﬂ,i(57r)-

Here we have used

[ee]

1,(62,) = fo R(D)T(A,81,)dA (3.21)

[ee)

Ig;(8%,) = f RM)T (A, 81,) cos(EA + @; + P,)dA
0
+o0
= Re {ei(%“ﬁe) f R(D)T(A, 671})eif/1d/1}. (3.22)
0

By substituting the expressions for T'(4,81,) and R(1) from Egs. (3.16) and (3.18)
into Egs. (3.21) and (3.22), we obtain

j= f ROOT (A, 6T, )eiérdA =
0

(A=A —61) +e(r/2)? el
~ \2 8
0 (A=2—84) + /2% 14 (i)

Yppg/?

da. (3.23)

The integrals I, (t) and I ;(t) can then be written as
I,(t) = f|€=0 (3.24)

Ipi(t) = Re {e!@etVelf}. (3.25)
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Using the fact that the integrand in Eq. (3.23) is vanishingly small for 1 < 0, we
can integrate J from (—o, 0)?. Making the substitution 1 — 4, — z in Eq. (3.23)
and using contour integration we obtain

(z—67)2+e<yr/z)2 eié7
—84,)" + (1,/2)?
(2= 67) + (0n/2) 1+(m/)

P reiélr = F — zdz = dz. 3.26
/e f 2=§ f@dz. (3.26)

The contour C is the upper half circle of radius R in the complex plane, includ-
ing the interval [—R,R] of the real axis, taken in the limit R -» o . The poles
of f(z) arise from the RR transmission function and FBG reflection function, re-
spectively, and for the contour ¢ occur for zzz = 84, + iy,/2 (RR pole) and
Zrpe e = (Vepe/2) €xp [im (k +1/2) /4], k = 0,1,2,3 (FBG poles). Using Cauchy’s
residue theorem, the integral is evaluated to obtain

jg f(z)dz = F(61,) + G(S,). (3.27)
C
Here F(61,) and G(64,) are given by:

1-— Svr/2 N .
Py = - O st = p (5T )eié S (3.28)

2 8
14 (5/1T+Lyr/z)
YrpG /2

(;‘ lfRe ZFBG k) _flm(ZFBG,k)_

5L = _‘_z ZFBG k [(ZFBGk 5/1r) +e(vr/2) ]

(ZFBGk 87, ) + (1r/2)?
(3.29)
The complex functions £(64,) and G(81,) are time-domain (oscillatory) signals
resulting from light interference in the 3x3 coupler, the time dependence being
expressed by 61, (t).

The oscillatory behavior of £ (67, is recognized to the full extent from the Bessel
function expansions [23] of exp(i¢61,.) = cos [EA8, sin(2rfyt)]+i sin [EAS, sin(2nfyt)],
which apart from terms at the fundamental frequency also give harmonics. The
factor exp(ié61,) is multiplied by the envelope £(51,), implicitly defined in Eq.
(3.28). The envelope includes both RR and FBG parameters and attenuates the
oscillations with increasing &, and increasing OPD. This OPD-dependence follows
from the damping factor exp(—¢y,/2) = exp(—OPD/L.,). Here L., is the coher-
ence length related to the wavelength and spectral width of the ring’s resonance
dip. L., limits the OPD of the MZI for which fringes in traces V;(t) can be resolved
experimentally. For the resonance we are using for the sensing (Fig. 3.2(b) we
have L., ~ 6 mm.

G (674, arises from interference of waves within the bandwidth of the FBG, each
FBG pole giving rise its own interference signal, damped by the factor exp [—&Im (zegg k)|

2The same approximation is applied to all integrals from (—co, ) in Chapters 4 and 5.
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= exp (—OPD /L’Z,FBG) . Here LY g is the coherence length related to the width of
the FBG spectrum and due to the kt* FBG pole. It is given by

A _ Az
2nlm(zpp61)  mry,, sin[Z(k +1/2)|

(3.30)

k —
LC,FBG -

For k = 0, we obtain L% 5; ~ 10 mm.

We have studied the complex functions £ (84,.), G(64,) and their sum K (67,).
The behavior of these functions in the complex plane is exemplified in Fig. 3.7
by plots for OPDs of 6.9 and 12.9 mm, the values used in the experiments (Sec-
tion 3.4.2 of the main text). The values of the other parameters used in obtain-
ing the data points of the functions are given in the figure caption. It can be
seen that F(61,) and K(61,) resemble a circle arc, whereas G(67,) is like a short
line segment given by Re{G(61,)} ~ constant. Resulting from a single period of
81.(t) = 8y sin(2nfyt), where §, =40 pm is approximately the maximum ampli-
tude in the experiment, the arcs and line segments are symmetric with respect to
the real axis.

F(87,) would be a circle arc if it were given by solely the factor exp(i¢é1,),
implying that deviation from an arc is due to the envelope E(§4,). To visualize the
deviation, Fig. 3.7 also shows the circle £, (81,) = Rg, exp{ié51,}, defined by the
radius Rp, = E(0). Deviation form a circle is present for either OPD, albeit most
clearly for OPD=6.9 mm.

The rather close resemblance of the sum K(64,) = F(81,) + G(67,) to a circle
arc for either OPD suggests as a first approximation

RS = E(67,)e%% + G(87,) = Fy(54,) + 2o = Rpoe®®% +2z,.  (3.31)

Here z, = |z,| exp(ip,o) is the circle center’s coordinate, which in this approxi-
mation can be taken constant and real. Eq. (3.31) for the function K(61,) has a
simple geometrical interpretation: the product ¢, is as the instantaneous angular
deflection of the periodic motion of the point K (61,) on the circle arc, induced by
the ultrasound. In Fig. 3.7 the dashed circles through the data points of K(61,)
are fits of a circle to these points, where the circle is given by the right hand side
of Eq. (3.31) but Rg, is now treated as a fit parameter. Very close similarity to a
circle is quantified by the average deviation of 0.1% from the points from the circle.

Although the approximation given by Eq. (3.31) and the periodic motion on
the circle arc already present the physics picture, refinement is needed, since the
functions £(81,) and G(61,) are not constant and thus distort K(64,). Further,
E(8,) and G(64,) contribute to the angular deflection of K(§4,.), modifying the
total bi-directional deflection angle 25, of £,(61,) to the value 2®, of K(67,).
In Fig. 3.7 the deflection angles have been indicated. @, is the amplitude of the
periodic deflection ®(t) = @, sin(2nf,t) for K(51,). Assuming that the sensor
operates in the linear response regime, characterized by small membrane deflec-
tions and small resonance-wavelength modulation compared to the width of the
FBG spectrum, the instantaneous deflection ®(t) is expected to be proportional to
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Figure 3.7: Plots of the functions £, G, K and F, in the complex plane for (a) OPD=6.9 mm and (b)
OPD=12.9 mm. Zero angular deflection of the functions occurs for the point where Im(function)=0.
The black dash-dotted curve is a fit of a circle to the data points of K, giving radii of 54.3 and 32.6
pm for the OPDs of 6.9 and 12.9 mm, respectively. For F, the radii are 60.1 and 23.2 pm, for these
OPDs. In the plot the total bi-directional angular deflections 2£8, and @, for the functions £, and K ,
respectively, are indicated. In calculating the functions, the following parameters were used: y, = 122
PM, ¥,z = 207 pM, & = 0.043 (the three values in section 3.2) and §, = 40 pm.

81,.(t) = 8, sin(2mfyt). 8, in turn, is expected to be proportional to the amplitude
po Of the ultrasound pressure. Fig. 3.7 shows that 2&, < 2¢4,, the inequality be-
ing marginally observable for OPD=6.9 mm. The modification of the total deflection
angle suggests to introduce the correction factor k = §§,/®,. The angles in Fig.
3.7 give k = 1.07 and k = 1.26 for the OPDs of 6.9 and 12.9 mm, respectively.
Similarly, for sensor #2, we obtain x = 1.03 and k = 1.16 for these OPDs, which
are some smaller than for sensor #1. This decrease of k arises from the smaller y,
of sensor #2 (y,. = 96 pm).

In the experiment, the sensor is interrogated by measuring the voltages V.
Based on the considerations leading to Eq. (3.27), the V; are described by the
function J = exp(i&A,)K(84,) = exp(i€A,) [F(82,) + G(82,)]. The function J, via
its dependence on exp(i¢81,) or equivalently on exp (i®(t)), in principle contains
all information on the ultrasound sensed by the sensor. From the V; the following
functions are constructed:

Ve(@®) =2V =1, = 15, (3.32)

V() =V3 (15— 1). (3.33)

In V,.(t) and V,.(t) the contributions from I, (t) cancel, as these are independent of
@; (see Eq. (3.24)). Actually, 1,(t) does give an appreciable contribution to the
total integral I;(t), while I,(t) carries no useful information on 61, and thus limits
the smallest measurable §1,.

We now rewrite Ig; of Eq.(3.25) in the approximation given by (3.31), using
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Egs. (3.26)-(3.28):

Iﬁ,i = Re {ei((Pi'H/"e)j}
= Re{el@rber&n [£(87,)e5% + G(67,) |} (3.34)
=~ Re {ei(¢i+¢e+fﬂr) [RKeiq)(t) + ZO]}'

Here Ry is used now instead of Ry, to emphasize that we are dealing with K(62,).
Based on the definition of k we have ®(t) = é61,.(t)/k. Using Eq. (3.34) and
omitting the prefactor q of Eq. (3.20), V,(t) and V,(t) can be written as:

Ve (t) = 3Ry cos ((t) + Y, +EA,) + 3|z| cos ((pzo + e + f/lr)
= 3Re{eiCH VIR (1))}, (3.35)

Vi (t) = 3R sin (@(t) + e + E4,) + 3|z sin (@, + e + EX,)
= 3Im {e!CA ¥R (d(t))}. (3.36)

V. (t) and V,,(t) oscillate around levels x, and y,, respectively, given by

xo = 3|2o| cos (¢, + e +E4,), (3.37)

Yo = 3|20 sin (@, + e +E2,). (3.38)

Egs. (3.35) and (3.36) show that V,(t) and V,,(t) are orthogonal, a known property
[16] for the combinations of outputs of a 3x3 coupler defined by Eq. (3.32) and
(3.33). Further, in time, the point (V. (t),V,(t)) traces a circle arc in the V, — 1},
plane, of radius 3R, and with center (x,,y,). Equivalently, the circle arc according
to these equations is a partial plot of the function 3 exp (iéA, + iy,) K(®(t)) in the
complex plane. Experimentally, measuring V,(t) and V, (t) leads to ®(t), which
yields @, by Fourier transformation. Details about the interrogation procedure in
practice are given in Section 3.4.1 of the main text.

As described in Section 3.3.1, a high pass filter is applied after the TIAs. The
signal components x, and y,, which are close to DC in view of the slow drift of the
environmental phase ., will thus be removed. However, by rewriting the terms
with sin (®(t) + é4, + Y,) and cos (®(t) + &4, + Y,) in Egs. (3.35) and (3.36) to-
wards linear combinations of sin (®(t)) and cos (®(t)), and by using Bessel func-
tion expansions [23], it can be shown that signal components at the ultrasound
frequency f, and its harmonics result. These components, which survive the high
pass filtering, are modulated by sin (¢4, + ,) or cos (¢4, + ,) and thus still de-
pend on the environmental phase. This is not an issue, since the time scale for
interrogation of the sensor is much shorter than the time scale of the drift. Thus,
the angular deflection amplitude @, which is the principal sensor signal, can be
obtained for IVUS imaging.
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Appendix B : Modulation method for measuring the

amplitude of the resonance-wavelength modulation

The modulation method is based on laser induced power modulation, described in
Chapter 2, operated in a point on the steep and linear flank of the transmission
dip (see Fig. 3.2b). The laser also used for characterizing the MZI (Section 3.3.2)
actuates the sensor and is tuned to operation point 1y, = 1550.14 nm. We mea-
sure the modulated power transmitted through the sensor using a photodetector
(New Focus, 1811-FC-AC). The resonance-wavelength modulation according to this
method is

T;?ass(lop.) - Tpass(lop.: t)

0Tass/ 04| oo

81, (t) = (3.39)

Eq. (3.39) implies that 61, can be obtained from a time trace Thass(Aop., t), @and from
the static transmission value T, (A0p.) and its derivative aT,g’ass/au I The latter
op.

two quantities follow from the static transmission curve in Fig. 3.2b, which is also
measured using the laser setup just described, albeit that the laser wavelength is
swept and the DC mode of the detector is used. The modulation amplitude §, is
obtained as the peak value of the Fourier transform of §1,.(t) at 1.3 and 0.77 MHz
for sensors #1 and #2, respectively.
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On-chip interrogator based
on Fourier transform
spectroscopy

In this paper, the design and the characterization of a novel interrogator
based on integrated Fourier transform (FT) spectroscopy is presented. To
the best of our knowledge, this is the first integrated FT spectrometer used
for the interrogation of photonic sensors. It consists of a planar spatial hetero-
dyne spectrometer, which is implemented using an array of Mach-Zehnder
interferometers (MZIs) with different optical path differences. Each MZI em-
ploys a 3x3 multi-mode interferometer, allowing the retrieval of the complex
Fourier coefficients. We derive a system of non-linear equations whose solu-
tion, which is obtained numerically from Newton’s method, gives the modu-
lation of the sensor’s resonances as a function of time. By taking one of the
sensors as a reference, to which no external excitation is applied and its tem-
perature is kept constant, about 92% of the thermal induced phase drift of
the integrated MZIs has been compensated. The minimum modulation am-
plitude that is obtained experimentally is 400 fm, which is more than two
orders of magnitude smaller than the FT spectrometer resolution.

4.1. Introduction

Photonic based sensors find nowadays a wide range of applications. Acoustic and
ultrasound sensors [1, 2], pressure sensors [3], biochemical and gas sensors [4, 5]
are examples of sensors based on optical technology. They are low cost, immune to

Parts of this chapter have been published in Fellipe Grillo Peternella, Thomas Esselink, Bas Dors-
man, Peter Harmsma, Roland C. Horsten, Thim Zuidwijk, H. Paul Urbach, and Auréle L. C.
Adam , On-chip interrogator based on Fourier transform spectroscopy Optics Express, Vol. 27, Issue
11, pp. 15456-15473 (2019) .

63



64 4. On-chip interrogator based on Fourier transform spectroscopy

electromagnetic radiation, and operate under a wide range of temperatures. In this
paper, we focus our attention on photonic sensors whose transmission or reflection
spectra have a peak (or dip) in their lineshape. Examples are sensors based on fiber
Bragg gratings (FBGs)[5, 6] or on integrated ring resonators [1, 2, 4]. For these
sensors, it is possible to build large and multi-purpose sensor arrays by wavelength
multiplexing the spectrum of the sensors [6, 7].

The photonic sensors mentioned above are designed in such a way that the
signal to be sensed modulates the sensor’s resonance wavelength. Interrogation
is the technique of demodulating and demultiplexing the response of an array of
photonic sensors. Different methods have been proposed in the past. A com-
mon approach is to measure the spectrum of the sensor array using a dispersive
spectrometer such as an arrayed waveguide grating (AWG)[8-10] or an echelle
grating[11]. Their sensitivity to the external excitation depends on the spectral
resolution of the spectrometer; higher resolution comes at the price of a larger
footprint. Another approach is edge filtering, where the output spectra of the pho-
tonic sensors is conveyed to an optical filter whose transfer function is linear within
certain range. As the spectrum of the sensor shifts due to the sensing signal, the
filter converts the resonance wavelength modulation into power modulation which
can be obtained by a photodetector. The main drawback is that a high sensitivity
may compromise the wavelength operation range[12]. Passaro et al [13] reports
the spectral scanning as a possible solution, which features a high sensitivity and
a large wavelength operation range. On the other hand, most of these interroga-
tors are based on thermal tuning which limits their interrogation speed to a few
kHz. Another approach for interrogation is to use passive interferometers such
as Mach-Zehnder interferometers. In combination with a demultiplexing element,
such as an AWG, it is possible to interrogate the photonic sensors as demonstrated
in [14, 15]. Despite the high sensitivity of this interrogator, special care should be
taken to match the spectra of the AWG outputs to the sensors spectra. This might
be an issue for integrated sensors such as ring resonators [1] since the resonance
wavelength, in most of the cases, cannot be predicted during the design due to
variations of the fabrication process.

The interrogation method here proposed may be applied to any sensor whose
spectrum is finite and is modulated by an external signal. We demonstrate its per-
formance using FBG sensors, but the method is equally suitable to other types of
sensors such as ring resonators. To the best of our knowledge, this is the first inter-
rogator based on integrated Fourier Transform (FT) spectroscopy. The technique
is promising since it benefits from high flexibility, high sensitivity, and offers a high
tolerance to variations of the fabrication process. In the past, FT spectroscopy was
applied to demultiplexing FBG sensors [16, 17], but at that time, the speed of the
method was limited by the mechanical speed of the mirror. Integrated photonics
enables the design of new FT spectrometer implementations. The most common
one consists of an array of MZIs with different optical path lengths (OPDs) [18-22].
Alternatively, [23] uses a single MZI whose OPD can be dynamically increased by
using optical switches. The spectrum can be retrieved by calculating the coefficients
of the Fourier cosine series from the interferogram [18, 19] or by solving a system
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of linear equations [20-23]. However, since the number of MZIs is finite, the re-
trieved spectrum is an approximation to the actual one and a large the number of
MZIs is required in order to achieve a high spectral resolution.

The design of our integrated FT spectrometer is similar to the one proposed
by [24, 25], where the complex Fourier coefficients of the system are obtained
by using 3x3 multi-mode interferometers (MMIs). In our case, however, instead
of retrieving the spectrum, we demonstrate that the complex Fourier coefficients
can be written as a sum of the individual contributions of the sensors. We obtain
a coupled system of non-linear equations, whose solution gives the modulation
of the sensor’s resonance wavelength. The minimum modulation amplitude we
experimentally retrieved is 400 fm, more than two orders of magnitude smaller
than the spectral resolution of our own FT spectrometer. While the spectrometer’s
resolution depends on the number of MZIs and their OPDs, the system of non-
linear equations is limited by the signal-to-noise ratio of the input signal and the
accuracy of the coefficients experimentally obtained (see Section 4.3.2). Moreover,
we demonstrate that the number of interferometers can be as small as the nhumber
of sensors, which strongly reduces the device footprint without compromising the
interrogator sensitivity. Finally, we propose a novel technique for compensating the
slow drift with time of the phases of the MZIs due to temperature fluctuations[ 1, 26].

4.2. Design and characterization of the FT spectrom-

eter

Fig. 4.1(a) shows a picture of the FT spectrometer. The chip was fabricated in a
multi-project wafer run at the Smart Photonics foundry using InP technology. Its
dimensions are 4.0 mm by 4.5 mm. The chip has a total of 7 inputs, but inputs
#5 and #7 are not used, as indicated in the Fig. 4.1(a). The cross-section of the
waveguide at the facet of the chip is shown in Fig. 4.1(b) (the mode field diameters
are 2.8 um in the horizontal direction and 0.96 um in the vertical direction). This
waveguide makes an angle of 7 degrees with respect to a normal line perpendicular
to edge of the chip, as shown in Fig. 4.1(d). The optical fiber guiding the light signal
to be coupled to the chip is placed at an angle of 23 degrees with respect to the
normal, avoiding that the reflections from the chip facet to be coupled back to the
fiber (the angle of 23 degrees can be obtained using Snell’s law, giving the fact that
the effective index of the waveguide is 3.26 at 1550 nm). The waveguide at input
#4 is the only waveguide which makes an angle of 90 degrees with respect to the
chip edge.

