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Finding a match 
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Start looking 

Every piece of DNA we find in the natural world around us today has been selected and 

was maybe not the ‘fittest’ but at least ‘fit enough’ at the time of its creation. The genetic 

code present on this DNA therefore encodes for something that helps this DNA maximize 

the resources it has to multiply, while minimizing the resources taken from them by other 

pieces of DNA to do the same. In this context, all biological phenomena we can observe,   

from tree saplings competing for light, lion packs hunting buffalo, or the occurrence of 

influenza outbreaks can be summarized as a contest of DNA replication (Dawkins, 1976; 

Wilson, 1975). 

One example in which this competition on the DNA level is very direct and evident, is 

found in the immune systems of prokaryotic organisms (Bernheim and Sorek, 2019). 

These organisms are continuously invaded by mobile DNA, mostly found as 

bacteriophages (prokaryotic viruses) and plasmids. In some cases, foreign DNA invasion 

can increase the fitness of the host DNA (for example when plasmids encode antibiotic 

resistance genes (Dimitriu et al., 2016)), but in other cases, this additional DNA is a 

burden (Millan et al., 2015) or a threat and decreases the replicative success of the host 

DNA. Therefore, the host DNA encodes a large range of immune systems that recognize 

and limit foreign DNA entry and replication.  

CRISPR, short for Clustered Regularly Interspaced Palindromic Repeats, is an immune 

system that uses protein complexes that can be programmed to target invading sequences 

of mobile elements (Barrangou et al., 2007; Francisco J.M. Mojica et al., 2005; Ishino et 

al., 1987; Jansen et al., 2002) (Figure 1A). It is found in 40% of bacterial genomes and 

70% of archaeal genomes (Pourcel et al., 2020). It is furthermore present in phage 

genomes and on plasmids (Bernheim et al., 2019; Pinilla-Redondo et al., 2019). The 

diversity of these systems is large, where some systems target DNA (Brouns et al., 2008), 

and others RNA (Hale et al., 2009). Based on the effector complex, CRISPR systems 

have been subdivided into two classes (Figure 1B). In Class I systems the effector 

complex consists of a multi-subunit complex, whereas in Class 2 systems the effector 

complex is a single protein that binds the crRNA (Mohanraju et al., 2016). A further 

combination of genes will determine in which of the six described types (e.g. Type I, 

Type III) and 33 subtypes the locus falls (e.g. Type I-E, Type III-A). The main difference 
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with other prokaryotic immune systems discovered so far, is its high specificity and its 

adaptive capabilities.  

The high specificity of CRISPR systems also has its cost. First of all, mutating invading 

DNA elements can obstruct recognition and overcome the immune system (Künne et al., 

2018). To combat this, some CRISPR systems have evolved a priming mechanism, in 

which mutated targets lead to accelerated acquisition of spacers against the same invader 

(Datsenko et al., 2012; Fineran et al., 2014; Nicholson et al., 2019). Secondly, the number 

of invaders that can be dealt with is limited by the size of the CRISPR array. As this is 

in general between 10-100 spacers, this requires the system to discard spacers no longer 

useful with more recently important invaders (Horvath et al., 2008; Lam and Ye, 2019; 

Lopez-Sanchez et al., 2012). Lastly, the specificity of CRISPR-Cas also gives it a 

dynamic disadvantage, because the 30-nt sequence that is recognized by CRISPR-Cas 

systems occurs much less frequently in an invader sequence compared to a short 6-nt 

restriction recognition site and therefore takes longer to find. However, the impact of this 

target search process is not well understood.  

The goal of this thesis is to study the impact of target search dynamics on the functioning 

of CRISPR-Cas immunity. In this introduction, I will describe the molecular organisation 

of CRISPR-Cas systems, the target search dynamics of proteins in the cell, and I will 

further describe the experimental biophysical and theoretical bio-informatics techniques 

that were used to study the dynamic aspects of CRISPR-Cas immune systems.  
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Figure 1. Overview of CRISPR-Cas mechanism and classification. (A) Overview of CRISPR adaptation and 

interference. The schematic is based on the mechanism of the Type I-E system, other subtypes might have 

differences in proteins involved and could target RNA instead of DNA. (B) Classification of CRISPR-Cas 

according to the proteins involved in adaptation, nuclease activity and proteins that form the crRNA-effector 

complex. 

 

CRISPR-Cas 

The CRISPR-Cas system consists of several common modules. An array of CRISPR 

spacers, where each spacer matches a previously encountered foreign DNA element. For 

correct processing and storage of these sequences, the spacers are separated by a common 

repeat. CRISPR-Cas systems also encode an adaptation module, which can integrate new 

spacers. It furthermore encodes an effector complex, carrying RNA copies of the spacer 

(crRNA) which scans the cell for a matching invader sequence. Then many systems also 

contain additional proteins, that either aid the adaptation module, are used in crRNA 

processing, or nucleases that are recruited by the effector complexes to degrade the DNA.    
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The CRISPR array, the unit that led to the discovery of the immune system, is the 

defining feature of CRISPR-Cas mechanism. The array is transcribed from a leader 

sequence, a usually AT-rich region, which also guides newly acquired spacers to be 

incorporated at the leader-repeat junction (Kieper et al., 2019; McGinn and Marraffini, 

2016; Wei et al., 2015), therefore ordering the spacers chronologically. After 

transcription, the RNA has to be processed to form separate crRNAs that can be loaded 

in the effector complex (Brouns et al., 2008; Carte et al., 2008). In many systems the 

repeat sequences, roughly 30 nt in length, are palindromic, which causes the transcribed 

crRNA to form hairpin structures. These hairpin structures can help proteins to recognize 

these crRNAs for processing and effector complex formation (Li, 2015; Niewoehner et 

al., 2014). 