By using a taper, the width of the shallow etch waveguide shown in Fig. 4.1(b) is
slowly reduced to 2.0 um, where a proprietary component, provided by Smart Pho-
tonics, couples the optical field into the deep etch waveguide shown in Fig. 4.1(c).
Compared to the shallow etch waveguide, the deep etch waveguide has a higher
mode confinement and it is used everywhere else in the chip. Following the optical
path of the main input port (input #1) the light signal is split into nine beams using
1x2 and 2x2 MMIs (the 2x2 MMIs are indicated in the Fig. 4.1(a); all other power
splitters are 1x2 MMIs) and guided to nine different Mach-Zehnder interferometers.
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The chip has multiple inputs, each providing access to a specific set of MZIs (see
Fig. 4.1(a) and Fig. 4.2). The main idea is to optimize the optical power budget:
in Section 4.3 it is shown that the number of photonic sensors must be as large
as the number of the MZIs. The multiple inputs allow the choice of the number
of MZIs to be used during the interrogation. For instance, in order to interrogate
up to 5 sensors, it is preferred to use input #6, through which the optical power is
shared among MZIs 1-5, instead of input #1. Interrogating the photonic sensors
using more MZIs than needed is possible and the extra MZIs may provide some
additional information which can be used to increase slightly the signal-to-noise ra-
tio. However, the fringe visibility of the MZIs with larger OPDs are strongly reduced
(see the discussion in the end of Section 4.3.1) and better interrogation results have
been obtained by using a small number of MZIs. The optical connections shown in
the diagram of Fig. 4.2 indicate a non-uniform distribution of optical power for MZIs
1-5. Following the path from input #6, Fig. 4.2 shows that MZIs 4 and 5 receive as
much power as MZIs 1,2 and 3; MZI 3 gets the same amount of optical power as
MZIs 1 and 2. Using such distribution, MZIs with larger OPDs receive more power,
mitigating the reduced visibility of the MZIs with larger OPDs.

One of the key benefits of the FT spectrometers is the large optical throughput
(etendue) compared to other types of spectrometers [18, 20, 22]. The design of
our FT spectrometer allows the light signal to be coupled from both sides of the
chip simultaneously. In this case, it would be needed to split the signal containing
the combined spectra of the sensors externally (by using a 1x2 fiber coupler, for
instance). This feature has not been explored in this paper, but it could increase
the interrogator performance if an additional optical gain is given for the signal
to be coupled to the left side of chip, where inputs #2 - #4 provide access to
MZIs with larger OPDs (input #1 must not be used, otherwise some of the MZIs
would receive the light signal coming from both of chip sides). Optical power is
uniformly distributed (see Fig. 4.2) for MZIs 6-9 so that a larger gain is expected
for compensating the reduced visibility.

MZIs represent the heart of the on-chip FT spectroscope. The length difference
between the arms range from 0.710 mm to 6.39 mm in steps of 0.710 mm. At
the end of the MZI, the light signals from the two arms interfere within a 3x3
MMI (360 um length, 11.4 um width). The chip is glued to a printed circuit board
(PCB), to which the chip pads were wire bonded. Outputs per MZI of this PCB were
connected to an other PCB which contain three transimpedance amplifiers (TIAs)
for the photodetectors and a pre-processing module. This module gives a linear
combination of the outputs, as indicated in the schematic shown Fig. 4.1(e).

In this Section we characterize the MZIs of the FT spectrometer by consider-
ing its response to one particular wavelength A. The transmittance for the given
wavelength of [-th output of the m-th MZI is given by:

T (A) = % [1 + vy, COS <2nw + ¢,)], (4.1)

where vy, is the visibility, n. ., (1) is the effective index of waveguides of the m-th
MZI, AL,, the arms length difference of the m-th MZI, and ¢, is the MZI phase shift
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Figure 4.1: (a) Picture of the FT spectrometer chip. AL,, is given by AL,, = mAL, with AL; = 0.710 mm,
leading to F,, = F,/m, where m is an integer number ranging from 1 to 9. The different MZIs are
identified with the index m. The 2x2 MMIs are indicated in white. All other power splitters are 1x2
MMIs. (b) Cross-section of the shallow etch waveguide. The refractive indexes at the wavelength of
1550 nm are also indicated. (c) Cross-section of the deep etch waveguide. (d) Schematic of an optical
fiber aligned to one of the inputs of the chip. For input #4, 6,,, = 6 = 0°. For all other inputs, 6,,, =
7° and 6y = 23°. (e) Schematic of the FT spectrometer and the PCB that implements the TIAs and a
pre-processing module. The outputs are sampled by the DAQ.
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of MZIs with larger OPDs. Pads are identified in Fig. 4.1.
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given by (120°, 0°, -120°) for [ = 1,2,3 in case the 3x3 coupler is balanced. In our
design, the waveguide effective indexes are all the same except by small deviations
caused by variations of the fabrication process. Expanding the term n,sf,(4)/4 in
Taylor series around 1,, we obtain:

Nefrm(A) - Nerr(Ao) + Mg + ONespm
R o

9, (4.2)
A3 ’

where én,,, are deviations of the nominal value of the effective index at the m-
th MZI and A, a wavelength close to 1550.0 nm. The approximation holds as long
as the effect group index (n,) can be considered constant over the spectrum of

interest. Replacing Eq. (4.2) in Eq. (4.1) we obtain *:
1 A
T (D) = 3 1 + vy, cos 27rF— — O —VYem || (4.3)
m
where F, = A§/(nyAL,,) is the free spectral range’ of the m-th interferometer and

2nAL
'(!}e'm = /10 m (ng + neff(/lo) + Sneff‘m) . (4.4)

In our design, AL, is given by AL,, = mAL, with AL, = 0.710 mm, leading to
E, = F,/m, where m is an integer ranging from 1 to 9 and F;, = 921.7 £ 0.5 pm.
Ve, m depends on n, ¢ (44), which might change in case of temperature fluctuations,
inducing a phase drift in T,,;(4).

The schematic of Fig. 4.1(e) shows that the outputs of the MZIs are con-
nected to integrated photodetectors (PD). The PD current I,,,; is given by I,,,;(1) =
PnRppTmi (1), Where P, is the optical power delivered at the m-th MZI and R,
is the photodetector responsivity. The outputs of the photodetectors are send to
TIAs, whose outputs voltage are given by:

le(l) = gTIA,mleRmemk (’1)

PnR A
= w [1 + vy, COS <Z7TmF1 - ¢ - zpe_m)], (4.5)

where gr; 4 is the transimpedance gain. The 3x3 MMIs were designed to produce
interference fringes with similar amplitude and a 120° shift between each other.
Aiming for the interrogation of the photonic sensors, the pre-processing module of
the PCB combines the TIA output voltages according to [1]:

A
Vinx(A) =2Vip3 = Vip g — Vipo = Apy x COS <2an - llle,m) + Xoffm
! (4.6)

. A
Vm,y()l) =3 (Vm,z - Vm,3) = Am,y Sin anFl —Yem — 6Py | + Yoffms

1Eq. (4.3) reduces to Eq. (3.7) by neglecting the dispersion of the effective index.
2In order to simplify the notation, in this chapter we represent the free spectral range of the m-th MZI
as F,, instead of FSR,,.
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Figure 4.3: (a) Traces of V; , and V, ,, as a function of the laser wavelength. We fitted Eq. (4.6) against
the data points and we obtained F; = 921.7 + 0.5 pm, §¢, = 17.9 £0.3°, A, , = 1.449 £+ 0.003V and
Ay = 1.234 £+ 0.004V. (b) Lissajous plot of the data points [Vix(A), Vl_y(l)] shown in Fig. 4.3(a). By
fitting an ellipse to the data points we got 1.56 V and 1.09 V for the semi-axis values and 31.2° for the
tilt angle with respect to the x-axis.

where V,,, and V,,,,, are 90° phase shift voltages, A,,, and 4,,, are the voltage
amplitudes, x,f¢., and y,srm are voltage offsets, and §¢,, is a phase error. If
the 3x3 MMI and the electronic components of the PCB are ideal (ideal operational
amplifiers and no variance with respect to the nominal value of the resistors and
capacitors), the voltage offsets are zero (xorfm = Yorrm = 0), ¢ = 0, and
Apx = Amy = PnRpngv, where the visibility is v = vy, = vy, = vp3 and the
TIA gain is gria = griam1 = 9riamz = 9riams- In this case, the Lissajous curve
[Vinx (D), Vi, ()] gives a circle with radius vP,R,,g centred at the origin.

The transmission spectrum of each MZI has been measured using a tunable laser
(Agilent, 81960A). The laser power is set to 6.0 mW and we performed the laser
wavelength sweep ranging from 1550 nm to 1551 nm in steps of 1 pm, while the
outputs of the pre-processing module are recorded by the digital acquisition module
(DAQ, National Instruments, NI 9220). Fig. 4.3(a) shows the measured voltages
of the outputs of MZI 1 (AL, = 0.710 mm), as well as a fit of the measured data
against to Eq. (4.6). Since V; , and V;,, have slightly different amplitudes and ¢,
= 17.9°, the circle is deformed into a tilted ellipse centred outside of the origin, as
shown in Fig. 4.3(b).

4.3. Interrogation method and experimental setup

4.3.1. The interrogation method

Here we derive the expressions for determining the resonance wavelengths of the
photonic sensors as a function of time. Typically, the spectrum of each sensor has
a peaked lineshape, which is modulated by an external signal such as temperature,
strain or any other physical or chemical quantity. The photonic sensors are assumed
to be wavelength multiplexed. Let there be K sensors with resonance wavelengths
A (t) at time t, where k = 1,..,K. The combined spectrum S(A, A, (t),... 1 (t))
received by the interrogator is given by:

K K

SO, 2k (O) = ) A A®) = ) 5= A(®), (47

k=1 k=1
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where s, (4, 1, (1)) is the spectrum of the k-th sensor. The signals that are to be
sensed induce time dependent modulations of the resonance wavelengths. The res-
onances A, (t) must be separated so that the curves s, (4, 1, (t)) do not overlap. In
this paper s, (4, 4, (t)) correspond to the reflection spectra of FBGs sensors. How-
ever, the method applies also to integrated photonic sensors as the ones described
in[1].

S(A) is assumed to be a poly-chromatic signal and the values of the TIA output
voltages are given by:

V() = G f_ S A4 (), e Ak (D) Ty (D) dA, (4.8)

where the constant G is given by G = (1 —a.)grsa, Rpn With a. the coupling losses.
The electronic pre-processing module combines the signals from the three outputs
of the interferometers according to Eq. (4.6), resulting in the two 90° phase shifted
voltages V;, ,(t) and V, ,(t):

[o9]

A
Vinx () = 3GJ S(A, A1 (8), o Ak () cOS <Z7TmF - z,be_m> dA+ Xorfm,  (4.9)
1

—00

© 2
Vny (£) = 3G f S, A1 (), o Ag () sin <2an - zpe,m> dA+ Yorrm:  (4.10)
—o0 1

The voltage offsets x,¢f ., and v, are mainly caused due to imperfections in the
3x3 MMIs. At the end of a calibration process (see Section 4.3.2), the offsets are
removed by averaging and, at this point, they are neglected.

By defining a complex voltage ¥}, () = Vy, (t) + iV, (t) We obtain:

V() = 3Ge™Wem f S AL (L), 0 Ak (1)) exp (iana) da. (4.11)
—0o0 1

The chip is characterized after the MZI phase drift has been stabilized, so ),
is constant in time and taken out of the integral in Eq. (4.11). In Section 4.3.3,
however, a novel method is presented for compensating the environmental phase
drift by using one of the sensors as a reference. We assume that S(4, A, (t), ... 1 ()
vanishes outside the interval [, — F; /2,1, + F; /2] for all times t, where 4, is a
wavelength close to 1550.0 nm. Then we have:

RO le/z

2m 4.12
= S(A, A1(8), - A (D)) €XP (mEA) i (4.12)

Ao—F1/2

Eqg. (4.12) are the Fourier coefficients of the function 1 - S(4, A, (¢), .., A¢(t)) when
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considered as periodic function with period F,. This implies that:

1 ¢ . . m
g iYem —q —_
S A1 (8), e e (D)) =5 ; 7. (e exp( i2m F1/1>

Z [ () cos (Zn Uiy zpem> — Vyy () sin (27%,1 - we,m)],
=0 1

(4.13)

n|N

where V_,,(t) = V' (t) since S(4, A4 (t), ... A, (t)) is real. The chip contains a finite
number of M = 9 interferometers. The retrieved spectrum Sy (A, A1 (t), ... 1 (¢)) is
given by:

2 ud . m
Sy A(t),.., 1 () = 3c Z [ Vinx(t) cos <2T[ —1=1, m) — Viny(t) sin (ZHFA - z,be_m>].
= 1

(4.14)

Function S(4, 1, (t), .., Ax (t)) differs from S,,(1, A1 (t), .., 1x (t)) by the fact that the
last one features a finite spectral resolution 64, given by:
F
2M°
For M = 9, 6A,.s = 50 pm. Moreover, Sy (4,1, (t), .., Ax(t)) is periodic with period
F,. For a large number of interferometers (M >> K), Sy (4, 1,(t), .., 1 (t)) gives a
good approximation to S(4, 1, (t), .., Ax (t)) and it is possible to obtain the resonance
wavelengths by tracking the peaks of Sy (4, A (t), ... 1 (t)). However, §4,..¢ repre-
sents a limitation to the minimum resonance wavelength that can be experimentally
obtained.

In order to determine 1, (t) with higher accuracy and using a reduced number
of MZIs we derive a non-linear system of equations. We assume in this Section that
A(t) is known at t = 0. Let

8res = (4.15)

A (£) = A, (0) + 8k (t), (4.16)

where §,(t) is the modulation of the resonance wavelength of the k-th sensor that
we aim to determine. By substituting Eq . (4.7) and Eq. (4.16) into Eq. (4.11), we
obtain:

K [oe]
V() = 3Ge~iWem se(A = 2, (0) = 8,()) exp (mﬁl) . (4.17)
;[_w k k k F

The right-hand side of Eq. (4.17) represents the Fourier transform of s, (1 — 1, (0) —
8, (t)) evaluated at m/F,. Using the shift property of the Fourier transformation,
Eq. (4.17) is rewritten as:

K
. m m

= E $ i — — i2m— , (4.1
Vi (t) = 3G a S$r(m/F) exp [1 ( Yem + 21tF1 Ak(0)>] exp (LZnF1 O (t)) (4.18)
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where $,(m/F,) is the Fourier transform of s, (1). Let

Amr = 368, (m/F) exp [i <—1Pe,m + anlk(0)>] . (4.19)
1
We rewrite Eq. (4.18) as:
K
A 2mm
Ou(©) = ) @ exp [i "5 (t)], (4.20)
k=1 1

for m = 1,..,M. The coefficients a,,, are experimentally determined as explained
in Section 4.3.2. Eq. (4.20) represents an MxK system of non-linear equations to
be solved using Newton’s method, where M is the nhumber of interferometers and
K is the number of sensors. Hence, the number of interferometers must only be
at least as large as the number of sensors (i.e. M >= K), which means that the
footprint of the device can be relatively small. In our chip M = 9. The system is
explicitly written in the in Eq. (4.21):

N 2w (t) )
Vi(t) =aqq exp|i 7 +aexpli
1

218, (t)

1

218, (t)
F1 ]

216, (t
]+azzexp[2i m0,(8)
F

2mok (t
+...+a1Kexp[i K()],
B

N . 2mk (t)
V,(t) =a,q, exp|2i + ..+ ag exp ZlT ,
1

218, (t)
F

27r61(t)]

) 2mék (t)
A + ay, eEXp [Ml F, .

VM (t) =apy1 €Xp [Ml ] + ..+ Ay g EXP [Ml

(4.21)

It can be show that as long as the phases 274, (t)/F, (for k = 1,..,K) are different
and the initial guess for {6, (t), .., 5k (t)} is close to the actual solution, the Jacobian
av,,/08 is not singular and the Egs. (4.21) are independent. From Eq. (4.16), at
t =0, {6,(0),..,6¢(0)} = {0, .., 0}. The solution at time ¢ is taken as an initial guess
at t + 1/f;, where f; is the sampling frequency. This reduces the computational
time and assures that the initial guess and the solution are close to each other.
The method is also flexible in the sense that the ratio between the arms length
difference of the MZIs (AL,,,/AL,) does not need to be an integer number, which
would cause the m value in Eq. (4.20) to a fractional number. The equations remain
independent as long as the AL,, values are different.

Assuming that the FBG sensors spectra have a Lorenzian lineshape, we replace
the Fourier transform of s, (1) into Eq. (4.19):

3Gsp™ —-mOPD, ) m
Amr = — exp — - exp|i| —Yem + ZnElk(O) , (4.22)
c

where s;"®* is the maximum value of the Lorenzian of the k-th sensor, 0PD; = njzAL,
is the optical path difference of MZI 1, and L is the cohenrece length given by:

2
Lo = Ho
ck — )
TWy

(4.23)
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where wy, is the full width half maxima (FWHM) of the Lorenzian. The coherence
length limits the maximum OPD value which allows interferometric fringes to be
experimentally resolved. Eq. (4.22) shows that a,,, becomes very small when the
MZI free spectral range is comparable or smaller than the FWHM of k-th sensor.
As discussed in Section 4.3.1, the MZIs with larger OPDs are not used due to the
strong attenuation and the reduced signal-to-noise ratio (SNR).

4.3.2. Calibration and experimental determination of the coef-
ficients

The coefficients a,,; are experimentally determined via the following calibration

procedure:

1. Apply an excitation to all the sensors individually. During the time interval
trart < ¢ < ¢2"4, where the k-th sensor is being excited, all other sensors
must receive no excitation. As a result, the Lissajous curves (Vi Vi), -
(Vux, Vu,y) are ellipses. Excitation must be applied for all K sensors. In total,
M x K ellipses are obtained, where M is the number of voltage pairs and K
the number of sensors.

2. Fit an ellipse to the voltage pairs (V; x, V1), -« (Virx Vir,y) during the interval
t5rart < ¢ < ¢g"4. Repeat this procedure for all sensors.

3. Apply the linear transformation that maps the ellipses to circles.

4. Using the radius R, and the angles of the circular arcs at t = t¢"4, determine
the module and argument of coefficients a,,-

5. Compute the voltage offsets using Eq. (4.32).

Step 1 Let ¢;'“"* be the instant of time when the calibration of k-th sensor
starts and ¢£¢ be the instant of time when the calibration ends for the same sensor.
During the time interval ¢§'*"t < t < t£"¢, all sensors are kept at rest, while sensor
k is excited. In case sensor k is a temperature sensor, heat is applied (as much
as possible) during the calibration. If sensor k is a strain sensor, a large stress is
applied (as much as possible). For an ideal 3x3 couplers, according to Eq. (4.20),
the m-th complex voltage V,,,(t) during the time interval t5t%t < t < t¢"? is given
by:

K

A _ iZTT.'Fﬁsk(t) _ iOmi ()

Vm(t) - |amk|e 1 + Ami = |amk|e mk + Cmk» (424)
l#k

where 6;(t) = 0 if | # k since no excitation is applied to the other sensors. c,,;, =
Yy @t @nd 6, (¢) is the complex argument of the term |,y |e™2™x()/F | given
by:

0]

gmk(t) =m2n Fl

+ arg(amp)- (4.25)
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The Lissajous curve (R{V;,(£)}, 3{V,(£)}) for ¢5197¢ < t < t¢™¢ is given by a circular
arc:

(Vm,x (t)' Vm,y (t)) | tim"<t<ti"d = (iR{Vm (t)}' S{Vm (t)}) | tim"<t<t,‘i"d

= [lamkl cos (Hmk (t)) + ER{ka,}' |amk| sin ((Hmk (t)) + S{ka}] |tls<tart<t<tind ’
(4.26)

where (R{cux}, S{cmi}) defines the arc centre, |a,,| the radius, and 6,,,(t) the
instantaneous angle with the real axis.

Fig. 4.4 shows a simulation of the calibration for two sensors. The calibration
starts at t = t; < 0 and ends at t = 0, when the interrogation procedure starts.
During 5%t < t < t$™4, sensor 2 is kept at rest, while sensor 1 is excited by moving
its resonance wavelength from 1550.50 nm to 1550.16 nm, as shown in Fig. 4.4(a).
This induces the oscillations of V; ,(¢) and V; ,,(t) during 5" < t < t¢™* as shown
in Fig. 4.4(b), which are traced as a circular arc in red shown in Fig. 4.4(c). The
procedure is repeated for sensor 2: during t5t%"t < t < t$™@, while sensor 1 is
not excited, sensor 2 changes its resonance from 1550.75 nm to 1550.33 nm. This
causes the oscillations from t5t47t < t < t§™¢ in Fig. 4.4(b) which are traced as the
circular arc in green shown in Fig. 4.4(c).

Step 2 As explained in Chapter 3, a slight non-ideal behavior of amplitude and
phase of 3x3 couplers are not uncommon and result into a deformation of the
circle in an ellipse. An ellipse is fitted to the data points (V;,,(t)",V;,,,(¢)") during
the interval t§/%"* < t < tg"¢, where V,,, (¢)" and Vj,, ,,(t)" are the m-th MZI voltages
measured during the calibration. A larger excitation of the k-th sensor results in
a larger angular deflection, leading to a more accurate retrieval of geometrical
parameters of the ellipse.

Step 3 The fitting gives the ellipse semi-axis r ,,, and 1y, (Where ry >
rmk), the angle a that represents the rotation of the ellipse with respect to the
x-axis, and the ellipse centre (x.,y¢l). In order to map the ellipse to an circle,
the following transformation is applied:

<Vm,x(t)) — <r1,mk/r2,mk 0> ( cosa sin a) (Vm,x(t)’> (4 27)
Vin,y (1) 0 1)\—sina cosa/\Vy, () )’ )

where V,, . and V;,,,, are the corrected values of the 90° phase shifted voltages so
that the Lissajous curve (V. (t), Vm_y(t)) for t5temt < t < t&™4 gives a circle arc with
radius 7y . The correction of Eq. (4.27) needs to be performed for all interferom-
eters (m = 1,..,M). Although the ellipse semi-axis 7y, and 7, ,x, as well as the
corrected radius r; ,,,, may change according to the sensor (since it depends on its
total transmitted or reflected power spectrum) and according to the interferometer
(due to the different MZI's coherence lengths), the ellipse eccentricity depends only
on the 3x3 MMI, as discussed in Section 4.2. Thus, for a given interferometer m
the ratio 1 ;i /72,mx IS constant for k = 1,.., K. The design of the 3x3 MMI is the

same for all interferometers, hence the ratio r; ,,, /73, is constant form = 1,.., M as
long as the variations of the fabrication process are negligible.
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Step 4 After calculating the 90° phase shifted voltages, the modulus of the
coefficients a,,; can be obtained. Since the radius of the circle arc obtained for the
m-th interferometer and the k-th sensor is r ,,,;,, the modulus of the coefficients
anx, according to Eq. (4.26), is given by:

|amk| = ", mk- (428)

Next, the linear transformation of Eq. (4.27) is applied to the point (x&.,y¢l),

which gives the centre (R{cm i}, S{cmi})- The angles 6, (¢t) (for m = 1,..,M and
k =1,..,K) are given by:

emk (t) = arCtanz (Vy,m (t) - S{Cm,k}' Vx,m(t) - m{cm,k})t (429)

where arctan,(x,y) is the four quadrant arc tangent. During the final stage of
the calibration of sensor k, the angle 6,,,(t) remains constant because then no
excitation is anymore applied to it. By substituting ¢t = t&"¢ in Eq. (4.25), we
obtain:

S (tend 5, (0

O (£87) = mZHM + arg(amy) = m2m k(0

F F

where the calibration procedure ends at t = 0. According to Eq. (4.16), 6,(0) = 0.
Therefore, the argument of a,,, is given by:

arg(ami) = O (tF") = 01 (0). (4.31)

The values of A, (t) (for k = 1,..,K) are in general unknown at the end of the
calibration (t = 0), which contradicts the assumption made in Eq. (4.16). Here,
we refine our previous statement by assuming that the values of 1, (t) are known
at t = t,, before the calibration procedure starts. In most of cases, however, the
sensors can be calibrated in such a way that their resonance wavelengths return to
their initial value at the end of the calibration (14 (ty) = 1,(0)). In situations where
this is not possible (due to a sensor hysteresis, for instance), the values of 1, (0) can
be obtained by following the procedure: (a) determine the value of §(t*"*) from
Eq. (4.25) evaluated at ¢t = t5:*"¢; (b) substitute the value of §(¢5:*") in Eq. (4.16)
(also evaluated at ¢ = ¢314").

Step 5 After finishing the calibration of all sensors in this way, the offsets are
determined by averaging:

1 0
Xoffm = _J Viny () — g |ami| cos [Bmi (D] pdt,
[tol Jt, -

1 ° '
Yorrm = |V = D lamel 5in e (0] .
[tol Je, -

Finally, the complex voltages are computed as function of time to be used in
Egs. (4.20) and (4.21):

Vm(t) = [me(t) - xoff,m] +i [Vym (t) - YOff,m] . (433)

+ arg(am), (4.30)

(4.32)
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Figure 4.4: Illustration of the calibration procedure for two sensors. (a) Independent excitation of
sensor 1 and sensor 2. (b) Simulated values of V; (t) and Vy,,(t) for MZI 1. The changes in time of the
functions V; »(t) and v, ,,(t) are caused by the modulation of the peak wavelengths shown in Fig. 4.4(a).
The voltages Vi, ()" and Vi, ,(t)" (m = 1,...,M) are measured by our acquisition system. V;,, (t) and
Vin,y(t) are obtained from Eq. (4.27). For this simulation, Vi, x(t) = Vinx(t)" and Vi, ,, (t) = Vi p(t)".
(c) Lissajous curve (Vy(t), Vl,y(t)) for MZI 1. The modulation of the peak wavelength of the sensors
induces an angular deflection in the plane of the voltages v, . and v, ,,. From the Lissajous curve, the
complex modulus and the phase of the coefficients a,,; were extracted. For this simulation, F; =1.0 nm.

4.3.3. Compensation of the phase drift

Since the effective index in Eq. (4.4) is temperature dependent, local variations of
temperature induces the phase 1, ,, to drift. [22] presents two different methods
for compensating the phase drift: by using temperature dependent calibration ma-
trices or by correcting the phases errors of the interferogram in case of narrowband
signals. In our case, however, the system of equations is non-linear and a different
approach is used. Eq. (4.4) is rewritten according to:

2mAL aneff
1pe,m(t) = mT ng + neff(/lo)(TO) + TAT(” + 6neff,m = lpe,m(o)+mA¢e ®,

(4.34)
where

2wAL dn
Mipe(t) = - %AT(Q. (4.35)

The temperature dependence of the group index n, and to én,.fr have been ne-
glected. Eq. (4.35) indicates that the phases v, ,, in Eq. (4.18), (4.20), and (4.21)
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are no longer constant. Eq. (4.18) can be rewritten as:

K
N ( WOV [.m( R
.(6) = 3G ; 8. (m/F,) exp [1 ( Yo m(0) + 21 )] exp [1271 i <5k(t) A, (£) 2n)]

F
M
m
= Z Ak €XP [iZnFSR(t)’],

m=1 1

(4.36)
where

8 (1) = 6xc(t) — A () F / (2m). (4.37)

The right side of Eq. (4.36) is identical to Eq. (4.20) demonstrating that fluctuations
of the environmental phase impacts on the solutions of Eq. (4.20) or Eq. (4.36).
This effect can be corrected by using another sensor as a reference, to which no
excitation is applied and its temperature is kept constant.

Let 6, (t) be the solution of Eq. (4.36) for the reference sensor. The calibration
procedure assures that when the interrogation procedure starts (¢ = 0), the values
6, (0) are zero for all sensors (k = 1,..,K). Since no excitation is applied to the
reference sensor, the function §,.(t) remains at zero for t > 0. Hence, according
to Eq. (4.37):

Sref (1) = —Mpe(OF /(2m). (4.38)
Thus, the phase drift can be compensated by subtracting the term Ay, (t)F, /(27)
in Eq. (4.37), obtained from Eq. (4.38):

8 (t) = 8k (1) = Srep(t)". (4.39)

4.3.4. Experimental setup
The schematics of the experiment is depicted in Fig. 4.5. Light from a broadband
amplified spontaneous emission source (ASE, Optolink, OLS15CGB-20-FA) is sent,
through a circulator (OZ Optics, FOC-12N-111-9), to the FBG sensor array (Tech-
nicasa, T10). The broadband source has an approximately flat spectrum, ranging
from 1525 nm to 1565 nm. The FBG sensors reflect back to the circulator their
combined spectrum, which is amplified by an optical booster amplifier (Thorlabs,
S9FC1004P) according to Fig. 4.5(a). The gain is 12 dB and the light is coupled to
the chip using lensed fibers (Oz Optics, TSMJ-3A-1550-9). The lensed fiber is placed
at an angle of 23° with respect a normal line perpendicular to the edge of the chip
(see Fig. 4.1(d)). Outputs of the chip are conveyed to a PCB which implements the
transimpedance amplifiers for the photodetectors and a pre-processing module in
order to implement Eq. (4.6) electronically (see Fig. 4.1(e)). The PCB outputs are
sampled by the DAQ (National instruments, NI9220), which the maximum sampling
speed is 100 kSa/s/channel.

The performance of our interrogator is evaluated using four FBG sensors: three
as strain sensors one as a reference sensor, used to compensate the environ-
mental phase drift. The reflection spectrum of the FBGs have a peak lineshape.
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Figure 4.5: (@) Schematic of the setup. Light from an ASE source is sent, through a circulator, to the
FBG sensor array. The FBG sensors reflect back to the circulator their combined spectrum, which is
amplified by an optical booster amplifier (gain = 12dB). Light is coupled to the chip using lensed fibers.
(b) Schematic of the temperature / strain sensors. ¢, = 1.74 m, which is the fiber length between the
clamps.

The FWHM is 103 pm and their resonance wavelengths without applied stress is
1550.0+0.5 nm. The calibration is performed in a such way that 1, (t,) = 1,(0).
The ends of the fibers containing the FBGs are clamped to the translation stages as
shown in Fig. 4.5(b). In order to tune the resonance wavelengths 4, (0), stress is
applied using the manual positioners, avoiding the angles 27 (A, (t)) /F, to overlap
during the experiment. FBG #1 represents the main strain sensor and the transla-
tion stage (referred as translation stage 1) to which FBG #1 is attached is controlled
by a stepper motor. FBGs #2 and #3 are the secondary strain sensors and they are
both attached to translation stage 2 controlled by another stepper motor. FBG #4 is
the reference sensor and it is attached only to manual positioners. We programmed
the stepper motors to operate in cycles of three steps: (a) the translation stage trav-
els at a constant speed from the position x = 0 to x = A¢; (b) The stage rests at
x = A?; (¢) The stage returns to the original position.

Since FBGs #2 and #3 are secondary strain sensors, we programmed the trans-
lation stage to move periodically from the distances x = 0 to x = A#® = 30um.
In contrast, the translation stage to which FBG #1 is attached, travels to differ-
ent values of A?( ranging from 0.5 um to 200 um (these values are shown later
in Fig. 4.7). Since the stress to be applied to FBG #1 is much larger compared
to FBGs #2 and #3, the translation stage 1 is programmed to move towards —zx.
Thus, a negative stress applied to FBG #1, avoiding to damage it. Translation stage
1 repeats three times its motion from x = 0 to x = A?™W and from x = A¢™ to
x = 0. Thus, the travelling distances A2, ,, A7, , and A¢S?, ; are the same for

j=0,.,] — 1, where J is the number of different values of A,
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4.4. Experimental results

As explained in Section 4.3.4, the performance of our interrogator is evaluated using
four FBG sensors: three as strain sensors one as a reference sensor, used to com-
pensate the environmental phase drift. Using manual positioners, a constant stress
is applied to all FBGs in such a way that the resonance wavelengths of the sensors
are set to A, (0) = 1550.9 nm, 2,(0) = 1550.3 nm, A3(0) = 1551.4 nm and 1,(0) =
1549.7 nm. The differences of A, (t) — 4,(t) for | # k can be larger than F;, (F, is the
free spectral range of MZI 1) provided that the angles 2r2, (t)/F, # 2nA,(t)/F, for
all [,k = 1..K. The light signal is coupled to the chip using input #6 (see Fig. 4.1(a)),
where the input power is shared among MZIs 1 to 5. Better interrogation results are
obtained by sharing the optical power among a reduced number of interferometers
since the outputs of the MZIs with larger OPDs are strongly attenuated, according
to the discussion in the end of Section 4.3.1.

In order to retrieve the coefficients a,,;, we individually excited the FBG sensors.
Following the procedure described in Section 4.3.2, the complex voltages V,, (t) have
been obtained by mapping the ellipse arcs to circle arcs according to Eq. (4.27), and
by removing the voltage offsets according to Eq. (4.32). Fig. 4.6(a) shows the real
and imaginary parts of V; (t), to which a low pass filter (cut-off at 45 Hz) has been
applied in order to suppress noise. The real and the imaginary parts of V; (t), shown
in Fig. 4.6(a), are plotted in Fig. 4.6(b) as a Lissajous curve. Fig. 4.6(b) shows four
circular arcs, which correspond to the individual excitation of the sensors, obtained
from the outputs of MZI m = 1 during the calibration. The radii and the angles of
the arcs at the end of the calibration procedure give the modulus and argument of
the coefficients a,,;, as described in Section 4.3.2.

Fig. 4.6(b) shows, however, that some regions of the Lissajous curve deviate
from the expected circular path. This occurs when the resonance wavelengths of
two FBGs are about to cross and the spectra of two FBG sensors overlap. This
causes that a part of the input optical signal is reflected multiple times in between
the FBGs, creating an Fabry-Perot cavity. The interference of the electric field which
is reflected multiple times between the FBGs leads to the deviations of the circular
arcs. To overcome this issue, we followed the calibration described in Section 4.3.2
using only the parts of the Lissajous curves that are close to circular. Fort > 0 s,
the interrogation starts and the three strain sensors are simultaneously excited. As
a result, an arbitrary Lissajous curve is obtained.

Figs. 4.6(c)-4.6(f) show the solution of Eq. (4.20) obtained using the Newton’s
method. As explained in Section 4.3.1, the solution obtained at the instant ¢ is used
as an initial guess for the Newton’s method at the instant ¢ + 1/f;, where f; is the
sampling frequency. As a result, the method converges at any t with a maximum
of four iterations. For a sampling rate of 10 kSa/s, about one million of systems
of equations needs be solved from ¢t =0 s to t = 100 s. Using an Intel i5-3470
processor, the solution is roughly calculated at a rate of a hundred equations per
second and the total computational time is about 2h and 45 min.

FBGs #2 and #3 are attached to translation stage 2 which periodically travels
from x = 0 to x = A?® = 30um. As a result, the functions &, (t) and &5(t) are time
periodic, as shown in Figs. 4.6(c) and 4.6(d). On the other hand, Fig. 4.6(f) shows
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Figure 4.6: Main results of the interrogation. (a) Time traces of the real and imaginary parts of V, (t).
A low pass filter (cut-off at 45 Hz) has been applied to the measured voltages V;, »(t) and Vi, ,, (t). The

numbers 1,2,3 and 4 indicate the calibration interval (519" < t < t,i”d) for sensors k =1,...,4. (b)
Lissajous plot obtained by plotting the real and imaginary parts of V; (t). During the calibration, the
Lissajous curve is a circular arc. During the interrogation, all sensors are simultaneously excited, and an
arbitrary Lissajous curve is obtained as shown in orange. (c)-(e) Solutions &, (t), §5(t) and §,(t)’ of
Eqg. (4.36) for t > 0. FBG #4 is the reference sensor. The phase drift was compensated using Eqg. (4.39).
(f) Comparison between the solutions &, (t) and &;(t)’. The inset shows a zoom of the solution &, (t).

the solution &, (t), which consists of a succession of dips. The dips are obtained
because the stepper motor applies a negative stress to FBG #1, as explained in
Section 4.3.3. Since the translation stage repeats its motion three times to a given
distance A¢(, Fig. 4.6(f) shows a series of dips grouped by 3 successive ones with
approximately the same depth.

Fig. 4.7 shows the modulation amplitude A1 for sensor 1 as a function of the
strain applied to FBG #1. The strain is assumed to be constant along the fiber and
it is defined as:

(1)
S(_l) _ A‘ggj

=k (4.40)

where e](-l) is the strain at FBG #1 and ¢, the fiber length defined in Fig. 4.5(b). The
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index 3; in Eq. (4.40) appears since the distances A¢S?, A7, and 257, , are the

same, as explained in Section 4.3.3. On the other hand, the modulation amplitude
is defined as:

(1) _ |50 _ Fmax
MY = (675, — 6T, (4.41)

where 55'5 ; is the time average of function &, (t) at the three adjacent dips (3j + 1),
(3j+2) and (3j +3), as indicated in the upper inset of Fig. 4.7. Similarly, 573} is the
time average of function &, (¢t) atits (3j+ 1)-th, (3j + 2)-th and (3j + 3)-th maxima,
which occur when the translation stage rests around the original position x = 0.
The ratio between the amplitude modulation and the strain gives the sensitivity s
of FBG #1:

IV

S0 = =5 (4.42)

By fitting a straight line to the data points (A2$”, (), we retrieved s® = 1217 +
0.006 pm/ustrain, which agrees with the nominal sensitivity of 1.2 pm/ustrain pro-
vided by the manufacturer (Technicasa, T10). The minimum retrieved strain is
365 nanostrain and the corresponding minimum modulation amplitude obtained is
Adpin = 4004200 fm. This value is more than two orders of magnitude smaller
than the resolution of the FT spectrometer (50 pm). The free spectral range of MZI
with the larger OPD limits the resolution of the spectrometer in the chip (see Egs.
4.14 and 4.15). However, such limitation does not affect the system of non-linear
equations derived in Section 4.3.1. The value of A4,,;,, experimentally retrieved, is
limited by the SNR of the input signal and by the accuracy of the coefficients a,,;
(where m, k = 1..K), obtained by the calibration procedure.

FBG #4 has been taken as a reference sensor and no external excitation is
applied to it after the end of the calibration. However, for t < 10 s, Fig. 4.6(e)
shows small fluctuations of function 6,(t)" (of the order of a few pm), caused by
the cross-talk among sensors. Since the modulation amplitude of FBG #1 is the
larger for t < 10 s, its cross-talk with FBG #4 is dominant. The maximum cross talk
between FBGs #4 and FBGs #1 is about 1% of the §, (t) value, which is acceptable in
most applications. For smaller modulations of the FBG #1 (below 50 pm), resonance
wavelength pertubation due to cross-talk is in sub-picometer level.’

In order to demonstrate the compensation of the thermal drift of the phases
Yem (m = 1,.., M), the chip is heated up using a Peltier element (MCPE1-03108NC-
S 18.8W, Multicomp) placed a few centimeters above it. The Peltier hot surface
reaches a temperature of 45 °C causing a shift of 35 pm to the solutions §,(t)’,
5,(t), 83(t) and 6,(t)'. The drift of 6,(t)’ can be observed in Fig. 4.6(e) for
t > 73 s. Using Eqg. (4.39) we calculated 6, (t), 6,(t) and &5(t)’, where 92.0% of
the phase drift has been compensated. Fig. 4.6(f) shows a comparison between
81 (t)" and &, (t) while Figs. 4.6(c) and 4.6(d) show only the compensated solutions

3The resonance wavelength pertubation due to cross-talk is about 1.5 pm. According to Tosi [27], most
of the applications require an interrogation resolution of 1 pm, in the same order of magnitude of the
maximum cross-talk.
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Figure 4.7: Modulation amplitude AA( of sensor 1 as a function of the strain applied. AA™ is calculated
fromas AA(D =

5di17 _ gmax

13j — 614; |, Where 5P and 6™ are defined in upper inset of the fig. A straight line

13j 13j

has been fitted to the data points (|£{" |, A4{"). The slope, whose value is 1.217+0.006 pm/microstrain,

gives the sensitivity of FBG #1. The inset in the bottom of the fig. shows the data points (£{”, AZ{")
and the straight line fitted in a Loglog plot. The minimum amplitude modulation retrieved is 400+200
pm.