The adaptation module is the most conserved module of the CRISPR-Cas system 

(Makarova et al., 2019). It almost always consists of a Cas1-Cas2 complex. The function 

of the adaptation complex is to pick up fragments from the invading DNA and integrate 

this into the CRISPR array (Jackson et al., 2017). For recognition, the effector complex 

requires that these fragments (protospacers) are flanked by an oligonucleotide motif 

called the PAM (Protospacer Adjacent Motif) (Mojica et al., 2009). Therefore, the Cas1-

Cas2 complex needs to selectively integrate those spacers in the right orientation, to 

generate functional spacers (Kim et al., 2020; Yoganand et al., 2019). There are 

furthermore Cas1-Cas2 associated proteins (both fused and unfused), which can increase 

incorporation of the right PAM sequence (Cas4;  (Kieper et al., 2018)), allow RNA 

protospacers to be incorporated (Reverse Transcriptase;(Silas et al., 2016) ) and form 

even larger adaptation complexes (Csn2; (Wilkinson et al., 2019)). Also other host 

factors can play a role in the adaptation process (IHF; (Nuñez et al., 2016)). 

The goal of the effector complex is to bind the target matching the crRNA it carries. 

Effector complexes often contain the nuclease domain that enables destruction of the 

targeted nucleic acid. But in Type I systems the effector complex recruits a nuclease that 

destroys the DNA (Sinkunas et al., 2011; Westra et al., 2012). The target nucleic acid is 

not always the only target: upon binding, Cas13a also starts cleaving other RNA present 

in the cell, which is believed to help to combat phage spreading through a population 

(Abudayyeh et al., 2016; Meeske et al., 2019). In Type III RNA-targeting systems, the 

effector complex also contains a domain producing cyclic oligoadenylates, which are 
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signaling molecules activating other host defence systems (Kazlauskiene et al., 2017; 

Niewoehner et al., 2017). Other effector complexes are fused to transposases, which 

enables the transposon to selectively integrate itself into the genome by using the spacer 

of the CRISPR array (Klompe et al., 2019; Strecker et al., 2019).  

Whatever the type of effector complex, all complexes are programmed to find the target 

matching the spacer inside the complex environment of the prokaryotic cell. It is thought 

that the PAM, next to avoiding self-targeting of the CRISPR array, also helps the search 

process of the effector complexes, by limiting the number of potential target sites. Still, 

the numbers of potential sites remain high, considering at least 100.000 PAMs in a total 

prokaryotic genome to be scanned. How does a CRISPR effector complex achieve this?  

Target Search  

All proteins in the cell work by binding to other molecules, whether they are used for 

structure, replication, sensing or transport (Alberts, 2002). As DNA and RNA are carriers 

of the genetic code, it is no surprise that so many proteins act on them. Some proteins are 

ubiquitous binding proteins. In E. coli, the protein HU covers large parts of the 

chromosome and recognizes AT-rich areas (Bonnefoy and Rouvière-Yaniv, 1992; 

Luijsterburg et al., 2006). Most proteins have more specific target sites. RNA 

Polymerases recognize certain sequences in promoter regions of a gene to find the 

starting place for transcription (Hahn, 2004; Pribnow, 1975). Transcription factors are 

often targeting a small 9-15 bp sequence close to the start site of transcription (Jayaram 

et al., 2016). Ribosomes scan along mRNA molecules to find the starting codon which 

is generally 5’-AUG-3’ (Lind and Åqvist, 2016).  Often the target search time is crucial 

for the functioning of the protein in question. For example in homologous repair, the 

complex needs to sufficiently recruit a homologous piece of DNA before cells are 

irreparably damaged. It was found that this can occur within 5 minutes (Gynnå et al., 

2020; Lesterlin et al., 2014).  

How do proteins move around the cell to scan for the cognate sequence in a cell that is 

so packed with nucleic acids? The most simplistic model would be to consider only 3D-

Diffusion (Redding and Greene, 2013). In this scenario protein collides with DNA at 

random positions and each time checks only that site before returning to the cytoplasm 

until the next collision with another site (Figure 2A). However, the measured association 
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rates for some DNA binding proteins were two orders of magnitude faster than predicted 

by such a model (Hammar et al., 2012; Riggs et al., 1970). An alternative model is to 

include multiple modes of diffusion where after encountering a non-specific DNA site, 

the protein does not automatically return to solution but scans the vicinity of the DNA. 

This was termed facilitated diffusion (Berg et al., 1981) and multiple modes of facilitated 

diffusion are recognized today. Proteins can undergo sliding which is defined as a 

continuous tight interaction between protein and nucleic acid which contrasts hopping, 

where micro-dissociations take place, but a protein re-associates in the vicinity of the 

previously bound site and intersegmental transfer, where a protein is at one point bound 

to two segments at the same time before moving to the next site (Cui and Joo, 

2019)(Figure 2A). It was suggested that an exact 1:1 ratio between  DNA sliding and 3D 

diffusion will result in optimal target search (Slutsky and Mirny, 2004). However, 

expanding the model with other forms of motion results in the existence of a different 

optimum (Klein et al., 2020). In both models a mixture of 1D and 3D motion is required 

to achieve optimal target search.   