8,(t) and 65(t). For the sensors presented here, the phase drift could have been
removed by applying a high pass filter to §;(t)’, 6,(t)" and §5(¢t)’. However, for
low speed sensors such as biochemical sensors [4], filtering is not possible since
the speed of the sensor is comparable to the phase drift speed.

Although the method can be applied to high speed sensors, its real time imple-
mentation is challenging. On one hand, the speed of the FT spectrometer is limited
only by the electronics and the integrated photodetectors may respond at frequen-
cies of hundreds of MHz. On the other hand, a system of non-linear equations
need to be solved at each instant of time. The computational costs, however, can
be reduced by calculating the inverse of the Jacobian aV,,/d5, analytically. Using
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the transformation z, (t) = 2m(1,(0) + 8, (t))/F;, it can be shown that the Jacobian
is given by a product of a diagonal matrix and the Vandermond matrix V(z;). Since
analytic expressions do exist [28] for the inverse of V(z;), the computational time
is mainly governed by the time of calculating product of matrices. Moreover, the
reduced number of interactions of Newton’s method also contributes in reducing
the computational time. In Chapter 5, the non-linear system of equations is solved
using semi-analytic methods.

4.5. Conclusion

A novel interrogation method based on FT spectroscopy is presented. The tech-
nique is promising due to its high flexibility, high sensitivity and reduced interrogator
footprint. It can be applied in different situations, in particular, for arrays of inte-
grated sensors where the resonance wavelengths cannot be predicted during the
design stage. Three conditions have been identified for the proper interrogation
of the sensors: (a) the number of interferometers must only be at least as large
as the number of sensors, allowing the interrogator footprint to be relatively small;
(b) the MZIs must have different OPDs; (c) the phases 27, (t)/F, (for k = 1,..,K)
needs to be different at any time. If the maximum amplitude modulation of the
sensors is known, condition (c) is usually not an issue for FBG sensors, since the
Bragg wavelengths could be chosen with an accuracy better than 1.0 nm. In case
of integrated ring resonators, it is possible in most situations to design rings with a
slightly different lengths, assuring a similar free spectral range, but different reso-
nances. Since the phases depend on F;, the proper design of the FT spectrometer
gives an extra flexibility to avoid the phases 274, (t)/F, to overlap.

It has been shown that the minimum modulation amplitude experimentally re-
trieved is not limited by resolution of the FT spectrometer, but limited only by the
signal-to-noise ratio of the input signal. The minimum modulation amplitude ob-
tained is 400 + 200 fm and the cross-talk is about 1%. Moreover, the phase drift of
the interrogator, caused by temperature fluctuations, can be compensated by using
one of the sensors as reference sensor to which no external excitation is applied.
This is important for low speed sensors where the thermal induced drift of MZI
phases is comparable to the speed of the sensors. Our method can also be applied
for high-speed sensors as the photonic components integrated within the chip can
respond at high speed. The implementation of real time interrogators, however, it
requires the analytic calculation of the inverse of the Jacobian matrix used in New-
ton’s method. This issue is addressed in Chapter 5, where the non-linear system of
equations is solved using semi-analytic methods.
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Algebraic solutions for the
Fourier transform
interrogator

A new method for fast, high resolution interrogation of an array of photonic
sensors is proposed. The technique is based on the integrated Fourier trans-
form (FT) interrogator previously introduced by the authors. Compared to
other interferometric interrogators, the FT-interrogator is very compact and
has an unprecedented tolerance to variations in the nominal values of the
sensors’ resonance wavelength. In this Chapter, the output voltages of the
interrogator are written as a polynomial function of complex variables whose
modulus is unitary and whose argument encodes the resonance wavelength
modulation of the photonic sensors. Two different methods are proposed to
solve the system of polynomial equations. In both cases, the Grébner basis
of the polynomial ideal is computed using lexicographical monomial ordering,
resulting in a system of polynomials whose complex variable contributions
can be decoupled. Using an NVidia graphics processing card, the process-
ing time for 1 026 000 systems of algebraic equations takes around 9 ms,
which is more than two orders of magnitude faster than the interrogation
method previously introduced by the authors. Such a performance allows
for real time interrogation of high-speed sensors. Multiple solutions satisfy
the algebraic system of equations, but, in general, only one of the solutions
gives the actual resonance wavelength modulation of the sensors. Other solu-
tions have been used for optimization, leading to a reduction in the cross-talk
among the sensors. The dynamic strain resolution is 1.66 ne/VHz.

Parts of this chapter have been published in Fellipe Grillo Peternella, Peter Harmsma, Roland
C. Horsten, Thim Zuidwijk, H. Paul Urbach, and Auréle J. L. Adam, Algebraic solutions for the
Fourier transform interrogator, Opt. Express 29, 25632-25662 (2021).
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5.1. Introduction

Photonic sensors have recently attracted much attention in both industry and academia.
They can offer high accuracy, low weight and the possibility of building a large sen-
sor network. Photonic sensors can be employed in a wide range of situations and
can be used in harsh environments where electronic sensors are not suitable. Ex-
amples of applications are gas sensing [1, 2], biosensing [3-5], monitoring pressure
and temperatures in oil industry [6] and finally, in structure health monitoring [7].
In the health care field, possible applications are ultrasound intravascular imag-
ing [8, 9] and photoacoustic imaging [10]. Attention is given in this Chapter to
sensors whose spectrum is finite and can be multiplexed using wide division multi-
plexing techniques (WDM). Ring resonator sensors and fiber Bragg gratings (FBG)s
are examples of this type of photonic sensor.

Interrogators can have a deep impact on sensor performance; they can limit
their dynamic range, measurement resolution, and speed. Interrogators based on
interferometry are usually implemented using two main stages [11, 12]: a de-
multiplexer (such as an arrayed waveguide grating (AWG) or an echelle), which
separates the spectra of the photonic sensors and then an array of interferome-
ters, which retrieve the information encoded in the resonance wavelength of each
photonic sensor. This approach gives a limited tolerance to variations in the reso-
nance wavelength of the sensors. If one of the FBG sensors in the sensor network
needs to be replaced, another FBG with the same resonance wavelength must be
used [11]. The reason is that the resonance wavelength of the photonic sensors
should coincide with a wavelength close to the center of the spectrum of one of
the spectrometer’s output channels. A flexible interrogator is particularly impor-
tant for demodulating integrated photonic sensors, since the fabrication stage may
introduce large variations in the nominal values of their resonance wavelengths.

The interrogator previously presented by our group [13] is based on a Fourier
transform (FT) spectrometer and implements the steps of demultiplexing and de-
modulation simultaneously. The resonance wavelength modulation of the sensors
was obtained by numerically solving (at each instant of time) a system of non-
linear equations. The minimum retrieved resonance wavelength modulation was
400 fm, about 130 times smaller than the FT-spectrometer’s resolution. Despite the
high interrogation resolution, the processing time per non-linear system is around
10 ms[13], limiting the maximum speed of the photonic sensors.

In this work, the non-linear system of equations has been rewritten as a system
of polynomial equations. This algebraic system is solved by computing the Grébner
basis of the polynomial ideal. Under a lexicographical monomial ordering, it is
possible to decouple the response of the photonic sensors. The algebraic system
admits multiple solutions and it is demonstrated in the appendix that, in general,
there is only one solution from which the resonance wavelength modulation of the
sensors can be obtained. One of the non-physical solutions, however, has been used
to adjust the coefficients of the algebraic equations, reducing the cross-talk among
the sensors. As will be discussed in Section 5.3, the algebraic formulation enables
one to solve the polynomial system of equations using parallel computation. Using
an NVidia graphical processing unit (GPU), the overall processing time for 1 026 000
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algebraic systems of equations is about 9 ms. The novel formulation allows two
orders of magnitude faster than our previous Chapter’s approach, which allows
real-time interrogation of high-speed sensors. The Fourier transform interrogator
is a candidate for interrogating arrays of ultrasound ring resonator sensors [8, 9,
35, 36].

5.2. The Fourier transform interrogator

Different integrated FT spectrometer designs have been presented in the literature
[14-19]. While conventional Fourier transform spectrometers use a Michelson in-
terferometer with a moving mirror, in 2007 Florjanczyk et al. [14] proposed a spec-
trometer featuring a set of integrated Mach-Zehnder interferometers (MZI) with
different arm lengths. As a result, the interferogram becomes discrete and the re-
trieved spectrum periodic. The spectral reconstruction takes the Littrow wavelength
(defined as the wavelength at which the interferences are completely constructive
for all MZIs) as a reference. Given the fact that the spectrum is real and symmetric
with respect to the frequency f = 0, the sine terms of the complex Fourier series
vanish. Moreover, the Fourier coefficients (which are calculated from the outputs
of each Mach-Zehnder interferometer) become real.

FT spectrometers can be designed to achieve a resolution as hundreds of MHz [20].
The free spectral range (FSR) of the MZI with the larger optical path difference
(OPD) defines the spectral resolution limit of the system, while the periodicity of the
spectrum is defined by the FSR of the MZI with the smaller OPD. One of the critical
limitations of the spectral reconstruction method presented by [14] are the phase
errors: if the interference is not completely constructive at the Littrow wavelength,
distortions are introduced into the reconstructed spectrum. Herrero-Bermello et
al. [21] identify two main sources of phase errors: (a) errors caused by imperfec-
tions in the fabrication process, and (b) errors introduced by thermal instabilities
during measurement.

The fabrication process introduces variations in the waveguide parameters such
as local variations of its width, leading the constructive interference maximum to
deviate from the Littrow wavelength. Takada et al. [22] solved this issue by using
micro-heaters and actively controlling the wavelengths at which the constructive
interference maximum occurs. Alternatively, Refs. [15—18] handle the phase er-
rors by including them in the transmission function of each MZI and subsequently
solving a linear system of equations. Uda [19] and Okmamoto et. al [23] simpli-
fied the calculation of the spectrum input by employing a 3x3 and a 4x4 MMIs
(multimode interference couplers) at the MZI outputs. In this case, both real and
imaginary parts of the Fourier coefficients are evaluated, and the phase errors are
compensated by multiplying the voltages of the interferogram by a phase factor
(see Eq. (5.5)). In contrast, phase errors introduced by thermal instabilities can be
mitigated by performing the measurements in a well-controlled environment. One
of the methods presented in [24] consists of computing several calibration matri-
ces as a function of temperature. The input spectrum is obtained by multiplying
the spectrogram by the inverse (or pseudo-inverse) of a matrix whose elements,
previously obtained by calibration, depend on the temperature of the device. Alter-
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natively, [21] applies a novel technique based on machine learning, which gives an
80 % success rate. Thermal instabilities also impact the interrogation of photonic
sensors. Such instabilities have been compensated for in our previous article using
one of the photonic sensors as a reference [13].

The design of the FT interrogator differs from the FT spectrometer in that (a) it
contains a reduced number of interferometers and (b) the MZIs contain 3x3 MMI
couplers at their outputs, which is unusual for a FT spectrometer. As detailed later in
Section 5.3, according to the algebraic formulation, the number of MZIs employed in
the interrogation is equal to the number of the sensors. This drastically reduces the
number of MZIs which need be integrated on the chip. Fig. 5.1 shows the design of
our chip, fabricated by Smart Photonics in Eindhoven using InP technology. Its size
is 4.5 mm x 4.0 mm, and it has nine integrated MZIs. The arm-length difference
of MZI1, shown in the upper-right corner of Fig. 5.1, is AL; =710 um and its free
spectral range is F;, = 921pm. The arm-length differences of the other MZIs are
progressively larger and given by mAL,, where m is an integer which identifies the
MZI in Fig. 5.1 and ranges from 1 to 9. The MZI free spectral ranges are given by
E, = F,/m. Input 1 is the main entrance, from which all MZIs can be accessed.
The other inputs guide the light signal to a smaller group of MZIs, allowing some
optical power to be saved if fewer sensors are being interrogated. The MZI outputs
are connected to integrated photodetectors (PDs). The PD electrical outputs are
conveyed (through a wire-bond connection) to a printed circuit board (PCB), which
has the chip on top. This PCB is attached to another PCB which contains an array of
trans-impedance amplifiers (TIA) (one per photodetector) and also to an additional
electronic circuit designed to calculate the complex Fourier coefficients.

Instead of retrieving the spectrum and thereby computing the resonance wave-
length modulation of the sensors, in this work, a system of algebraic equations
is derived. The argument of the complex variables of the solution encodes the
resonance wavelength modulation of the photonic sensors. By solving the alge-
braic system, it has been possible to experimentally obtain resonance wavelength
modulation amplitudes 140 times smaller than the FT spectrometer’s resolution. In
standard integrated FT spectroscopy applications, the spectrum is obtained using
a finite number of harmonic terms of the Fourier series because a finite number of
interferometers are on the chip. This limits the resolution of the retrieved spectrum.
An exception to this has been described by Podmode [16], in which the spectrum
is known to be sparse and was obtained using I1-normalization. In contrast, the
algebraic system of equations derived in this work gives an accurate physical de-
scription of the modulation of the sensors. The interrogation resolution is limited
by the noise and the inaccuracies of the coefficients retrieved in the calibration
procedure.

5.3. Theoretical analysis of the FT interrogator

5.3.1. Derivation of the system of polynomial equations

Photonic sensors can be multiplexed in large sensor networks. In this thesis,
the focus is on the interrogation of sensors which are multiplexed in the wave-
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Figure 5.1: Schematic of the FT-Interrogator. The device contains nine MZIs, all with different OPDs.
Input 1 is the main entrance, from which all MZIs can be accessed; Input 2 guides the light signal to
MZIs 8 and 9; Input 3, to MZIs 6 and 9; Input 4, to MZIs 6 and 7; and Input 6, to MZIs 1 - 5. The other
inputs are not used.

length domain (WDM). The spectrum of the sensors is assumed to be finite and
shaped as a peak (as with ring resonators or fiber Bragg gratings) and their res-
onances, i.e., the wavelength at which the spectrum is maximum, are sufficiently
separated so that their combined spectra do not overlap. The combined spectrum
S(61(t), ..., 6y (1), 4, t) as a function of time is given by:

K

S(81(t), - Gy (1), A, 1) = Z k(A= Aok = 8i (D)), (5.1)

n=1

where K is the number of photonic sensors, s, (1) is the spectrum of the k-th
sensor, Aq is the resonance wavelength of the k-th sensor, in the absence of an
external signal to be sensed and &, (t) is the resonance modulation of the k-th
sensor, encoded by the signal to be sensed. Ring resonators may present multiple
resonances along the C-band, and the interrogator expects single resonance. To
isolate a single resonance, an optical filter, such as an FBG, can be used [9]. The
goal of the interrogator is to determine the function &, (t) as a function of time.

Here we derive the coupled polynomial system of equations for the FT Inter-
rogator. A similar derivation has been presented in our former article [13], here it
is partially repeated for the reader’s convenience. The PCBs, which are connected
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to the TIAs, combine the voltages according to:

Vm,x (t) = 2Vm,3 (t) - Vm,l (t) - Vm,Z (t)
Viny () = V3 (Vi 1.(£) = V2 (1)), (5.2)

where m is the MZI index, V},,(t) and V,,,(t) are voltages phase shifted by 90
degrees. Thus, 2 voltages (instead of 3) are sampled per MZI. In our former article,
it was shown that the expression for the voltages V;, . and V,,,, is given by:

Vinx() = 3Gf S(81(t), - Oy (t), A, t) COS <2n?/1 + lpe,m>dl
—o0 1
Viny (£) = 3G f S(81(t), ., Sy (1), A, t) sin (27%,1 + ll)e’m)d/l, (5.3)
—o0 1
where 1, ,,, is an angle which accounts for the phase errors and F; = 921 pm the
free spectral range of MZI 1. G is a parameter which depends on the photodetector
responsivities, on the TIA gains and on the attenuation of the optical signal within
the chip. For further details about this derivation, please refer to our previous
paper [13]. The m-th complex voltage is defined according to:

VU (8) = Vi (6) + iV, (t) = 3Ge™¥m j S(81(t), . S (t), A, t) €Xp (iZn?l) da.
9] 1

) (5.4)
As shown in our previous Chapter, the input spectrum can be reconstructed accord-
ing to the following expression:

X0 ithm
S 0c(81(6)s s 8y (), A, 1) = Z %exp (—m?l), (5.5)
m=—M 1

where S,... (6, (t), .., 6 (t), A, t) is the reconstructed spectrum. S,..(8,(t), ... Sy (t), A, t)
differs from S(8; (t), ., 83 (£), 4, £) INthat Sy (81 (1), o Sag (), 4, £) = Sppe (81 (E), oy Spp (), A+
F, t) is periodic and that it features a limited resolution, as the nhumber of interfer-
ometers is finite. Phase errors that may have been introduced by the fabrication
process are compensated by the factor exp(iy,,) in Eq. (5.5).

The spectrometer resolution is given by F, /(2M). To resolve sensor modulation
amplitudes much smaller than the spectrometer’s resolution, we derive a system
of polynomials equations. Substituting Eq. (5.1) into Eq. (5.4) and changing the
integration variable A - A’ + Ay, + 8, (t), we obtain:

K
. m
(6) = kz—oamk exp lZnFl(?k(t)], (5.6)

where

m
amk = 3G exp [i (—z,beym + 2n17110k>]f

[o2)

(1) exp (ianﬂ’) dr.  (5.7)
%) 1
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Eq. (5.6) represents a system of M non-linear equations (each MZI has one cor-
responding equation) and K variables. The coefficients a,,, are determined via
a calibration (see Section 5.4.2). Eq. (5.6) was solved numerically via Newton’s
method in our former article. The only restriction imposed is for the argument of
the complex exponentials in Eq. (5.6) to be all different from each other, otherwise
the Jacobian of Eqg. (5.6) is singular.

In order to solve Eq. (5.6) analytically, one the sensors is chosen as a reference
and both sides of Eq. (5.6) are divided by its coefficient a, .:

N K
Vi (t a m
m(®) =z ks exp [iZn—dk(t)]
am,ref =1 am,ref Fl

K [” s, (1) exp (ianﬂa') ax
1

]

m
— — exp [iZnF (Aok — Aorer + Sk(t))].
k=1 f_oo Sref(A') exp (i27rF—/1’> ar 1
1
(5.8)

We assume that the lineshapes of the photonic sensors s, (1) are proportional or,
in the best case, equal. The coefficients b, (for k = 1..K), defined as:

[2 s exp <12n§/1'> dx
by = = =
2 Syep(A) exp (izﬂ/v) ax
o3} F,

are real and given by the ratio of the moduli of the coefficients a,,, and a,,,¢-
The unity on the right-hand side of Eq. (5.9) occurs if only the spectrum lineshapes
s (D) (for k =1,..,K) are equal. Let

Amk

=1 (5.9)

am,re f

2
7 (t) = exp [l% (Aok — Aorer + 8k(t))]. (5.10)

By substituting the definitions of z, (Eq. (5.10)) and b, (Eqg. (5.9)) into Eq. (5.8),
we obtain a system of algebraic equations:

Vi ()

aref,m

K
Do (21w Zg) = z by 2 ()™ — — 0, (5.11)
k=1

where p,,...,py are polynomials in the variables z, (¢t),...,zy(t). The methods for
solving Eq. (5.11) are discussed in details in Section 5.3.2. According to Eq. (5.10),
the resonance wavelength modulation of the k-th photonic sensor is proportional
to the argument of z,, where in theory |z, | = 1. After computing the solution, the
resonance wavelength modulation of the sensors is retrieved from the following
expression:

unwrap(arg(z(t))) — arg(zx(0))
21 ’
where it is assumed that at ¢ = 0 no external excitation is applied, thus §,(0) = 0.

Sk(t) =F (5.12)
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5.3.2. Algorithm to retrieve the resonance wavelength modu-

lation

This paper aims to solve Eq. (5.11) using analytical and semi-analytical methods.
In order to retrieve the modulation for K photonic sensors, at least K complex
voltages are needed. In this paper, K = M, i. e., the number of sensors is equal
to the number of interferometers and complex voltages. The main reason is that
the voltages V,, (for m > K) are attenuated more compared to the voltages for
m < K, and the additional information provided for these equations has a reduced
signal-to-noise ratio. The larger the value of m is, the larger the MZI OPD size is,
resulting in a stronger attenuation due to the photonic sensors’ finite coherence
length.

Solutions of Eq. (5.11) are obtained using the computation of Grébner basis.
For a basic introduction of the Grdobner basis, we refer the reader to [25-28]. Let
I =< py,..,py > be an ideal in the polynomial ring K, [zy, 25, .., zy] *, where the
polynomials p;,..,py are defined by Eq. (5.11). The set G = {g4,..g9;} c I'isa
Grobner basis of I as long as:

< LT(g1),-.,LT(g;) >=<LT() >, (5.13)

where LT is the leading term using some monomial ordering. As later discussed,
the Egs. (5.11) intersect in a finite number of points. In this case, and using a
lexicographical monomial ordering, the polynomials of the basis G are given by [28]:

911 € Ky (21,22, 2y ]
912 € Ky (21,25, ..., 2]

Jin, € Kr[21,25, . Zu]

92,1 € KT [ZZ’ ey ZM]
gZ,nz € Kr [ZZ' e ZM]

IMny € K [2u], (5.14)

where n4,..,ny are integers. Hence, there exists at least one subset G,,;, =
{9sub1, - 9sup,m} OF G in which the polynomials satisfy a triangular form. Thus

Ysub,1 (21,22, 2) =0
gsub,Z(ZZI---v zZy) =0

9subm(zZy) =0, (5.15)

1 Although the coefficients by, ...,by are real, the voltages are complex numbers. Thus the field is K, =
Q(i), as coefficients are represented in fixed-point precision. Solutions are found in the extension field
of the complex numbers.




5.3. Theoretical analysis of the FT interrogator 97

where we dropped the time dependency of z,, = z,(t) and V,, = V,(t) (for
m = 1,.., M) for simplifying the notation. Egs. (5.15) can be analytically solved
if the degrees of the polynomials are equal or smaller than four. Otherwise, the
polynomial roots of Egs. (5.15) are numerically obtained.

Proposition. Let (5, (t),...,6,(t)) be the resonance wavelength modulation of
M sensors, encoded in the argument of the complex variables z; (t), z, (t), .., zp (t)
defined by Eqg. (5.10). The spectrum of the sensors is finite and their lineshapes
are all equal, except each having a slightly different peak height, so that Eq. (5.11)
can be written as:

M
D bz (O™ = Un(6) /ey, (5.16)
k=1

where b; = .. = b, = 1. For any value of ¢, it is assumed that argz,(t) #
argz,(t) # .. # argzy(t) and that the arguments of complex variables are suffi-
ciently distant from each other so that Matrix Qy, defined in Eq. (5.57), is definite
positive and the jacobian of Eq. (5.16) is well-conditioned. For this proposition,
we assume a noiseless interrogator. The combined spectrum of the sensors inter-
fere in M interferometers according to the FT interrogator description presented in
Section 5.2. Eq. (5.16) satisfy the following properties:

1. The polynomials in Eq. (5.16) intersect in M! points;

2. If Zso; = (z4,..2)) is a solution of Eq. (5.16) and the coefficients by, .., by
are all equal, the other solutions are given by all possible permutations of the
coordinates of Zg,;. Moreover, |z,,| =1, form =1,.., M;

3. If the coefficients b; # b, # .. = by are all different, there is only one

solution whose complex variables satisfy |z,| = ... = |zy| = 1. For all the other
solutions, there is at least one complex variable whose modulus is different
from one.

Lemma. If a subgroup of J < M of coefficients of the monomials z*, z7*, ..., zJ* (for
m = 1..M) in Eq. (12) are all equal (b, = ... = b), there will be J! solutions in which
the moduli of all complex variables is one.

Mathematical details of the proposition are presented in the appendix. Item (1)
guarantee the existence of the and the amount of intersection points. Items (2) and
(3) provide a physical interpretation of the solutions. If the lineshapes s, (1) (for
k = 1..M) of the photonic sensors are equal, b; = ... = by, = 1 and the polynomials
on the left-hand side of Eq. (5.16) become symmetric (see the Appendix for details).
Given a solution Z,; = (z4,.., z)), other solutions are given by permutations of Z,,
coordinates. In this case all solutions are equally valid as |z;| = .. = |zy| = 1. If
the spectra s, (1) for k = 1...M) are different, there is only one solution in which the
modulus of all the complex variables is equal to the unity. Since the other solutions
violate the assumption made in Eq. (5.10), the other solutions are spurious. The
lemma can be derived using the same arguments presented in the appendix. Given
these properties, the following algorithm has been proposed in order to demodulate
the sensor signals:
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1. Determine the coefficients a,,;, (for m = 1..M and k = 1..M and ) from the
calibration procedure, described in Section 5.4.2.

2. Compute the Grobner basis of the polynomial ideal using the lexicographic
monomial ordering. The complex voltages V,,(t) (for m = 1,.., M) are kept
as parameters so that the computation of the Grébner basis needs only to be
done once. The computation of the basis uses the SymPY Python module and
the F5b [29] algorithm. Similar results can be obtained using Mapple [30].

3. For each instant of time, substitute the values of V,,(t) (for m = 1,..,M)
into the polynomials obtained from the Grobner basis analysis and solve the
system of equations.

4. Compute the absolute values of variables z;, ..., z);. Solutions whose absolute
value of the complex variables are different than one are discarded. Let:

M
1
A = Z l|zm(®)| - 1]. (5.17)
m=1

Function A(t) indicates on average how much the modulus of the complex
variables deviates from the unity. The valid solution is the one which minimizes

A(Y).

5. Compute the argument of the complex variables. The arguments of the com-
plex variables may swap with time: if at a certain instant of time the signal of
one of the photonic sensors is encoded in the argument of the m-th complex
variable z,, (t), at a different time instant, this signal may be encoded into a
different complex variable. This phenomenon is explained in detail in Section
5. The identification of the sensor is possible by observing the DC component
of the complex variable argument. From the calibration procedure described
in Section 5.4.2, we obtain the arguments of all complex variables at t = 0 and
which photonic sensor the argument corresponds to. Let &, in @nd 8, max
be the minimum and maximum modulation amplitudes for the m-th sensor.
The complex variable z;(t) can be associated with the m-th sensor if:

5m min|F; ) N
arg(z;(0)) — % < unwrap(arg(z;(t))) < arg(z;(0)) + mzr;a ,
(5.18)

where 8, min < 0 and 8,y 1ax > 0.
6. Finally, the sensor modulation is obtained according to Eq. (5.12).

This first method has been implemented in Python only. It features the dis-
advantage that the subset G, of the Groébner basis, shown in Eq. (5.15), may
not be unique. For a given basis Grébner basis, polynomials might be arranged in
different subsets, all of them obeying the triangular form described by Eq. (5.15).
Thus, Lazard [31] proposed an algorithm which calculates a finite array of triangu-
lar systems of polynomials from the Grébner basis G, obtained using lex monomial
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ordering. However,for the case of three sensors studied in the Experimental Sec-
tion, this is not needed. For b, # b, # bs, the Grobner basis obtained using both
Python and Maple has only three equations: the univariate equation in z; has the
degree of six, while the other two polynomials are linear for z; and z,, respectively.
Another issue of the current method is that the computation cost of obtaining the
Grdbner basis for non-symmetrical polynomial equations can be extremely high for
a larger number of sensors. Other algorithms for algebraic solving the system of
equations could also be employed [32]. However, the computation cost stills quite
high for a large number of sensors.

We propose a second method for solving the polynomial system described by
Eq. (5.11): in step 2 of the algorithm described above, we first approximate b; =
.. = by = 1, making the system of equations symmetric. This meaningfully reduces
the computational cost of obtaining the Grébner basis. Next, the symmetric system
solution is taken as a starting point in Newton’s method. In order to ensure a
fast convergence, the coefficients b4, .., by, are expected to be close to unity. As
explained in Section 5.3.1, this is obtained if the sensors’ spectra lineshapes are all
similar. As an alternative to the computation of the Grébner basis, the symmetric
system of polynomial equations can be solved using the approach described by[33],
also presented Appendix B. Let (Z,, .., Z),) be one of the solutions of Eq. (5.16) for

the case b; = .. = by, = 1. We construct an univariate polynomial in variable Z,
given by:
M M
l—[ Z-2,)= Z (—1)™ep, (W, V) ZM™ = 0, (5.19)
m=1 m=0

where e, .., ey, are elementary symmetric polynomials in M variables, which can
always be written as a function of the complex voltages V;, .., Vy if by = .. = by, = 1.
The relation between the e, ...,e), and V;,...,Vy, is given by [34]:

m
me,, = Z (1) *Djep;. (5.20)
=1

where 9; = V;/aj,.; and e, = 1. Solving Eq. (5.20) for e,,...ey gives e,, =
em (W, ... i) (Where m = 1,.., M). Therefore, solutions of the symmetric system of
the system is given by Z,; = (Z4, .., Z\;), where Z,, ..., Z,, are the roots of Eq. (5.19).
Other solutions are given by permutation of Z,,; coordinates: (Z;,Z,, ... Zy), (Z2,Z1, - Zpp),
(Zy,Zy, .., Z1),... If two or more resonance wavelengths coincide, the polynomial in
Eqg. (5.19) has multiple roots. In this case, although not explored in the experimen-
tal Section, the Newton method’s corrections are no longer possible to be obtained
as the Jacobian of the left-hand side of Eq. (5.16) becomes singular. As a result,
the accuracy of 6;(t),.., 6, (t) to obtained from Eqg. (5.19) decreases. However,
Eg. (5.19) can be solved, indicating the interrogator’s high flexibility concerning
Ao1s Aoy @Nd 64 (t), .., 5y (t) values.

The main difference between the second approach and the method proposed in
our previous article [13] is the initial guess of Newton’s method: in our last paper,
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Figure 5.2: Buffers copied to CUDA device memory. Each buffers’ row represents a different algebraic
system of equations, according to Eq. (5.11), displayed on right side of the figure.

the starting point is given by the solution obtained in the previous time step, while
in this novel method, the starting point is given by the solution of the symmetric
algebraic system. The second approach has been implemented in CUDA. Solving the
non-linear equations using a GPU is only possible due to novel algebraic formulation:
in the previous article, since the initial guess depends on Newton’s method solution
of a past time instance, the equations had to be solved sequentially. On the other
hand, in the novel algebraic formulation, the complex voltages are stored in M
buffers of with N elements each, as shown in Fig. 5.2. Each buffers’ row represents
a different algebraic system of equations to be solved, as also shown in the figure.
All N equations are solved in parallel as earlier described: first, the solution of
N symmetric equations is obtained (for ¢t = 0..ty_,) by computing the roots of
Eqg. (5.19); next, the solution is corrected using Newton’s method, also evaluated
in the GPU.

5.4. Experimental procedure

5.4.1. Experimental setup

The experimental setup is shown in Fig. 5.3. The FT-interrogator has been char-
acterized using three FBG strain sensors. Fig. 5.3(a) shows that the ends of the
fibers, which contain the fabricated FBGs, are mechanically attached to a manual
positioner and a stepper motor. The manual positioners are used to apply an ini-
tial stress to the FBGs so that the resonance wavelengths of the sensors can be
controlled at t = 0. In our experiment 4,; = 1550.52 nm, 4y, = 1551.7 nm
and 13 = 1551.08 nm. Their full width half maximum (FWHM) are 100, 125 and
112 pm, respectively. As the stepper motor (Standa, 8Mt_167-100) travels along
the x-axis, it stresses the fiber, causing the resonance wavelength of the FBGs to
be modulated according to the position of the stepper motor. Two stepper motors
have been used. FBG 3 is chosen as the reference sensor and is attached to stepper
motor (1), and the other two FBG sensors are attached to stepper motor (2). While
stepper motor (2) travels back and forth along the x-axis over a fixed distance Ax
= - 20 um, stepper motor (1) moves along different distances on the x-axis (Ax),
as shown in Fig. 5.3(b). Thus, different stresses can be applied to the reference
sensor. The Ax values are later used to retrieve the curve strain versus resonance
wavelength modulation. The stepper motors are defined as always first travelling
towards negative x-axis values and afterwards returning in the positive direction
to the original position. As a result, the fiber elongation is always negative with
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respect to its length at ¢ = 0, when the stepper motor is in its original position.
Thus, the strain in the FBGs is always negative, preventing the FBGs from being
damaged if the stepper motor is accidentally configured to move to a high value of
Ax.

(b)

stepper motor 1(m1):

(a) pos. 1 pos. 2
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Figure 5.3: (a) Schematic of the experimental setup. The circulator is represented as a blue circle and
the booster optical amplifier (BOA) as a red triangle. Three FBGs have been used to characterize the
interrogator. The stepper motors and their moving plate are represented in orange. (b) Position of
stepper motors 1 and 2 as a function of time.

The amplified spontaneous emission (ASE) light source (Optolink, OLS15CGB-
20-FA), shown in 5.3 (a), emits a broadband spectrum, which can be assumed to
be flat in the region of operation of the photonic sensors and to be unpolarized.
The circulator couples the signal from the ASE source to the FBG sensor array.
Next, each FBG reflects a gaussian shaped-peak (whose resonance wavelength is
modulated according to the external excitation) to the circulator. The circulator
then guides the optical signal to the BOA (Thorlabs, SO9FC1004P), which amplifies
it and provides a gain of 20.5 dB. It should be noted that the BOA gain is applied
only to one of the polarization states of the input light signal. This is an important
issue because the integrated photo-detectors on the chip feature a high polarization
dependency, being nearly insensitive to quasi-TM modes. Hence, the polarization
rotator (shown in Fig 5.3(a)) is used to maximize the power coupled to the quasi-TE
modes in the chip waveguides. Subsequently, by using a lensed fiber (Oz Optics,
TSMJ-3A-1550_9), the light signal is brought to chip input 6 and guided to MZIs 1 - 5
(see Fig. 5.1). The output voltages of the electronic board are recorded by analog
to digital convertors (ADC) at a sampling frequency f = 10 kHz. The algorithm
described in Section 5.3.2 has been implemented in Python and in C++, using an
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™NVidia Tesla K40®graphics processing unit.

5.4.2. Calibration

The goal of the calibration procedure is to determine the coefficients b, (for k =
1,..,M)in Eq. (5.11), as well as the complex values of a,, .. (for m = 1,..,M). The
procedure presented here is similar to the one in our previous paper. The coeffi-
cients a,,;, (for m = 1,.., M) are obtained by exciting the k-th sensor individually.
During the calibration time interval t¥,,, when k-th sensor is excited, Eq. (5.6) can
be written as:

Ot car) = @i EXPMy(tia)) + ) ., (5.21)
J,j*k
other sensors

where the other sensors receive no excitation and they contribute only as a con-
stant in Eq. (5.21). Regardless of the excitation applied, Eq. (5.21) describes a
circle arc in the complex plane. Hence, we fit a circle to the Lissajous curve
(R (tea)} S (tear)}). The radius and angle of this arc at the beginning of
the k-th photonic sensor calibration (t = t¥,,,..) give the modulus and argument of

Amk -

Rk = |amkl,
q)mk(t!s(tart) = arg(ami), (522)

where @, (t¥.,.) is the angle of the circle arc at t = tk,,,,. Both positive and
negative stress is applied to the FBG strain sensors shown in Fig. 5.3(a) so that the
excitation applied to the k-th sensor is zero at the end of its calibration (¢t = t¥,,),
which gives:

8 (theare) = 8(tena) = 0. (5.23)
Hence, the resonance wavelengths Ay, (for k = 1,..,K) are unchanged by the
calibration procedure. From Eq. (5.10), it can be shown that the argument of z,
(for k = 1..K) is given by

arg (z (t5qre)) = arg (zi (t5,4)) = arg(z(0)) = @1 — Dyref (5.24)

According to the convention adopted here, the calibration procedure occurs for
t < 0, while the experimental simultaneous excitation of the sensors starts at t = 0.
No excitation is applied during the period tX,, < t < 0, and thus, the argument of
7 (t) is constant during this period. Since the arguments of the complex variables
at t = 0 are known and given by Eq. (5.24), they are used to identify the sensors,
as explained in Section 5.3.2. Imperfections in the 3x3 couplers distort the arc of
the circle in Eq. (5.21) into an arc of an ellipse. The variation of the parameters
in the electronic circuit responsible for computing Eqg. (5.2) also contributes to the
increasing of the ellipse eccentricity and furthermore introduces voltage offsets.
Hence, instead of a circle, we fit an arc of an ellipse to V,, . (tx,cq;) and Vi y (tear)- A
linear transformation is applied to map the ellipse arcs to the circle arcs. For further
details, please refer to [13].
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Table 5.1: Parameters extracted during the calibration

Parameter Value Unit
b, 0.94 1
b, 1.04 1
as. -110.8 + 235.1i | mV
as, -247.7 + 17481 | mV
ass 261.7 -1074i | mV

5.5. Experimental results

5.5.1. Solutions of the algebraic system of equations
The algebraic system of equations is explicitly written for three sensors:

p1(21,22,23) = b121 + byzy + 25 — ‘71/(11,3 =0
P2(21,22,23) = b1z} + byz5 + 25 — Vz/az,s =0 (5.25)

P3(21,22,23) = b1z} + byz3 + 23 — V3 /az3 =0,

where the third sensor is chosen as a reference so that b; = 1. We dropped the
time dependency of z,, = z,,(t) and V},, = V;,,(t)(for m = k, ..., M) for simplifying the
notation.

Fig. 5.4(a) shows the measured voltages V; . (t) and V; ,,(t). In order to reduce
the noise, a 45 Hz digital low pass filter has been applied to all measured voltage
signals. During the calibration procedure, the sensors were excited separately,
resulting in three ellipse arcs in the Lissajous curves (V;, (), Vm,y(t)). As explained
in Section 5.4.2, the ellipse arcs are obtained instead of circle arcs mainly due to
imperfections when using the 3x3 couplers. The linear transformation described in
our previous Chapter (see Section 3.2 of [13]), maps the ellipse arcs to circle arcs
and removes the voltage offsets. The corrected values of V; ,(t) and V;,(t) are
plotted as a Lissajous curve, seen in Fig. 5.4(b). The figure also shows circles fitted
to the data points (14, (t5%), V1, (t5*")), where t£ is the calibration interval of the
k-th sensor. In some areas of Fig. 5.4(b) the data points deviate from the arc,
following a path closer to the center. This phenomenon has already been reported
in our previous Chapter, and it occurs when the resonance wavelength between
two FBG sensors overlap, creating an undesirable Fabry-Perot effect. Thus, some
optical energy is stored in the Fabry-Perot cavity and the radius of the circle to be
shortened. During the circle fittings, the points that highly deviate from the circle
arc have been neglected. From the radii of the arcs and their angles phases at
t = t3tert, the parameters of Egs. (5.25) are retrieved and are shown in Table 5.1.