Next to moving from site to site, a second important aspect in target search is the way in 

which a site can be probed. For proteins, in principal there are two distinct read-out 

modes: base readout and shape readout (Rohs et al., 2010). In base readout, the chemical 

features of the nucleotide bases are read via hydrophobic contacts or hydrogen bonds 

within the major or minor groove. The major groove gives a unique readout for all pairs, 

whereas a readout from the minor groove cannot distinguish between certain pairs 

(Slattery et al., 2014)(Figure 2B). For shape readout, either local (size of minor/major 

groove) or global shape (bending) of DNA can be read (Figure 2C). For proteins that 

carry nucleic acids, such as CRISPR and HDR, the read-out requires base-pairing 

between the carried and the target nucleic acid. This requires the opening of the double-

stranded DNA to form a D-/R-loop (San Filippo et al., 2008; Szczelkun et al., 2014). It 

is likely that loop formation and base pairing will take considerably longer than reading 

out the major or minor groove (Globyte et al., 2018) (Figure 2D). Furthermore the 

binding to bases in the minor groove (entropy driven) also differs thermodynamically 

from the major groove (enthalpy driven) (Privalov et al., 2007). This demonstrates the 

role of probing mode in target search times.  
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Figure 2. Aspects of DNA target search. (A) Modes of DNA target search. Sliding, hopping and 

intersegmental transfer are examples of 1D diffusion. (B) Base readout of certain base pairs depends on 

whether DNA is read from the major or the minor groove. (C) Shape readout can either read out the 

distance between the grooves, which differs in different confirmations of DNA, or detect bends and kinks 

in the DNA. (D) Major/minor groove readout occurs without opening DNA strands, whereas readout 

based on DNA/RNA matching require DNA strands to be separated.  

 

Lastly, the target search can be impacted by copy numbers. Depending on the system, 

the search for one site can be carried out by multiple proteins at the same time. It was 

hypothesized that to speed up the search process in HDR, the flanks of the double-

stranded break are copied and with many copies the search can be parallelized and sped 

up (Elf, 2016). Also, polymerases are often present in higher amounts than are involved 

in repair, indicating that they are required in higher levels to increase the target search 

speed of mutated DNA regions (Uphoff et al., 2013). Non-coding small RNAs are 

overabundant in cells as well, which is a likely requirement given the need to provide a 

rapid regulatory response under stress conditions (Fei et al., 2015).  

For CRISPR-Cas systems the target search has been studied in both in vivo and in 

vitro systems. It was first observed that undergo solely 3D diffusion target search both 

in vitro (Redding et al., 2015; Sternberg et al., 2014) and in vivo (Knight et al., 2015), 

however other studies under different conditions and with different complexes observed 
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sliding behaviour (Dillard et al., 2018; Globyte et al., 2018). The PAM interactions are 

mediated by protein-DNA interactions and either operate on the minor groove (Hayes et 

al., 2016), major groove (Anders et al., 2014), or both sides (Rollins et al., 2015) 

dependent on the type of effector complex. The subsequent opening of DNA strand 

results in base-pairing of the first nucleotides of the crRNA with the potential target in 

what is called the ‘seed region’ (Semenova et al., 2011), which are kinetically the most 

crucial for subsequent target binding (Klein et al., 2018), although PAM-independent 

strand opening from the opposite direction is also possible at lower rates (Blosser et al., 

2015). The multiple modes of diffusion and probing interactions described lead to a 

qualitative picture of CRISPR target search, but do not explain CRISPR target search in 

a quantitative context.  

 

The basic search time question can be answered by measuring three quantities. How long 

does a probing interaction take place? How many interactions are required before finding 

the target? How many effector complexes are searching? In vitro non-specific 

interactions last between 0.1 and 10 s. (Redding et al., 2015; Xue et al., 2017). These 

interaction times are unlikely to resemble the interaction times in vivo, as this would lead 

to search times on the order of days, whereas it was found that Cas9 can find a target 

within the E. coli genome in six hours (Jones et al., 2017). This still leaves the question 

on what timescale do the probing interactions last and how do search times and copy 

numbers of the effector complexes impact the interference ability of the system? I 

investigated this question by using in vivo single-particle tracking.  

 

Single-particle Tracking 

The study of proteins interacting with nucleic acids has undergone a radical 

transformation in the last 20 years thanks to the development of single-molecule 

techniques (Candelli et al., 2011; Chaurasiya et al., 2010; Dulin et al., 2013). They 

allowed the study of heterogeneous dynamics in real-time, which is an important aspect 

of the functioning of these systems. In vivo, the most accessible technique to this date is 

photoactivatable single-molecule localization microscopy (SMLM) (Kapanidis et al., 

2018a; Shashkova and Leake, 2017).  
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SMLM is one of many developed techniques that is potentially able to achieve super-

resolution, a better resolution than the diffraction limit of light (Patterson, 2009). SMLM 

requires that the fluorescence of each emitter is sufficiently separated either in space or 

time from other nearby emitters to fit the point spread function and determine its location, 

which increases the resolution depending on the number of photons (Mortensen et al., 

2010). The first studies on single-molecule fluorescence were done on low copy 

molecules, because that ensured this requirement was met (Elf et al., 2007; Yu et al., 

2006). However, further developments were made when they made use of 

photoactivatable fluorescent proteins (Betzig et al., 2006; Patterson and Lippincott-

Schwartz, 2002) leading to the development of sptPALM (single-particle tracking 

photoactivated localization microscopy) (Manley et al., 2008). The stochastic activation 

of single molecules with light allowed the molecules to be separable in the time 

dimension and therefore allowed the localization and tracking of any copy number in the 

cell (Figure 3A). 

 
Figure 3. Single-particle 

tracking in bacteria. (A) 

sptPALM is based on activating 

single fluorophores one at a time, 

and following their position for 

multiple subsequent frames to 

form tracks. (B) TIRF microscopy 

is the most common technique 

used in combination with 

sptPALM, because the evanescent 

field reduces background from 

sample that is further removed 

from the glass slide. (C) The 

distances that protein travel 

between frames depend on their 

size and their interactions with 

other elements in the cell. 
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A common way to achieve a good signal-to-background ratio from the dim fluorescence 

of single emitters is to use total internal reflection (TIRF) microscopy (Trache and 

Meininger, 2008)(Figure 3B). The evanescent field created by the reflecting laser beam 

only illuminates up to ~ 0.5 μm above the glass surface, removing background coming 

from any other matter further away from the glass (Kudalkar et al., 2016). Another 

implementation that can improve image quality is to use stroboscopic illumination, 

illuminating the sample for only part of the exposure time of the camera each frame, 

which prevents the point spread function from widening as the particle moves during the 

exposure further increasing signal-to-background ratio and localization precision (Elf et 

al., 2007; Hansen et al., 2018).  

Single-particle tracking relies on the measurement of traveled distances of single 

molecules in between frames. As most of the mobility inside cells is governed by 

Brownian motion (in contrast to active transport), the distances traveled are dependent 

on the size of the particle (Nenninger et al., 2010). This allows the researcher to establish 

whether proteins are moving as a monomeric unit, are part of a complex (Sanamrad et 

al., 2014), or are bound to even larger structures such as the membrane (Torreno-Pina et 

al., 2016) or the chromosome (Vestergaard et al., 2018) (Figure 3C). To do so, because 

the tracks contain a limited number of steps (typically 1-10) and there is still a 

localization error (typically 20-40 nm), the data requires an analysis algorithm to extract 

useful information. Many algorithms assume that the diffusing species remains in a 

single state for the whole track (Hansen et al., 2018; Stracy et al., 2015). However, 

depending on the transition rates between states, this cannot always be safely assumed. 

Therefore algorithms were designed that can extract the transition rates within the typical 

datasets retrieved from single-particle tracking (Persson et al., 2013).  

The field of single-particle tracking is still evolving rapidly. More recent developments 

including 3D localization and tracking (Von Diezmann et al., 2017) and systems 

requiring much fewer photons for similar precision (MINFLUX (Balzarotti et al., 2017) 

and SIMFLUX (Cnossen et al., 2020)) will contribute to a growing number of 

biophysical models of how biomolecules carry out their task within the cellular 

environment. In this thesis, I have developed an algorithm that can extract very fast 

transition rates, which was needed as the DNA scanning rate of CRISPR systems 

approach the imaging rate of the camera. Combining the algorithm development with 
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technological developments can push the boundary towards faster processes and display 

the kinetics of single molecules in more detail. Even then, the field of in vivo single-

molecule studies is mostly limited by a few model organisms that can be easily cultivated 

and modified to perform these challenging measurements (Kapanidis et al., 2018a, 

2018b; Vojnovic et al., 2019). To get better insights into the distribution and functioning 

of these systems outside their model hosts, we need to use a different approach which I 

briefly describe in the next section.  

 

Bioinformatics 

Perhaps the biggest development in biology of the last 20 years is the radical increase in 

the number of available genome sequences. In the year 2000 13 prokaryote genomes had 

been sequenced. In 2020 this has increased to 200,000 (full and draft)(Zhang et al., 2020). 

Furthermore, the field of metagenomics has increased our knowledge of the sequence 

space outside the cultivatable organisms in the lab. This wealth of information has also 

significantly expanded the field of bioinformatics.  

CRISPR-Cas systems are suitable targets for bio-informatic studies, since the diverse set 

of systems have some conserved features (Cas1, CRISPR array architecture) that allow 

new systems to be found and characterized more easily and because CRISPR arrays store 

a unique history of the encounters that the system in each organism has had. In fact, it 

was bio-informatics that first showed the presence of this system in many bacteria and 

archaea (Mojica et al., 2000) and the matching of the spacers to extrachromosomal 

elements led to the idea that CRISPR could function as an immune system (Bolotin et 

al., 2005; Mojica et al., 2005; Pourcel et al., 2005).  

The bio-informatic study of CRISPR can be subdivided into two main fields. The first 

field focuses on the Cas proteins (Figure 4A). Recent studies in this field have expanded 

the number of CRISPR types tremendously and found evolutionary relationships 

between the different types (Makarova et al., 2019). A lot of new accessory proteins have 

been found, indicating there is still a large number of unknown actors in CRISPR biology 

that await experimental characterization (Shah et al., 2019; Shmakov et al., 2018). 