The system of Egs. (5.25) have been solved using two different approaches,
as described in Section 5.3. Method 1 consists of computing the Grébner basis of
the ideal I =< p4,p,,p; >, where the polynomials p;, p, and p; are defined in
Egs. (5.25). The computation cost of retrieving the Grébner basis in terms of time
and memory is high and the number of monomials of the basis is extremely large.
For that reason, the polynomials of the basis are not presented in this paper but can
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Figure 5.4: (a) Output voltages V; ,(t) and Vy,,(t) recorded by the ADCs. The calibration is for t < 0. (b)
Lissajous plot for (R{, ()}, 3{V; (t))}. The circles fitted to the individual excitation of sensors 1,2 and
3 are shown in blue, orange and green, respectively. (c) Root loci of polynomials g;(Z) and g3°™ (Z)
at t = 0. The solution of the algebraic system of Eq. (5.25) from which the resonance wavelength
modulation is obtained is also shown in the figure (blue triangle) as is the unit circle. The figure shows
the effect of the symmetry breaking: each of the roots of g3”"™"(Z) (red crosses) are split into two
roots of g;(Z) (green circles). Only one of the roots of g;(Z) lies on the unit circle. (d) Function U(t)
evaluated for the solutions of the symmetric system (in green), the original system of equations (in red)
and the optimized system (in blue), obtained in Section 5.5.2. (e) Real and (f) imaginary parts of the
paths W, (t), W, (t) and W;(t) as a function of R{U} and 3I{U}. Branches of the cubic root function are
represented by the sheets shown in blue, red and green.
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be obtained using the groebner command in the SymPY Python module. The com-
putation of the Grobner basis can be unfeasible for higher order non-symmetrical
algebraic systems and the number of solutions follows a factorial growth: for 6
sensors, the algebraic system gives 720 solutions, of which 719 are spurious if the
coefficients b, (in this case for k = 1..6) are all different. Method 1 has been
implemented in Python only.

The second method (hereby referred as Method 2) for solving Egs. (5.25) has
two steps: (1) compute the solutions of the symmetric system of equations, ob-
tained under the approximation b; = b, = b; = 1; (2) improve the solution using
Newton’s method. The symmetric system of equations can either be solved by using
the Grébner basis calculation or by calculating the roots of Eq. (5.19), as described
in Section 5.3.2. The elements of the Grobner basis ¢5¥™ = {g7”™, 95>, 93>}
are:

97" (21,22,23) = Vs + 21 + 2, + 23 = O,
ggym(zz,z_g) = 1712 — 21125 — 2[7123 — 172 + 225 + 22,73 + 22% =0,

93" (2z3) = =V3 + 30V, — 6V, 2% — 2V5 + 623 + z3 (3V2 — 3%,) = 0. (5.26)

The computational cost for obtaining the Gs¥™is much reduced for the symmetric
system of equations. Convergence is achieved with only three Newton’s method it-
erations. This method has been implemented in C++/CUDA, taking approx. 8.6 ms
(using a Tesla K40 GPU) and 12.6 ms (using a Ge Force GTX 1050 Ti ) to solve ap-
prox. 1000 000 systems of equations. The transfer time from CPU to GPU memory
is included in the numbers presented in table 5.2. Compared to the formulation we
presented in [13], implemented in a CPU, the processing time improves in more
than two orders of magnitude, allowing for real-time interrogation of high-speed
sensors in tens of MHz range. The previous approach is limited for sensors that
operate at maximum in tens of kHz range (eventually 100 kHz for three sensors
only). In particular, the current interrogator a candidate for interrogate arrays of
ultrasound ring resonator sensors [8, 9, 35, 36]. Ref. [35] uses four ultrasound
ring resonators sensors for photoacoustic imaging, allowing to solve the equations
using Method 2.

Table 5.2: Time comparison of different systems. Time data transfer for CPU and GPU is included in the
times below

System Compiler Time
i7, Ubuntu 19, GPU (Tesla) nvce 8.6+ 1ms
i7, Ubuntu 19, CPU g++ 6s
i7, Ubuntu 19, GPU (GeForce) nvce 12.6 + 0.5 ms
i5, Windows 10, CPU MinGw, g++ 8.3s

For a larger number of sensors, it is no longer possible to compute the roots of
polynomials analytically. Thus, the performance is as fast as the GPU can compute
roots of polynomials. An estimative of the total computational time has been made
for a symmetric system with eight sensors. Using Tesla K40 GPU, it was possible to
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solve one million symmetric algebraic systems in 86 ms, of which 26 ms concern the
data transfer from CPU+GPU and 60 ms of processing. As a result, real-time inter-
rogation is feasible for sensors’ that operate up to a few MHz range. For simplicity,
Newton’s method has been used to find the roots of a univariate polynomial. For
a fixed number of iterations (in this case, six iterations), processing time increases
linearly with the number of sensors. Other efficient polynomial root algorithms can
be used to improve the processing time [37].

A third method, described in [38], has also been implemented. In this case,
a larger number of equations and complex voltages are needed: for M sensors,
2M — 1 equations are needed. For three sensors, five equations are needed. This
method generalizes the algebraic approach for solving the symmetric system of
equations described in Section 5.3.2 for non-symmetrical polynomials and returns
a unique solution. The spurious solutions, which satisfy the three equations in
Eqg. (5.25), do not satisfy the other two equations. However, due to the coherence
length of the photonic sensors, the complex voltages of V,(t) and Vs(t) feature a
reduced visibility and the resonance wavelength obtained is extremely noisy. For
this reason, the results are not shown. In terms of complexity, the method requires
solving an MxM linear system + computing the roots of an M order polynomial. For
the estimative of processing time with eight sensors, the linear system of equations
has been solved using LU decomposition and cublas library. The processing time
obtained is about 90 ms. In total, we estimate about 200 ms for solving a 1 000 000
non-symmetric algebraic systems with eight sensors. The processing time of LU
decomposition features a third-order dependence with respect to the number of
Sensors.

Fig. 5.4(c) compares the root locus (at t=0) of the univariate polynomials of
the Grobner bases g3”™ (z3) and g;(z3), obtained from both the symmetric and the
original system of equations. g3 (z;) has a degree of three, as can be observed
in Eq. (5.26), while g5(z3) has a degree of six. This symmetry breaking causes
each of the roots of g3>™(z;) to split into two roots, as shown in Fig. 5.4(c). The
univariate polynomial g3>™ can be written as a function of a generic variable Z:

95" (2) = 62° — 6V, 22 + (3V2 = 31%) Z = V2 + 314V, — 2V =
123+ c1Z? + c3Z + ¢4 = 0, (5.27)

where ¢;,c,,¢; and ¢, are coefficients of the cubic. By solving Eq. (5.20) in terms
of the elementary symmetric polynomials in three variables and substituting into
Eqg. (5.19), the obtained equation is identical to Eq. (5.27). Therefore, as explained
in Section 5.3.2, the solutions of the symmetric system are given by all possible
permutations of the coordinates of Z,;, = (Z4, ... Zy), Where Z,, Z, and Z; are the
roots of g3>™(Z). In contrast, the six solutions that satisfy Egs. (5.25) are obtained
by substituting the roots of g;(z3) into the other order polynomials of the bases
91(z1,23) and g,(z,,z3), which are linear with respect to z, and z;, respectively.
As a result, six solutions are obtained.

According to the proposition in Section 5.3.2, in general, there is only one so-
lution in which the moduli of complex variables are all equal to one. This is the
case since matrix Qy, defined in Eq. (5.57) in the appendix, is definite positive
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for any instance of time. The noise causes the moduli of complex variables to be
slightly different from one. Thus, Method 1 chooses the solution which minimizes
function A(t), defined by Eq. (5.17), i.e. it chooses the solution whose moduli of
complex variables are closer to the unity. The solution obtained from Method 1 at
t = 0 is also shown in Fig. 5.4(c). The complex variables lie closer to the unit circle,
compared to the complex variables of the symmetric solution, which are given by
the roots of g3”™(Z(t)). This occurs because no approximation has been made
for coefficients b; and b,, allowing the complex variable moduli to be closer to the
theoretical value. Fig. 5.4(c) shows the value of function A(t) for the solutions of
the original and the symmetric system. A(t) is about one order of magnitude lower
for the solution of the original system one order of magnitude lower compared to
the other spurious solutions obtained by Method 1 (not shown). After three New-
ton’s method iterations, the solution of the symmetric system converges to the
solution obtained from Method 1 so that the maximum difference of the resonance
wavelength of the sensors obtained from the two methods is about 10~1* pm.

Figs. 5.5 (@), (b) and (c) show the resonance wavelength modulation obtained
from Method 2. This method is taken as the reference due to its simplicity and
because roots of third order polynomials can be analytically evaluated. The colors
in Figs. 5.5 (a), (b) and (c) indicate the root of the cubic equation from which the
resonance wavelength has been computed and then later corrected using Newton’s
method. For t > 40, there is a one-to-one correspondence between the j-th root
of g3”™(Z) and the signal of the j-th sensor. However, for t < 40, the complex
variables swap, as described in Section 5.3.2. This swap occurs when the argument
of function U(t), which satisfies Eq. (5.28), reaches 180°. Function U(t) is obtained
after applying a series of variable transformations in Eq. (5.27), reducing the degree
of the polynomial to two. For details, we refer to Appendix B. U(t) obeys the second
order equation:

p 3
U +QU(t) - S;)

where P(t) and Q(t) are the depressed cubic coefficients, also defined in [33].
Eqg. (5.28) has two solutions: U, (t) and U_(t), given by:

Uy () = _Qz(t) + fpg?g + Q(j)z. (5.29)

The roots of Eq. (5.27) have been obtained using U_(t), according to:

P(t) C2
3W,(6) 3¢y’

=0, (5.28)

2;(t) = Wi(t) -

(5.30)

where W;(t) = §;U_(t)*/* and §; = exp(i(j—1)2m/3) (for j = 1,2, 3) are cubic roots
of unity. Although both values of U, (t) and U_(t) are valid and could be used into
Eqg. (5.30), the choice of U, (t) or U_(t) impacts on the swapping of the complex
variables: the argument of U, (t) never reaches 180° and, hence, no swapping
occurs. Aiming to understand the swapping of the complex variables, the roots of
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Eq. (5.27) have been obtained using U_(t). The principal value of U(t)/3 is defined
according to [39, 40]:

v = e’ exp[ (5.31)

carg(U (t))]
| S — )
3
where arg(U(t)) ranges from [-m, 7). Let d®y > 0 be a small variation in the
argument of function U(t). Suppose that at t = t,_ the argument of U(t, ) is
given by —(180° — d®y) and the modulation applied to the sensors adds 2d®, to
arg(U(t)) at t = to, . Thus, the term arg(U(t))/3 in Eq. (5.31) induces a disconti-

nuity according to:

arg(U(ty ) _ (—m—ddy) N arg(U(ty,)) _ +m—ddy
3 - 3 3 a 3

due to the fact that arg(U(t)) is always limited by the range [—m, ). As a result,
the paths W;(t) (for j = 1, 2,3) swap according to:

(5.32)

Wi (to_) = Ws(to, ), Z1(to_) = Z3(to,)
W, (to_) = Wi(to, ), Z(to_) = Z1(to,)
Ws(to_) » Wa(to, ), Z3(to_) = Z5(to,)- (5.33)

This situation can be observed in the Riemann surfaces shown in Figs. 5.4(e)
and 5.4(f). The figures show the real and imaginary part of the paths W, (t),
W, (t) and W5(t) obtained from the measured complex voltages for 0.3 < t < 0.5
s, which corresponds to the first swap of complex variables of Fig. 5.5(a). The
figure also depicts three sheets (in blue, red and green) corresponding to the three
branches of the complex cubic root, on which the paths W, (t), W,(t) and Ws(t)
travel along. The three branches of the complex cubic roots are discontinuous at
the semi-plane arg(U) = 180°, causing W; (t), Wy (t) and W;(t), calculated from
Eqg. (5.30) and Eq. (5.31), to be discontinuous. However, by joining the three
discontinuous branches, Figs. 5.4(e) and 5.4(f) show that the three cubic roots of
U(t) are continuous everywhere. This assures the continuity of the retrieved values
of the resonance wavelength modulation of the sensors, encoded in the complex
variables’ arguments.

For the symmetric system of equations, solutions are given as permutations of
the variables (Z,(t),Z,(t),Z5(t)). Hence, the swapping of the complex variables
indeed represents a swapping of the solutions. Solutions also swap in the original
system of equations, in which only one of the solutions is valid. The cross markers
in Fig. 5.5(a) indicate the points at which the solutions obtained from Method 1
swap. Those points are identified by function A(t), which senses when a different
solution has the modulus of its complex variables closer to unity. The swapping of
the solutions in Fig. 5.5(a) occurs close to the points where functions W, (t), W, (1),
and Ws(t) swap. Such difference occurs due to the small difference of coefficients
by, b, and b; of the original and the symmetric system of equations.

Figs. 5.6(a) and (b) show zoomed-in graphs of the resonance wavelength mod-
ulation of sensor 3, obtained by solving the symmetric, and the original system of
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Figure 5.5: (a) Resonance wavelength modulation of sensor 3. The inset shows that the modulation
of FBG 3 slowly drifts along the time. This occurs since the sensors also respond to local fluctuations
of the temperature. (b) Resonance wavelength modulation of sensor 2. (c) Resonance wavelength
modulation of sensor 1. Colors indicate the complex variable from which the resonance wavelength has
been obtained, where Z, (t),Z,(t) and Z;(t) are defined in Eq. (5.30). The crosses indicate the time
instants at which the solutions obtained from Method 1 swap. (d), (e) Zoomed resonance wavelengths
61(t) and 6,(¢t) for t < 10.
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equations, respectively. The distortion of function &5(t) observed in both figures is
caused by cross-talk: although not visible in Figs. 5.6(a) and (b), the disturbances
of the function §;(t) follow the modulation of §,(t) and §,(t). Comparing the res-
onance obtained by solving the symmetric and the original system of equations,
shown in Figs. 5.6, the cross-talk is much less present in the solution of the orig-
inal system. This indicates that the accuracy of coefficients b, and b, impact the
cross-talk, although some cross-talk is still visible in Fig. 5.6(b). In the next section,
spurious solutions obtained using Method 1 are used to reduce the cross-talk.

5.5.2. Optimization of the solutions
Despite the higher cross-talk, the resonance wavelength modulations calculated
from the spurious solutions are of similar value to the values shown in Figs. 5.5(a),
(b) and (c). The similarity can be explained by the fact that the algebraic system
is quasi-symmetric. If b, = .. = by, = 1, it follows from the Proposition of Sec-
tion 5.3.2 that the locus in the complex plane of spurious solutions lies close to
the actual solution. Fig. 5.4(c) experimentally demonstrates this phenomenon, as
discussed in the previous section. The closer the coefficients b4, ..., b,,, are to a value
of one, the closer the non-physical solutions are to the actual solution, and the less
cross-talk they feature. One of the spurious solutions, however, showed an unusual
behaviour. As expected, for t < 40s, when larger stresses are applied to FBG 3, its
cross-talk was higher compared to the actual solution. For t > 40s, on the other
hand, the cross-talk diminishes significantly, becoming smaller compared to the ac-
tual solution. A possible explanation for this is inaccuracies of the parameters b4, b,
and a,, ¢ (for m = 1,2, 3) retrieved in the calibration procedure. Egs. (5.22) gives
the relationship between the radius of the circle arc fitted and the modulus of the
variables a,,;. Hence, inaccuracies in the fitting lead to inaccuracies of variables
anx and b,. As a result, the modulus of complex variables must change to keep
the equality in Egs. (5.25). Moreover, with the presence of some noise level, circle
centres obtained from the fitting can also be inaccurate, resulting in |z,,| # 1 for
|zm| = 1 form=1,2,3.

In order to improve the current solution, the following optimization procedure
has been implemented:

Mln|m|ze FOPt(Abl' Abz, le, sz, G‘U3' Aﬁl, Aﬁz, Aﬁ3, Aag) =
2

U () .
Wi; — g,,ma—3 + AV, | + (b + Aby) exp [im argz, ()] +
topt,i m m,

i=0

(by + Aby) exp [im argz,(t)] + exp [im argz;(t)]|, (5.34)

where w,, = 1 and w,, = 25 are the weights of the intervals considered in the
optimization procedure: 0 < t,,.; < 65 and 62s < t,p, < 72s. The complex
exponentials in Eq. (5.34) impose the condition |z,| = .. = |zy| = 1, according to
Eq. (5.10). Parameters Aby,Aby, 911, 9v1, 9v3, COMpensate for inaccuracies in the
radius of the circle arcs, while parameters A?,,A?, and A?; compensate for voltage



5.5. Experimental results 111

offsets introduced by inaccuracies in the centers of the circle arcs. During the
optimization, the values of the complex variables z, (t), z;,(t) and z;(t) depend on
the reference chosen. The first optimization interval uses the current solution from
Method 1 as a reference in order to avoid an increase in the cross talk for large
stresses applied to FBG 3. The second interval, in contrast, as reference, uses the
spurious solution found in Method 1 whose resonance modulation for sensor 3 is
shown in Figs. 5.6(b). The results of the optimization are shown in Table 5.3.
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Figure 5.6: (a)-(d) Zoomed resonance wavelengths obtained for sensor 3. The thermal background,
shown in the inset of Fig. 5.5(a), has been subtracted for a better visualization. (a) Compares the
optimized and symmetric solution; (b) compares the spurious and original solution; (c) compares the
original and the optimized solution and (d) compares the optimized solution and one of the spurious
solutions of the optimized system of equations. (e) Amplitude of the resonance wavelength modulation
as a function of the strain. (f) Zoom of the amplitude of the resonance wavelength modulation as a
function of the strain.

After the optimization, the parameters of the equations have been adjusted
using the corrections shown in Table 5.3. The algebraic system of Egs. (5.25) has
been solved using Methods 1 and 2 and the resonance wavelength modulations
89P5 (1) and 8575 (t) and 8575 (t) have been computed according to the procedure




112 5. Algebraic solutions for the Fourier transform interrogator

Table 5.3: Parameters obtained from the optimization

Ab,y Ab, Gyy Gyp
3.327 1073 -11.14 1073 0.983 1.004
Gy3 Avy (uV) Av, (uV) Avg (uV)
0.974 (-2.848 + 8.991 i) | (15.61 -22.521i) | (72.49 + 28.10 )

described in Section 5.3.2. A meaningful overall reduction of the cross-talk can be
observed, especially for small stresses applied to FBG3, as seen in Figs. 5.6(a) and
(). The figures show a maximum cross-talk of approx. 100 fm observed for 657 (t)
, Which is around three times smaller than for §5(t). For the other time instants,
the values of 597" (¢) and 6,,,(t) (for m = 1,2, 3) are very similar. Some differences
can be observed in sensors 1 and 2 for t < 10s, as shown in Figs. 5.5(d) and (e).
The maximum cross-talk increases to about 1% (resonance wavelength pertubation
of about 1.5 pm), observed in resonance wavelengths obtained from the original
system of equations, to about 2.0 pm for the optimized resonance wavelength
modulations. Cross-talk also affects the moduli of complex variables. Fig. 5.4(d)
compares the function A(t), calculated for the solutions of the optimized and of
the original system of equations. For t < 20 s, the complex variable moduli of the
optimized solution feature a larger deviation from unity compared to the solution
of the original system of equations. For t > 60 s, however, function A(t) is around
four times smaller for the optimized solution.

Although the optimization significantly reduces cross-talk, some cross-talk re-
mains present. Fig. 5.6(d) compares the resonance wavelength modulation ob-
tained from one of the spurious solutions from the optimised system of equations
and function 657 (¢). The spurious solution shown in Fig. 5.6(d) is very similar to the
one used as a reference in the optimization procedure: for small stresses of FBG3,
the cross-talk is slightly smaller than for the one observed in 637 (t). In Eq. (5.9),
it has been assumed that the lineshapes s, (1) are identical except by a constant
which specifies the peak height of the spectrum. However, this is not the case: the
FWHM of s;(1), s,(1) and s3(4) are 100 pm, 125 pm, and 110 pm, respectively,
making this assumption inaccurate. This results in some cross-talk for either large
or small stresses applied to the fibers. By increasing the ratio of the optimization
weights w,, /w;_, it is possible to achieve a similar cross-talk level, compared to the
spurious solution, at the cost of a cross-talk enhancement for ¢ < 10 s.