Furthermore, machine learning tools are being increasingly applied to detect novel 
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CRISPR-Cas proteins (Padilha et al., 2020) and anti-CRISPR proteins (Eitzinger et al., 

2020; Gussow et al., 2020).  

 

 

 

Figure 4. CRISPR 

bioinformatics. (A) The 

conserved cas genes of 

known systems (e.g. Cas1) 

can be used to find novel 

CRISPR-associated proteins. 

(B) The information stored in 

the array can be used to find 

information on what targets 

are being targeted by a 

specific host, and what 

(PAM) motifs are used to 

target these invaders.  

 

 

 

 

The second field uses the information stored in CRISPR arrays (Figure 4B). Detecting 

CRISPR arrays and extracting the spacers from is not as trivial as it seems and several 

tools have been developed to accurately find them (Biswas et al., 2016; Couvin et al., 

2018; Skennerton et al., 2013) Furthermore, it can be important to know the direction in 

which the array is transcribed. It is namely this direction that determines the 

chronological order of acquisition events as the newest spacer tends to be inserted at the 

leader (promoter) sequence adjacent to the repeat. Furthermore the direction also allows 

determining the strand bias. This direction can be determined by either looking for the 

leader sequence (AT-rich) or by comparing the array to a library of repeat sequences that 

have already been characterized (Alkhnbashi et al., 2016; Biswas et al., 2016), for the 

repeat sequences are relatively well conserved for each subtype.  
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The information stored in spacers can be used to verify whether findings in the lab apply 

in natural settings too. For example, although primed acquisition (accelerated acquisition 

upon mutation of target sequences) was a commonly studied mechanism under lab 

conditions (Jackson et al., 2017), it was only recently verified that this process plays an 

important role in natural systems (Nicholson et al., 2019). Another study has shown that 

jumbo phages that form nucleoid-like structures are protected from DNA-targeting 

CRISPR systems and sensitive to RNA-targeting systems, but could also demonstrate 

that this plays an important role in nature by observing that RNA-targeting Type III 

systems preferably target these phages (Malone et al., 2020). CRISPR spacers are also a 

useful tool to identify hosts of putative phages found in metagenomic sequences (Paez-

Espino et al., 2016). In this thesis, I have provided a catalog of PAM diversity within 

CRISPR subtypes and showed general principles of PAM-repeat relationships and spacer 

sharing based on the spacers stored in genomes across the empire of prokaryotes.  

Even though we seem to understand much about CRISPR biology in the lab, I believe 

we still miss insight into what CRISPR really means in the natural setting. The CRISPR 

field started, when through bioinformatics these systems were found and it was 

hypothesized that these might comprise immune systems. Then the main mechanics of 

CRISPR were revealed, mostly using biochemistry and structural biology. We are now 

starting to understand the kinetics of CRISPR, revealed through single-molecule and 

single-cell studies in vivo and in vitro. I think the future will continue to use bio-

informatics to get closer to systems outside our lab, and combined with new ways to 

probe micro-organisms in their natural environment, really demonstrate when and how 

CRISPR is useful to their prokaryotic hosts and also under what circumstances it is not.  

 

Outline of Thesis 

In the first chapter, the mechanism of target search of the native Type I-E E. coli CRISPR 

system is revealed. By using single-molecule tracking of Cascade complexes, we were 

able to find the relationship between Cascade copy number and their in vivo interference 

levels. When studying the probing kinetics of Cascade, we find rapid association and 

dissociation kinetics and a potential optimization of time spent on DNA and freely 

diffusing in the cytoplasm. We also find evidence for subunit dissociation upon binding 
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to repeat-like targets. This study led to the hypothesis of a kinetic arms race between 

invader replication and CRISPR target search, which has implications for the overall 

functioning of CRISPR in the ecosystem of bacteria and its invaders.    

The second chapter explores the target search mechanism of a Type II CRISPR system 

in Lactococcus lactis. Even though this system is very distinct from the I-E system, the 

probing kinetics are very similar, pointing to a biophysical limit of CRISPR probing 

speeds. In this study, we also explore the variation in cellular targets and its relationship 

to target clearance. We also found evidence for inhibition of plasmid replication upon 

binding of dCas9 to its target.  

In the third chapter, we describe the study of the second native E. coli CRISPR system 

(I-F). We compare its diffusion and subunit kinetics to the previous study described in 

the first chapter. We found overall faster diffusion rates of the I-F complex in comparison 

with the I-E complex, perhaps related to the smaller size of the complex. Furthermore, 

we study the binding to targets containing mismatches in different regions of the target 

and find that the I-F system is very sensitive to PAM-proximal mutations.   

The fourth chapter discusses the extraction of transitioning kinetics of DNA binding 

proteins which played an important role in the first three chapters. The underlying 

mathematical model combines diffusion distribution probabilities with PDA statistics 

used previously in studying transition kinetics of FRET studies. This model enables the 

study of previously inaccessible transition rates and can therefore shed more light on the 

biophysics of a wide range of DNA and membrane-binding proteins.   