Figs. 5.6(e) and (f) show the modulation amplitude of FBG 3 as a function of
the strain in the fiber. The modulation amplitude is defined as:

590 _

@ _
A7 =615 — 6135

) (5.35)

where 6‘11'5’ is the average of the function 6, (t) when the stepper motor rests at

the position x = Ax;; 67" is the average of the function &;(t) when the stepper
motor is at the position x = 0, immediately after the stepper motor has returned
from x = Ax;. The stress applied by the stepper motor is always negative, keeping
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the function §;(t) at a minimum while it rests at x = Ax;. In contrast, a local
maximum is observed in function &;(t) when the stepper motor returns to x = 0
and stresses the fiber. Since the stepper motor travels 3 times to x = Ax;, as
indicated in Fig. 5.3(b), the three dips in function 5 (t)(for x = Ax;) are considered

in the j-th value of Sfff. Similarly, the data-points of three consecutive maxima of
function §5(t) are considered in the calculation of 67"7. The strain of the fiber is
given by:

AXj
81' = €3 ,
where ¢; = 1.65 m is the fiber length. The strain in the fiber is assumed to be
uniform so that the strain in the FBGs is given by Eq. (5.36). The angular co-
efficients of the curves shown in Fig. 5.6(e) are 1.245 + 0.001 pm/ue, 1.266 +
0.002 pm/ue and 1.242 +0.002 pm/ue for the symmetric, original and optimized
system of equations respectively. These values match the nominal slope provided
by the manufacturer (1.2 pm//ue) and are consistent with the values presented in
our previous article. The minimum scattering of the data points around the straight
line shown in Figs. 5.6(e) and (f) occur for the optimized solution, which features
the smallest cross-talk. The minimum resonance amplitude experimentally resolved
was 365 fm. The signal to noise ratio is given by:

(5.36)

R
SNR = 20log,, — (5.37)

where ¢ is the noise standard deviation of V;(t) and R = 283 mV is the radius of
sensor 3 traced in the Lissajous curve (RV;(t), 3V (t)) shown in Fig. 5.4 (b). The
SNR is 58 dB.

Limitations of FT interrogator can be enumerated as:

 Cross-talk caused by errors during calibration. This effect has been mitigated
by the optimization procedure.

¢ Cross-talk due to the assumption the FWHM of the sensors is identical. This
is @ minor cause of the noise, which can also be compensated using Newton’s
method. However, in the context of interrogating high-speed sensors, inte-
grated photonics allows the design of sensors with very similar Quality factor
values, so that this effect can be neglected.

» Noise. The primary source of noise is electronic.
The noise RMS value of the demodulated signal is given by:

2

Z?’pts. (6§th. _ égpt.)

)
Npts.

(5.38)

ORMSE =

Ny¢s. is the number of data points and §57% is the average value of 857" for the

stepper motor is at rest. Thus, oz g is the standard deviation of the noise and its
value is 65 fm.
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5.5.3. Comparison with other Interrogators

Table 5.4: Limit of detection of the FT Interrogator compared to other common interrogation methods.
Focus is given to integrated interrogators, but some fiber interrogators are also presented. MRW is the
minimum resonance wavelength experimentally resolved.

Author/Reference Interrogation method Limit of Detection

Fourier Transform interrogator, | “RMSE =~ 218 fm,

This work . . So = 1.66 ne/VHz,
algebraic formulation MRW= 700 fm

D. Tosi[41] Spectrometer, KLT Z}*:Zii :3%?:213 ¢

D. Tosi[42] Spectrometer, KLT oruse = 4.9 fm

Pustakhod et. el [43] | Integrated Spectrometer MRW = 320 fm

Li et. al [44] Integrated Spectrometer MRW =1 pm

Guo et. al [45] Integrated Spectrometer MRW < 1 pm

MZI + Spectrometer +

Orret. al.[11] Optical Switch

So = 10 ne/vHz

MZI + Spectrometer +

perry et. al.[12] Optical Switch

50 = 10 nS/\/m

MZI, active modulation +

Meriin et. al. [46] Integrated spectrometer

Sy = 4.56 ne/\VHz

MZI, active modulation +

Merlin et. al. [47] External spectrometer Sy =73 ng/VHz

He et. al [48] Tunneable laser So < 10 ne

I4g FAZ Optics 11[49] | Tunneable laser So< 0.83 ne/VHz@ 1kHz

Results presented in Sections 5.5.1 and 5.5.2 have been obtained after applying
a low pass filter to the complex voltages V; (t), 7, (t) and V5 (t). Indeed, effects such
as the signals’ cross-talk and the optimization performed in Section 5.5.2 are only
visible for a reduced noise. Hence, the bandwidth has been limited. To properly
compare the FT interrogator with others available in the literature, the algebraic
systems of equations have been solved without applying any filter to the input
complex voltages. In this section, we use the notation &;(t) = 857" (t), as the
analysis has been done using the optimized parameters (see table 5.3). Fig. 5.7(a)
shows 65(t) as a function of time: the SNR reduces to about 42 dB, while the
bandwidth increases to about 1 kHz (Nyquist frequency is 5 kHz, but electronic
PCBs provide a nearly flat response up to 1 kHz). For a moderate values of SNR
= 40 dB, FT-interrogator is limited by the noise. The gy sy increases to 218 fm,
giving a 3 gz s = 654 fm. The minimum resonance wavelength resolved is about
700 fm, as shown in the inset of Fig. 5.7(a).

Fig. 5.7 shows the power spectral density (PSD) of §5(t). The multiple peaks,
shown in the range f < 100 Hz, originate from the fact that the applied stress
to FBG3 consists of an array of trapezoidal signals (see Fig. 5.3(b)) with different
amplitudes, causing multiple harmonics to be present in the PSD of §5(t). The PSD
also shows high peaks at multiples of the frequency f,; =50 Hz, corresponding to
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Figure 5.7: (a) Demodulated 65 (t) for no applied low pass filter. (b) Power spectral density of &5 (t).

the harmonics of the electric signal (50 Hz in Europe). They represent a major
contribution to oz, sg: filtering these frequencies reduces oy s to 140 fm (112 ng,
in units of strain) and 3 oy to 420 fm (338 ng, in units of strain). PSD reaches
its noise floor at approximately 300 Hz, and its value is N} = 4.23fm?/Hz and
N, = 2.05fm/\Hz, where N, is the noise amplitude spectral density. The dynamic
strain resolution is given by:

-1
dAA
So = Np (E) , (5.39)

where dAA/de = 1.242 pm/uc is the slope of the curve wavelength shift per strain
shown in Fig. (5.6) (e). The dynamic strain is given by S, = 1.66 ne/vHz.

Table 5.4 compares the performance of FT spectrometer with other common
interrogation methods described in the literature. Different authors characterize
the interrogator limit of detection(LOD) using different parameters. These param-
eters, such as the minimum resonance wavelength demodulated and the noise rms
value, depend on the SNR and the bandwidth at which measurements have been
taken. Unfortunately, this information is not available for all the references listed
in Table 5.4. Thus, the table gives only an idea of the performance of the various
interrogation methods but is sufficient to demonstrate the high resolution of the
FT-interrogator compared to other interrogators.

Tosi et al. [41, 42] use Karhunen Loeve Transform(KLT) algorithm to interrogate
an array of FBG sensors. The noise RMS of the FT spectrometer is 218 fm, to be
compared with 30 fm, reported in [41] and 4.9 fm in [42]. Tosi et. al[41, 42] applies
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the KLT algorithm using commercial spectrometers, whose sampling frequencies
are usually limited up to kHz range. The design of broadband, high-resolution
integrated and high-speed spectrometers, although possible, is challenging. In
terms of computational complexity, KLT requires the eigenvalue evaluation of a large
matrix: matrices should be larger than 30x30 (typically 50x50) for about 10 FBG
sensors [42]. The algebraic approach for the FT interrogator, on the other hand,
requires evaluating roots of polynomial, which is equivalent to finding eigenvalues
of MxM matrix, for M sensors. Efficient eigenvalue algorithms are available to
compute roots of polynomials given the sparsity of the companion matrix [37].
For non-symmetric systems, corrections using Newton’s method are also required.
Alternatively, it is possible to implement the approach of [38], which consists of
solving an MxM linear system + computing the roots of an M order polynomial.

Marin et. al. [46, 47] interrogates FBG sensors using an integrated MZI and an
AWG spectrometer. The method offers high strain resolution (4.56 ne/v/Hz) and
could be applied to fast sensors. The modulator employed in the design, however,
is thermal-based, whose time constant is 7 us[46], limiting the sensors’ speed. A
redesign of the chip using faster modulators would extend the interrogation method
for higher speeds sensors. Refs. [11, 12] use a similar approach (using a passive
MZI instead). A spectrometer separates the spectrum from the sensors and an
optical switch selects one of the channels to be interrogated and guides it to an
MZI. The noise floor reported is S, = 10ne/vHz. The demodulation approach of
MZI+spectrometer [11, 12, 46, 47] requires the alignment of the wavelength of
the center of the sensor’s spectrum of one of the spectrometer channels. The
FT interrogator’s key benefit is the flexibility, being tolerant to variations in the
resonance wavelength of the sensors.

The interrogators based on integrated spectrometers proposed by Pustakhod et.
al [43] and others [44, 45] use a different demodulation strategy compared to the
demodulation methods described by D. Tosiin [50]. Although the spectral resolution
of these integrated spectrometers is much limited (a few nm), the minimum value
of resonance wavelength obtained is about 320 fm in [43], in the same order of
magnitude as the one presented in this work (700 fm, for no low pass filter applied).
The approach is suitable for demodulating high-speed sensors and provides a high
interrogation resolution. It consists of placing the sensor’s resonance wavelengths
close to the AWG channels’ border, where the lineshape of the AWG channels can be
linearized. As previously explained, this is an issue for integrated sensors, given the
fact that the resonance wavelengths cannot be predicted during the sensor design.

High interrogation resolution is achieved for interrogators based on tunnelable
lasers. He et. al [48] reports a minimum strain of 10 ne, to be compared with
868 ne (for no digital filter applied) obtained for the FT interrogator. The dynamic
strain resolution of I4g FAZ/Optics 11 [49] interrogator is better than 0.83 ne/VHz
for a wavelength sweep of 1 kHz, being able to resolve wavelength modulations of
about 20 pm. The method is also tolerant for variation of resonance wavelength of
sensors, but different strategies are needed for sensors operating in tens of kHz to
MHz range.

In summary, the FT features a high interrogation resolution, being tolerant to
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variation of resonance wavelength modulations. Here the bandwidth has been lim-
ited up to 1 kHz, but the method is suitable for a much higher speeds. Integrated
photodetectors in this chip can reach hundreds of MHz, although a redesign of the
electronic PCBs would be needed for such speeds. InP platform offers RF photode-
tectors at speeds up to tens of GHz. However, for a larger number of sensors,
a higher optical power is needed, given that optical power is shared among the
MZIs. Kita et. al [51] handles this issue using integrated optical switches so that
no power splitting occurs. In this case, for applications at sensors that operate
at MHz range, the design of high-speed optical switches is needed. Electro-optic
phase modulators, available in InP platform, can reach speeds up to GHz range.

5.6. Conclusion

In this paper, we have interrogated an array of photonic sensors by solving an
algebraic system of equations derived from an integrated Fourier transform inter-
rogator. It has been shown that the modulus of the complex variables of the sys-
tem of equations is theoretically one, while their argument is proportional to the
resonance wavelength of the sensors. The experiments confirmed the theoretical
prediction: the modulus of the complex variables deviates no more than 2% from
unity; moreover, the plot amplitude modulation, derived from the argument of the
complex variables, as a function of the strain, results in a straight line. The slope,
for the optimal case, is 1.242 pm/um in agreement with the results presented in
our previous article and the specification provided by the FBG manufacturer.

The coupled equations have been solved using two semi-analytical approaches.
The first one consists of solving the system of equations by computing the Grébner
basis of the polynomial ideal using lexicographical monomial order. The retrieved
system of equations has been solved using a semi-analytical method since the poly-
nomials’ degree is higher than 4. For three sensors, six retrieved solutions have
been obtained per time step where 5 of these are non-physical. The spurious so-
lutions have been used to improve the actual solution, reducing both the cross-talk
among the sensors and also the minimum amplitude modulation to 365 fm (for a
bandwidth of 45 Hz). The dynamic strain resolution, obtained for no digital filter
applied, is 1.66 ne/sqrtHz.

If the spectra of all photonic sensors are equal, the derived algebraic system of
equations is symmetric. The second approach exploits this symmetry. Then, the
algebraic system can be reduced to a single univariate polynomial whose roots give
the solution of the algebraic system. The results of the calibration procedure are
that the coefficients b, and b, of the equation terms deviate around 4% from unity,
breaking the symmetry of the algebraic system. For that reason, the solution of the
symmetric system is taken as an initial guess and updated using Newton’s method.
Convergence has been achieved with 3 iterations. By processing with a GPU, it was
possible to solve a system of 1 026 000 equations in 9 ms. The processing time per
equation is 9 ns, allowing for real time interrogation of high-speed sensors.

The FT interrogator is a promising candidate for interrogating arrays of inte-
grated arrays of photonic ultrasound sensors. If the lineshapes of the sensor spectra
are the same, but they have varying peak values, the algebraic system of equations
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can be solved using the approach described in [38]. That requires a redesigning
of the chip so that the attenuation caused by the finite coherence length of the
sensors can be neglected in larger MZIs.
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Appendix A: Mathematical analysis of the Proposi-
tion of Section 5.3.2

In this Section, the mathematical details of the Preposition in Section 5.3.2 are
presented. Although some steps required for a formal mathematical proof are not
shown, we present valid reasoning for the Preposition’s items.

Proposition. Let (5;(t),...,0,(t)) be the resonance wavelength modulation of
M sensors, encoded in the argument of the complex variables z, (t), z, (t), ..., Zy (t)
defined by Eq. (5.10). The spectrum of the sensors is finite and their lineshapes are
all equal, except each having a slightly different peak height. The combined spec-
trum of the sensors interfere in M interferometers according to the FT interrogator
description presented in Section 5.2. Eq. (5.11), given by:

Z byzy' = Vm/am,ref; (5.40)
k

satisfy the following properties:
1. The polynomials in Eq. (5.40) intersect in M! points;

2. If Zgo1 = (24, ., 2)y) is a solution of Eq. (5.40) and the coefficients by, ..., by
are all equal, the other solutions are given by all possible permutations of the
coordinates of Z,,;. Moreover, |z,,| =1, form =1,.., M;

3. If the coefficients b, # b, # .. # by are all different, there is only one

solution whose complex variables satisfy |z,| = ... = |zy| = 1. For all the other
solutions, there is at least one complex variable whose modulus is different
from one.

Assumptions

o If the coefficients b, # b, # ... # by, are all different, their values are assumed
to be sufficiently close to one so that the solutions can be obtained by linear
correction of Eq. (5.40), where the starting point is the solution for the system
where by =..=by =1

 For any value of t, the arguments of complex variables are sufficiently different
from each other so that matrix Q,, defined by Eq. (5.57) is positive-definite
and the jacobian of Eq. (5.40) is well-conditioned.

¢ The interrogator is noiseless.
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Mathematical Analysis / Justification

Item (1). It can be shown that the solution of Eq. (5.40) always exits and the
number of solutions is finite. Since polynomials in Eq. (5.40) intersect in a finite
number of points, Bezout's theorem for M variables [25, 26] states that the maxi-
mum number of solutions is given by the product of the degrees of the polynomial
equations. Hence, for Egs. (5.40), the maximum number of solutions is given by M!.
If the coefficients by, .., by, = 1 the polynomial in the left-hand side of Egs. (5.40)
is said to be symmetric: any transformation given by

Zy —>Zj

> 7, (5.41)

Zj

for (j # k) does not change the left-hand side of Egs. (5.40). Therefore if Z;,; =

(z41, . Zzy) is @ solution, any permutations of Z,,,; coordinates also satisfies Egs. (5.40).

Since there exists M! permutations of (z;, .., z);), there are M! solutions. If the co-
efficients b, .., b, are slightly different from one, each solution of the symmetric
system is corrected using a linear approximation of Eq. (5.40) and the number of
solutions remains the same.

Item (2). The algebraic system (Egs. (5.11)) is equivalent to Egs. (5.8), given
by:

~ K b 1] . m ’ ,
() _ Joo Sk(A) exp (127r A A ) da

Arefm £ [ spor(X) exp (iZnFﬂa') dx
1

. m
exp lZT[E (ok — Aorer + 8k (D).

(5.42)

The complex variables have been defined according to Eq. (5.10), are here re-
peated:

21
2, (t) = exp [iE (Aok — Aorer + 8k(t))], (5.43)
where k = 1,.., M. Replacing the definition of Eq. (5.43) into Eq. (5.42), we see that
(z4, .., zy) satisfies Egs. (5.11) and |z,(t)| = .. = |zy(t)] = 1. Hence, at least one

of the solutions of Egs. (5.11) has all its variables with unitary modulus. From Item
(1), it is known that there are, in total, M! solutions, each given by the M! possible
permutations of the coordinates of Z;,; = (z,(t), .., zy (t)), where z, (t), .., zy (t) are
defined in Eq. (5.43).

Item (3). Let (z4,... zy) and (wy, .., wy) be two of the solutions of Eq. (5.40).
Eqg. (5.40) can be rewritten according to:

M M
0.(6) = Z bzl = Z bew!™ (5.44)
k=1 k=1

As explained in Item (3), one of the solutions of Eq. (5.40) has all the complex
variables with unitary modulus. Let |z;| = ... = |z | = 1. We want to show that the
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modulus of at least one of complex variables in the solution (wy, .., wy,) is different
from one. Although the permutations of (zy, .., zy) no longer satisfy Eqs. (5.11),
since b; = .. = by = 1, the solution (wy, .., wy) is in the neighbourhood of one of
the permutations of complex variables (zy, .., z)). Let R(k) be an operator that re-
arrange the summation indexes according to the permutation of complex variables.
For instance, if solution (z4, z,, .., zy) is in the solution (w,, wy, .., wy) neighbour-
hood, then (R(1),R(2),..,R(M)) = (2,1,..,M). By manipulating Eq. (5.44), we
obtain:

M
Z bR[k]Zgl - ka{(n] =

M W;(n

Z ZR1Kk] [bR[k] P -
M
Z e MPRIK] [bR[k] — by (ka|m eim(gk_d’”k]))] = 0. (5.45)
=1

In the last step, we wrote the complex variables as z, = exp(i¢,) and w;, =
|wy | exp(i8y) (for k = 1,.., M), where (¢4, .., py) and (64, .., 8y) are the arguments
of complex variables (z4, .., zy) and (wy, .., wy,), respectively. Let

AAy = [wi| = |zgprg| = Iwie| — 1

Aby = O — Prik)» (5.46)
for k =1,..,M. AA, and A8, represents the corrections of the modulus and phase
of complex variable wy, respectively. Given that coefficients b; = .. = by = 1,
|AA,| << 1 and A6, = 0. As a result

exp (imA6y) = 1+ imA6;, + 0(A672)
[wie|™ = (1 +A4,)™ = 1+ mAA, + 0(A2), (5.47)

according to Taylor series expansion. By substituting Egs. (5.47) into Eq. (5.45)
and neglecting the second order terms, we obtain:

M
z ™R [ (bpp) — bx) — mby (AAy + iA6;)] = 0
k=1
1 - 1 <
= Z eim¢R[k] (bkmA{k) - Z eim¢R[k] (bR[k] — bk)! (5.48)
VM L M

where A{;,, = AA, +iA8,. Both sides of Eq. (5.48) have been multiplied by the factor
1/+/M so that the columns of matrix V, defined later in Eq. (5.52), are normalized.
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Eqg. (5.48) represents a linear system of equations, which can be written using
matrices, according to:
CVBA{ = VAb (5.49)

where B and C are diagonal matrices:

C =diag(1,2,..,. M),
B= diag(bl, bz,..., bM)' (5-50)

Ab and A are column vectors:
Ab = [bR[l] — by, ... bR[M] - bM]T
AZ = [A(I'A(Z""' A{M]T (551)

and V is the modified Vandemonde matrix:

ZR(l) ZR(Z) ZR(M)
1 Zl,za 1 72 - Z2
V=— 1) “R(2) R (5.52)
VM v M "
Zraty Zr2) - ZR(M)

where the factor \/iﬁ normalizes the columns of matrix V. The determinants of

matrices B and C are real and non-zero, implying that B~ and €™ " exist. Matrix
V determinant can be shown to be zero only, and if only, the modulus of one of
the complex variables in the solution (zy, ..., zy) is zero or if two or more complex
variables are equal [52]. Since the arguments ¢4, ..., ¢, are by assumption different
from each other and |z;| = .. = |zy| = 1 # 0, the determinant of V is non-zero.
Hence, the linear system has always a solution for an arbitrary value of Ab. Also,
we assumed that coefficients b, .., by, are different from each other, implying that
Ab = 0 if only no permutation of complex variables (z,, .., zy) is considered in
Eq. (5.45). In this case, A = 0 and solutions (wy,..,wy) = (24,..2y) are the
same. The analysis below is done for the case where ['b = 0. The linear system
can be rewritten as:

BAz = V-1C~1VAb = QAb, (5.53)

where Q = V~1C~1V. Matrices Q and C~! are similar, and their eigenvalues are
1,1/2,1/3,..,1/M. The columns of the matrix V-1 give eigenvectors of matrix Q.
The goal is to show that at least one of the elements of the vector R{A{} = AA
is non-zero, causing the modulus of one of the complex variables (wy, .., wy) to be
different from one. By multiplying both sides of Eq. (5.53) by Ab”, we obtain:

AbTBA{ = AbTQAb (5.54)

We start by analysing the case where the arguments of the complex variables
(24, - 2y) are equally distributed along the unit circle, i. e, the complex variables
are given by z, = exp(i2rnk/M +i¢,) (for k =0,.,M —1 and ¢, € [0,2m)). For this
case, it can be shown that VH = V-1, so that Matrix Q becomes Hermitian. Eigen-
values of Q are given by 1,1/2,..,1/M, i. e., they are real and positive. Therefore,
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Q is definite positive, making the right-hand side of Eq. (5.54) real and positive for
any non-zero vector Ab. As a result, the real and imaginary parts of the left side of
Eqg. (5.54) are given by:

J{AbBTBA{} =0
R{ABTBA(} = AbTBR{A(} = Z AbbRIAL,} > 0. (5.55)
k
Hence, at least one of the vector R{A{} elements must be different from zero, so

that the sum in Eq. (5.55) is real and positive. As a result, the modulus of at least
one of the complex variables in the solutin (wy, .., wy,) must be different from one.