The fifth chapter focuses on the characterization of the spacers found in bacterial and 

archaeal genomes. We were able to match more than a third of a large set of spacers from 

complete genomes to a target. With that information, we were able to predict the PAM 

of all these systems and the orientation of the spacers. These findings brought us to 

discover prevalent compatibility between Type I and Type III systems, where the spacers 

match both PAM requirements of the Type I systems and orientation requirements of 

Type III systems.  
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2 
Direct visualization of native CRISPR target 

search in live bacteria reveals Cascade DNA 

surveillance mechanism 
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Summary 

CRISPR-Cas systems encode RNA-guided surveillance complexes to find and 

cleave invading DNA elements. While it is thought that invaders are neutralized 

minutes after cell entry, the mechanism and kinetics of target search and its impact 

on CRISPR protection levels have remained unknown. Here we visualized 

individual Cascade complexes in a native type I CRISPR-Cas system. We uncovered 

an exponential relationship between Cascade copy number and CRISPR interference 

levels, pointing to a time-driven arms race between invader replication and target 

search, in which 20 Cascade complexes provide 50% protection. Driven by PAM-

interacting subunit Cas8e, Cascade spends half its search time rapidly probing DNA 

(~30 ms) in the nucleoid. We further demonstrate that target DNA transcription and 

CRISPR arrays affect the integrity of Cascade and impact CRISPR interference. Our 

work establishes the mechanism of cellular DNA surveillance by Cascade that 

allows the timely detection of invading DNA in a crowded, DNA-packed 

environment. 
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Introduction 

RNA-guided CRISPR-Cas surveillance complexes have evolved to specifically and 

rapidly recognize sequences of previously catalogued mobile genetic elements 

(MGEs) (Marraffini, 2015). Target DNA recognition depends on CRISPR RNA 

(crRNA) – DNA complementarity and on the presence of a protospacer adjacent 

motif (PAM), a short nucleotide sequence flanking the target site (Deveau et al., 

2008; Mojica et al., 2009). To work effectively, the complexes need to find their 

targets fast enough to prevent an MGE from becoming established in the cell, which 

can occur within minutes upon cell entry (Shao et al., 2015). Target search inside a 

cell faces a multitude of challenges: Firstly, cells are packed with DNA, and crRNA 

surveillance complexes need to find the needle in a haystack before an invading 

element takes control of the cell. PAM scanning and crRNA-seed interactions with 

the target have been suggested to speed up the search process by drastically reducing 

the number of potential target sites in the genome  (Gleditzsch et al., 2018; Jones et 

al., 2017). Several studies have shown that crRNA-effector complexes spend more 

time probing PAM rich regions, which is indicative of its function as the first 

recognition site (Globyte et al., 2018; Redding et al., 2015; Sternberg et al., 2014). 

The Escherichia coli K12 genome contains 127.081 preferred PAMs (CTT) that are 

recognized by the crRNA-effector complex Cascade in the Type I-E CRISPR-Cas 

system (Leenay et al., 2016). This large number of PAMs suggests that the 

interaction with the PAM needs to be sufficiently fast to cover enough sequence 

space to find an invading DNA sequence in time. A second challenge is posed by 

the action of other proteins present in the cell such as DNA binding proteins, DNA 

or RNA polymerases that may interfere with target search and formation of target 

bound crRNA complexes (Jones et al., 2017; Vigouroux et al., 2018). Some invading 

MGEs even use specialized anti-CRISPR proteins to inhibit crRNA-effector 

complexes and impair the target search process (Bondy-Denomy et al., 2015; 

Pawluk et al., 2014). A third challenge that microbes face is to produce appropriate 

levels of Cascade complexes loaded with one particular crRNA to provide protection 

against a single invading element. While adding more and more spacers to CRISPR 

arrays will have the benefit of recognizing many invaders, the tradeoff is that long 

CRISPR arrays will dilute the number of Cascade complexes loaded with a particular 
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crRNA, potentially decreasing the CRISPR response against that target. These 

cellular challenges raise the question how Cascade can navigate the crowded cell 

sufficiently fast to find DNA targets, and how many copies of Cascade are required 

to do so.   

Here, we report the visualization of single-molecule Type I-E Cascade complexes in 

a native E. coli CRISPR-Cas system in vivo. We found that the probability of 

successful CRISPR protection depends exponentially on Cascade copy numbers, 

which leads to a time-driven arms race model between Cascade target search and 

invader replication. The localization of Cascade shows the complex is enriched 

inside the nucleoid. We determined that 60% of the Cas8e subunit is incorporated 

into Cascade complexes and that Cascade DNA probing interactions are very rapid 

(~ 30 ms) and are driven by Cas8e. Furthermore, transcription of targets and 

CRISPR arrays reduce the number of functional complexes in the cell. Our work 

sheds light on target search and dynamical assembly of Cascade complexes in their 

native cellular environment, and describes how these processes impact CRISPR 

protection levels.  

 

Results 

Visualizing Cascade abundance and target search at the 
single-molecule level 

 To investigate how microbes deal with these challenges at the cellular level 

we used intracellular single-particle tracking Photo-Activated Localization 

Microscopy (sptPALM) (English et al., 2011; Manley et al., 2008), a technique 

capable of following the movement and abundance of individual fluorescently-

tagged proteins in cells with high precision. By genetically fusing a photoactivatable 

fluorescent protein (PAmCherry2, (Subach et al., 2009)) to the N-terminus of 

Cascade-subunit Cas8e (Figure 1A), which was the only subunit for which labeling 

had no influence on the CRISPR interference ability of this strain (Figure 1B), we 

were able to monitor the mobility and abundance of Cascade complexes in E. coli 

cells. 
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Figure 1: Cascade copy number vs CRISPR protection. (A) Chromosomal locus of the 

Cascade subunits and integration site of the photoactivatable fluorescent protein upstream of cas8e. 