10°
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Figure 5.8: Minimum eigenvalue of matrix Qg as a function of distance among the arguments (A¢),
defined in the inset.

The analysis made for the case where z;, = exp(i2nk/M+i¢,) (fork =0,.,M—1
and ¢, € [0,2m)) can be extended. As long as ¢; # .. # ¢y, the expression
R{ABTBLI[1} can be shown to be a continuous function of the arguments ¢, ..., ¢y,
For an arbitrary distribution of the arguments ¢, .., ¢, (Where ¢, # ... # ¢,,) along
the unit circle, the real part of Eq. (5.54) is given by:

R{Ab"BA(} = R {AbT QAb} = AbTQAb, (5.56)
where Qy, is the Hermitian component of matrix Q, given by:

1
Q=3 [viev+ (vicv)]. (5.57)
Qy = Qfor z;, = exp(i2nk/M+i¢,). Eigenvalues of Qy are real since the matrix is
Hermitian. AA = R{A(} is guaranteed to be non-zero and positive if Q, is positive
definite.
Although analytical expressions for eigenvalues of matrix Qy are difficult to
be obtained for a larger number of sensors, eigenvalues of Q, can be evaluated
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numerically. Fig. 5.8 shows the minimum eigenvalue of matrix Q; as a function of
the relative phase distance of the arguments (A¢), as indicated in the inset. As long
as A¢ is larger than A¢y;,,, =52.02°, Qy is definite positive, and AA is non-zero.
For A¢ smaller than A¢,;,,,, matrix Qy is indefinite, and Ab” QyAb can be either
zero, positive or negative. However, even for A¢p < 52.02° no values of Ab have
been found so that AA = 0. For A¢ < A¢;m and in the unlikely situation when
AA = 0, so that two or more solutions cannot be distinguished, Method 2 described
in the main text could be used to make such distinction. A similar analysis can be
performed for M > 3 sensors.

Appendix B: Analytical solutions for the symmetric

system of equations

The goal of this appendix is to derive an analytical solution for Eq. (5.11) for b, =
.. = by, = 1. For this case, Eq. (5.11) can be rewritten as:

M
Do (21, Zy) = z zr, (5.58)
k=1

where ¥, = Vm/am,ref- The time dependence has been withheld for simplifying
the notation. According to Eqg. (5.9) in Section 5.3.1, the b, coefficients are equal
to unity only if the lineshapes of the photonic sensors s, (1) (for k = 1..M) are
equal. In this case, the polynomial in the right-hand side of Egs. (5.58) is said to
be symmetric: any transformation given by

Zy —>Zj

Zj = Zg (5.59)

for (j # k) does not change the left-hand side of Egs. (5.58). Therefore, if {z4, .., zx}
is a solution set, any permutation of the complex variables within this solution also
satisfies Egs. (5.58).

According to Newton’s theorem (see chapter 7 of [26]), symmetric polynomials
can be expressed as linear combinations of elementary symmetric polynomials,
defined as:

em (21,0 2Zy) = Z Zj1 X Zj, X . X Zj,, (5.60)

1<j1<j2 << jm

where e, is the m-th symmetric polynomial for M complex variables. The symmetric
polynomials for 3 variables are given by:

eo(21,22,23) = 1
61(21,22,23) =2z + Z +Z3
62(21,22,23) = Z:LZZ + leg + Zng

e3(Zl,Z2,Z3) = Z1ZyZ3. (5.61)
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The relation between the elementary symmetric polynomials (e, ...,e)) and the sum
of power monomials (¥,,...,7y) is given by [34]:

M
My (21, w0 Zag) = Z (—1)1Djepm_;. (5.62)
=

Eqg. (5.62) represents a triangular system of M equations (m = 1..M) with variables
{ei,..,en}. The system is non-homogeneous since the last term of the summation
is proportional to e, = 1. Thus, it is always possible to write the complex voltages
as a function of the symmetric polynomials. The inverse relation for three complex
voltages is given by:

e1(21,22,23) = 1y

A2 ~
vf Dy
€5(24,22,23) = 277
A3 A oA ~
03 DDy, D
e3(21,23,23) = 5 2 + 3 (5.63)

In order to solve the algebraic system in Egs (5.58), we build a polynomial
whose roots are {z;, z,, z3}, i. €., the roots are equal to one of the solution sets of
Eq. (5.58). In this case, the polynomial is given by

F(Z)=(Z —z)(Z — z3)(Z — z3). (5.64)

The roots of F(Z) give the solution set {z,,z,,z;}. Expanding the right-hand side
of Eq. (5.64), we obtain:

F(Z) = Z3 - (Zl + Zy + Z3)Zz + (2123 + Z1Z3 + ZzZ3)Z - (212223). (5.65)

The coefficients of Z™ (for m = 0,1, 2) in the right-hand side of Eqg. (5.65) can be
recognized as the fundamental symmetric polynomials. Eq. (5.65) can be general-
ized for M complex variables using the Newton-Gerard identities:

M
F(Z) = Z (—1)me,,zMm, (5.66)
m=0

The solution sets {z,, .., zy} are then obtained by substituting the relations e,, =
em(?1,...Dy) into Eq. (5.66) and by calculating the roots of the polynomial F(Z).
For the case of 3 variables, F(Z) is given by:

A ~ A3 N ~
(B _R)\,_(B_ht B
F(Z)=2°—-vZ +<2 2)2 (6 > +3) (5.67)
Eq. (5.67), except for a constant factor of 6, is identical to the univariate polynomial
of the Grébner basis shown in Section 5.5. By obtaining the roots of Eq. (5.67), we
obtain the solution set {z,, z,, z5}.
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In Section 5, we demonstrate that the solution sets swap their values over time.
Since the swapping depends on how the cubic roots are evaluated, the cubic root
derivation is detailed here. A similar derivation is presented in [53]. Eq. (5.67) is
first written as a general cubic polynomial, according to:

6123 + C223 + C3Z + Cy = 0, (5.68)
where the coefficients are defined by Eq. (5.67). Eqg. (5.68) can be simplified by
substituting Z = y — ¢, /(3¢1):

y*+Py+Q=0, (5.69)
Eqg. (5.69) is known as a depressed cubic equation where P and Q are depressed
cubic coefficients, given by:
c; 2
¢, 3¢
d 2¢3
S (5.70)

¢, 3¢ 2763

In order to obtain the roots of Eq. (5.69), the following transformation is applied:

P
Substituting Eqg. (5.71) into Eqg. (5.69), we obtain:
P3
3 _——_— =
W+ Q= oz = 0. (5.72)

Assuming W is non-zero, both sizes of Eq. (5.72) are multiplied by W3. Next, we

substitute U = W3: 5

P
2 —_—=
U +QU - 5= =0. (5.73)

Solving the second degree equation, we obtain:

B _Q P3 QZ
Up=—= /ﬁ+7. (5.74)

W is obtained by taking the cubic root of Eq. (5.74):

Wiy = §U4°

Wi_ = &;UL/3, (5.75)
where ¢; = (1,exp(—i2m/3),exp(i2r/3) are the cubic roots of 1. By substituting

the values of W into Eq. (5.71) and substituting the value of y in its definition
Zj =yj— c3/(3cy), We obtain:

P(t) Co
—_— - 5.76
3§;Wi(t) 3¢y ( )
It can be shown that both sets {W,,, W,,,W;,} and {W;_,W,_,W;_} of Eq. (5.75)
result in the same solution set {Z,,Z,,Z5}.

Zi(t) = w;(t) -
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Conclusion

In this thesis, two types of interferometric interrogators for photonic sensors have
been designed and characterized. In the first part of the thesis, an ultrasound sen-
sor based on an integrated ring-resonator (RR) in the MHz range was interrogated.
In this case, a single fiber Mach Zehnder interferometer(MZI) was employed, and
no demultiplexing is needed. The results from the fiber interrogator, presented in
Chapter 3, have been used to develop a novel interrogator method, presented in
Chapters 4 and 5. The novel interrogator is based on an integrated Fourier trans-
form (FT) spectrometer where many interferometers are employed to demultiplex
and demodulate an array of sensors. The experiments presented in Chapters 4 and
5 were conducted using an array of FBGs strain sensors, but the novel interrogator
is suitable to interrogate RR arrays.

The work on the fiber interrogator represents an important step towards the
interrogation in real-time. The long term goal of this project is for medical appli-
cations and IVUS imaging. The ring resonators presented in Chapter 3 are much
smaller than the conventional piezo-electric devices used for different types of med-
ical imaging, and it is possible to integrate large arrays of RRs in a single die fea-
turing a small cross talk. Results shown in Chapter 3 indicate that the minimum
amplitude modulation detected by the interrogator is comparable to the state of
art ultrasound sensors based on piezo-electric devices. However, the realization of
a commercial device requires an enhancement of the acoustic bandwidth. This is
possible by reducing the membrane diameter and its thickness[1], which increases
the membrane acoustic resonance frequency.

The mathematical model of the interrogator presented in Chapter 3 allows a
geometrical interpretation of the interrogation parameters. The interferometric in-
terrogator converts the resonance wavelength modulation into a phase modulation:
by combining the output voltages of the interrogator, two 90 ° phase shifted volt-
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ages were calculated, whose Lissajous curve describes an arc of a circle:

Ve(t) = Rcos(D(t) + ) + xp
Vy () = Rsin(®(t) + ¥e) + yo, (6.1)

where R is the circle radius, (x,, o) is its centre, vy, is a phase which drifts accord-
ing to local variations of temperature within the MZI and ®(¢t) is a phase which
is proportional to the resonance wavelength. The external excitation (ultrasound,
in this case) causes the resonance wavelength to shift, inducing a modulation of
the phase @(t). Since the coherence lengths of the transmission spectrum of the
RR pass port and of the FBG reflection spectrum have comparable values, both
signals undergo interference within the fiber MZI. While the resonance wavelength
modulation induces a modulation of the angle ®(t), the interference of the FBG
reflection spectrum causes the circle arc centre to shift from the origin and causes
a deformation of the circle arc. Also, as a result of the interference of the FBG
spectrum, this centre depends on the drift of the phase y,. These phenomena
have been taken into account in one hand, by fitting a circle to the Lissajous curve
of the experimental curve (V,(t),V,(t)) in order to retrieve the radius and the cir-
cle centre; on the other hand, by introducing a correction factor, which accounts
for the deformation of the circle arc. A novel version of this interrogator, already
demonstrated by [5], uses the FWHM of the FBG reflection is much larger than that
of the RR transmission spectrum. As a result, the interference of the FBG curve to
vanish. The new version, however, does not perform demultiplexing and still only
interrogates a single photonic sensor.

The theoretical model presented in the appendix of Chapter 3 has been used
as the basis for the development of the Fourier transform interrogator of Chapter
4. In this case, a large list of applications is possible, as discussed in Chapters 1
and 2. In special, FT-interrogator has been designed to monitor the ultrasound
sensors based on RR: this novel interrogator can be applied to demultiplex and
demodulate arrays of integrated sensors whose resonance wavelengths cannot be
predicted during their design stage. The same flexibility could not be achieved
using conventional interferometric interrogators, which typically use a combination
of a dispersive spectrometer (such as an AWG) and an array of MZIs, as discussed
in Chapter 2.

The demultiplexing and demodulation of the resonance wavelengths are per-
formed simultaneously for the FT-interrogator. Given M interferometers and K pho-
tonic sensors, the complex output voltages of the FT interrogator can be written
as:

K
U(6) = ) Ron exp(my (1)) (6:2)
k=1

where @, (t) is the induced phase modulation of the k-th sensor and the equa-
tion sub-index m = 1, .., M. The method consists of solving a non-linear system of
equations, described by Eqg. (6.2), for each instant of time. Eq. (6.2) reduces to
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Eg. (6.1), for K = 1 (one sensor) and M = 1 (one interferometer) and by taking
V., = R(Vp) and V, = J(V;) indicating that the method presented in Chapter 4 gen-
eralizes the method presented in Chapter 3. Another benefit of the FT interrogator
is its high measurement resolution. The experiments presented in Chapter 4 show
that the measurement resolution experimentally retrieved was about two orders of
magnitude smaller than the FT spectrometer resolution.

One of the main drawbacks of the FT interrogator is its high computational cost.
In Chapter 4, Eq. (6.2) has been solved numerically using Newton’s method. In
Chapter 5, Eq. (6.3) is solved using semi-analytical methods. Eq. (6.2) is rewrit-
ten as a coupled system of polynomial equations and solved using semi-analytical
methods. In the case of 3 sensors, Eq. (6.2) can be written as:

f1(21,22,23) = byzy + bz, + b3zg = ‘71/‘11,3
f2(21,23,23) = b1z§ + byz5 + b3z5 = ‘72/02,3
f3(21,22,23) = b175 + byz3 + b3z3 = V3 /a3,
(6.3)

where by, by, b3, a;3, a,3 and as 3 are coefficients determined by the calibration
procedure (see Sections 4.3.2 and 5.4.2). Suppose the lineshapes of the sensors
are equal. In that case, b, = b, = b; = 1 and the polynomials f;(z4, z,, z3),
f2(z1,23,23) and f5(z4, z,,z3) are said to be symmetric. As shown in Appendix B
of Chapter 5, the system can be reduced to a single polynomial equation, whose
roots give this system’s solution. In case coefficients b,, b, and b; are different
from each other, the Grobner basis[7, 8] of the ponnomlaI ideal I =< P1,P2,P3 > is
caIcuIated for a lex monomial order, where p; = f; — V;/ay 3, p; = f; — Vi /az 3 and

= f; —V/ay5. Vi, V5, and 1 are kept as are parameters. The polynomials of the
basis satisfy:

91(21,22,23) =0
92(23,23) =0
gs(z3) =0, (6.4)

where g; (j = 1,2,3) are the polynomials of the Grébner basis. Eq. (6.4) can be
solved analytically, enhancing the processing speed. Two main issues have been
identified with this approach: for M sensors, the humber of solutions is M!, and
in general, only one of these solutions is valid. Moreover, computation of Grébner
basis using lex monomial order of Eq. (6.3) is not feasible for a larger number of
sensors. Thus, Eq.(6.4) is solved using two steps: we first compute the solution
of Eq. (6.4) by approximating coefficients b, = .. = by, = 1; subsequently, we
correct the solutions using the Newton method. The algebraic system has been
solved in a GPU, resulting in a 9.0 ns/equation performance, allowing the real-time
interrogation of high-speed sensors.

Improvements in the calibration procedure are required for the interrogation of
a large array of sensors. In Chapters 4 and 5, each sensor is individually excited,
and coefficients of the non-linear equations are retrieved from the properties of the
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ellipses fitted against the Lissajous Curves (Vi (teari), VVem (tearr)) form = 1.M,
where M are the number of interferometers and t.,; the calibration time of k-th
sensor. The algebraic formulation presented in Chapter 5 simplifies the procedure,
and the excitation of the reference sensor is needed. Coefficients b, (for k = 1..M),
which are real-valued, are given by the ratio of the peaks of the sensor spectrum.
Excitation of other sensors is only needed in order to retrieve the voltage offsets. As
an alternative to individual excitation of the sensors (to be explored in the future),
offsets can also be obtained by exciting all sensors simultaneously and using an
optimization procedure similar presented in Section 5.5.2 of Chapter 5.

Chapter 5 exploits the fact that coefficients by, .., by, are close to one, so that
polynomials f;(z4, 25, 23), f2(21, 22, 23) and f5(z4, 23, z3) in EQ. (6.3) are nearly sym-
metric. This is obtained if the sensors’ spectra lineshapes are all similar. For
FBG sensors, the fabrication technology is sufficiently mature to meet such con-
dition [9, 10]. For arrays of ring resonator sensors integrated into the same chip,
this can be achieved by designing an array of identical rings except for a small
difference in the ring’s length. As explained in Section 1.2.1, ring resonators may
present multiple resonances along the C-band, and an optical filter needs to be ap-
plied at the output of each ring to isolate one of the resonances. Such filters could
differently affect the height of the curves s, (1), resulting in b, # ... # by. Hence,
the spectra of the optical filters have to be considered. If coefficients by, ..., by, are
much different from the unity, other methods can be applied to solve equations’
algebraic system. For instance, the method proposed by Connell et al. [11] is quite
advantageous. On the one hand, the method uses nearly twice the number of
complex voltages, increasing the device footprint and the number of Mach-Zehnder
interferometers. On the other hand, the method requires no calibration procedure.
However, applying such an approach may require the chip redesign since the com-
plex voltages obtained from larger MZI are much attenuated due to the coherence
length of the FBG reflection spectrum (typically given by hundreds of pm).

Finally, another application of the FT-interrogator, not explored in the thesis, is
the interrogation of arrays of sensors based on low Q Fabry-Perot interferometers
(FPI). The manufacturing costs of such sensors is quite low since they typically use
a cleaved fiber and a moving mirror. The external excitation modulates the mirror
position and the cavity length as a function of time. Assuming that the optical
path(OP) of the k-th FPI sensor matches the OPD of the m-th interferometer within
the chip, it can be shown that the m-th complex voltage encodes in its argument the
modulation of the FPI sensor. The demodulation is much simplified for an array of
FPI sensors, as no algebraic system of equations needs to be solved. A key benefit
of our technique would be the speed, being possible the demodulation of sensors
that operate at hundreds of MHz or even a few GHz, depending on the electronics.
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