(B) pTarget establishment, calculated from the ratio of transformation of pTarget/pGFPuv, is a 

measure for the interference level of the CRISPR system. To test whether tagged Cascade 

complexes were able to function normally, we compared the tagged strain to the untagged and the 

Δcas3 strain. pTarget (bottom right) contains protospacers for all spacers in the K12 genome 

(colored, not all depicted) and are flanked by a 5’-CTT-3’ PAM (black bars). (C) Overlay of 

brightfield image of cells (grey) and single molecule signal (red) from a single representative frame 

for different induction levels. (D) Number of fluorescent particles measured in each cell plotted for 

different levels of Cascade expression (left). The mean number of fluorescent particles (± standard 
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deviation; table left column) was converted to a Cascade copy number (table right column, 

Methods). (E) pTarget establishment plotted for different copy numbers of Cascade. The data points 

were fitted with an exponential decay function. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑒𝑒−𝑎𝑎𝑎𝑎, where n equals 

Cascade copy number and a the fitted coefficient. In our model 𝑎𝑎 = 𝑡𝑡𝑠𝑠�/𝑡𝑡𝑐𝑐. (F) The fitted exponential 

decay on the left converted into an interference level (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1 −

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚). Indicated in red (dashed) is the amount of Cascade copies required for 

50% interference.  

 

Twenty Cascade complexes provide 50% CRISPR protection  

We first wanted to link the copy number of Cascade to successful target search, and 

established an assay that measures the level of CRISPR protection in cells at the time 

of cell entry by a mobile genetic element (MGE). In this assay all Cascade 

complexes present in the cell must be able to target the incoming MGE and Cascade 

target search has to be rate limiting. To meet the first requirement, we constructed a 

high copy plasmid (pTarget; Figure 1B) containing target sites for all 18 spacers 

found in the genomic arrays of E. coli K12, such that all Cascade complexes would 

be targeting the incoming plasmid. Secondly, we ensured that Cascade copy 

numbers were rate limiting (Majsec et al., 2016) by equipping cells with a low copy 

plasmid expressing the nuclease Cas3 (pCas3, adapted from (Westra et al., 2010)).  

We achieved different expression levels of Cascade in the cell by tuning the 

expression of the native regulator LeuO (Westra et al., 2010) (Figure 1C). The copy 

numbers of Cascade under these varying levels of LeuO induction were estimated 

from the number of fluorescent particles present in the cell, taking complex assembly 

(see following section), growth rate (Table S1) and maturation time of PAmCherry 

into account (Figure 1D; Methods). We found that the average number of Cascade 

complexes per cell in the absence of LeuO induction was low (~4 copies) and that 

copy numbers increased more than 30-fold for the highest induction level (~130 

copies). We measured the interference ability under these conditions by determining 

the probability that pTarget becomes established in a cell. We observed that 

establishment of pTarget decreases sharply with increasing copy numbers of 

Cascade (Figure 1E). However, even with 130 Cascade complexes present, we still 

observed a level of pTarget survival (~0.5%).  
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To explain these observations, we modelled the probability that an invading MGE 

becomes established in the cell depending on the number of Cascade complexes that 

target this specific MGE. The model is based on multi-copy plasmids and phage 

systems, where the DNA clearance is most likely to occur when an invader enters as 

a single copy, as the concentration of invading DNA increases over time. Therefore, 

depending on the invader and the level of CRISPR interference, there will be a 

critical time point (tc) beyond which the invader is permanently established inside 

the cell and can no longer be cleared (Severinov et al., 2016). Our model describes 

the probability that it takes a certain copy number of proteins (𝑛𝑛) each with an 

average search time (𝑡𝑡𝑠𝑠�  ) to find the target before tc is reached.  

Our model accurately predicted that pTarget establishment decreases exponentially 

with increasing copy numbers of Cascade (Figure 1E, Methods). When we translated 

these establishment probabilities into interference levels, we could deduce that 

around 20 Cascade complexes are required to reach a CRISPR interference level of 

50% (Figure 1F). The exponential relationship further entails every subsequent 20 

complexes halve the number of cells not able to achieve interference, which means 

that 40 Cascade complexes can provide 75% interference; 60 Cascade complexes 

87.5%.  

It becomes very unlikely for the CRISPR system to destroy multiple genetic copies 

of the MGE if it has failed to destroy the single copy that was present at the start 

before replication. Therefore, we can approximate tc, with the replication time of the 

plasmid in the absence of copy number control (~3 min, (Olsson et al., 2003a)), 

which allows us to retrieve an estimated search time of ~90 minutes for one Cascade 

complex to find a single target in the cell (Methods).  

In contrast to pTarget establishment, which decreases exponentially, the average 

search time decreases linearly with increasing copy numbers of Cascade. Therefore 

10 Cascade complexes require approximately 9 minutes to find a single target, while 

90 Cascade complexes could achieve this within a minute. 

To summarize, we found a direct relation between the number of Cascade complexes 

and the establishment probability of an MGE. The native E. coli system requires 20 

Cascade complexes loaded with a cognate crRNA to obtain 50% CRISPR 

interference levels. This relation depends on the replication rate of the invading 
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MGE and the average search time of a single complex and demonstrates the 

importance of rapid target search on CRISPR interference ability.  

 

The majority of Cas8e assembles into the Cascade complex 

To quantify the dynamics of target search, we traced the diffusion paths of thousands 

of individual complexes in the bacterial cell (Figure 2A; Supplementary Video). The 

apparent diffusion coefficient D*, a measure for mobility, of Cascade was calculated 

by extracting the displacement of each fluorescent particle for four consecutive 10 

ms steps, allowing us to investigate the abundance, mobility and behavior of 

individual complexes and subunits in the cell. To minimize the influence of spurious 

autofluorescent particles in E. coli (Floc’h et al., 2018), we used expression levels 

with the highest estimated Cascade copy numbers (~130 copies, high induction; 

Figure 1D). 

 To distinguish diffusion of Cascade complexes from monomeric Cas8e 

subunits, we first measured the diffusion of the tagged Cas8e fusion protein in a 

strain lacking genes of the other four Cascade subunits in the genome (Cas11, Cas7, 

Cas5, and Cas6e). Based on the role of Cas8e in non-specific DNA binding (Brown 

et al., 2018; Jore et al., 2011; Sashital et al., 2012), we expected to find mobile and 

DNA-bound populations of Cas8e. However, we were unable to describe the data 

accurately by static two-state models of non-interconverting fractions (Figure S1). 

We therefore hypothesized that rapid DNA binding and unbinding events of Cascade 

on a timescale similar to the framerate (~10-40 ms) would lead to time-averaging of 

a mobile state (high D* values) and a DNA-bound state (low D* values), giving rise 

to intermediate D* values (Figure 2A). We accounted for these events by developing 

a generally applicable analysis method called analytical Diffusion Distribution 

Analysis (analytical DDA), which is useful for proteins with fast transitioning 

kinetics between states with different diffusion coefficients, such as DNA-

interacting proteins. The distribution of D* values is not only affected by the fraction 

of the time spent bound and freely diffusing, but furthermore changes depending on 

the absolute transition rates (Figure S2). Therefore this method allows us to extract 
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quantitative information on DNA binding kinetics and enables the study of fast 

transition rates previously inaccessible to sptPALM (Methods). 

 
Figure 2: Diffusion behavior of Cas8e and Cascade. (A) Tracks with small (blue), 

intermediate (orange) and large (yellow) displacements from a single cell of the WT strain (left). 

The most likely state for three tracks is indicated, although, due to limited track length and fast 

transitions, states cannot be assigned confidently to every individual track. The D* distribution 

(middle), from a large population of tracks, enables reliable extraction of DNA interaction kinetic 

parameters (pseudo-first order on-rate (𝑘𝑘on∗ ), off-rate (𝑘𝑘off) and the apparent free diffusion 

coefficient (𝐷𝐷free∗ )) by using analytical diffusion distribution analysis (DDA;  right). These parameters 

further allow the calculation of the fraction DNA bound (𝑓𝑓onDNA). (B-D) D* distributions for (B) 

Cas8e, (C) Cascade and (D) ΔCRISPR strain. Total (black), Cas8e (blue) and Cascade (green) 

fractions fits are indicated by lines. Parameters (right) of Cas8e (B) were used to fit the Cas8e 

fraction in Cascade (C-D). Error estimation is based on bootstrapping (± standard deviation). See 

also Figure S1, S2 and S3. 

When we applied the analytical DDA on the Cas8e diffusional data, we retrieved an 

average residence time of ~30 ms on DNA and a similar average time spent (~30 

ms) rapidly diffusing (D* ~3.5 μm2/s, as expected for a protein of 82 kDa; Methods), 
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indicating that Cas8e is bound to DNA for ~50% of the time (Figure 2B). The D* 

distribution of Cas8e then allowed us to extract the diffusion behavior of the Cascade 

complex as a whole. We estimated the fraction of free Cas8e and Cascade-containing 

Cas8e at 40% and 60%, respectively (Figure 2C). This finding suggests that Cas8e 

is produced in excess (Westra et al., 2010) or somehow involved in a dynamic 

interaction with the core Cascade subunits (crRNA, Cas11, Cas7, Cas5, Cas6e) (Jore 

et al., 2011; Sashital et al., 2012).  

Surprisingly, we found that the DNA binding kinetics of Cascade were similar to 

Cas8e alone, indicating that Cas8e is an important driver of DNA probing 

characteristics of the Cascade complex. Furthermore, the DNA residence times are 

on average ~30 ms and are thereby considerably shorter than the 0.1-10 s that have 

been reported for in vitro studies previously (Brown et al., 2018; Redding et al., 

2015; Xue et al., 2017). As expected, we found a smaller diffusion coefficient for 

unbound Cascade complexes (~1.0 μm2/s) (Methods) due to their larger size. 

Together, our analysis shows that more than half of the Cas8e proteins are part of 

intact Cascade complexes, and that the DNA interacting behavior of Cascade is 

largely determined by the properties of Cas8e.  

The probing kinetics that we measured determine the number of sites Cascade can 

scan every minute. The total time Cascade needs to probe a single site includes the 

average time the complex is bound to a DNA site and the average time it requires to 

find the next DNA site. The Cascade probing time in vivo sums up to roughly 60 ms 

(1/𝑘𝑘off + 1/𝑘𝑘on∗ ), which implies that the complex is able to scan approximately 1000 

DNA sites per minute. The probing kinetics of single sites are furthermore linked to 

the distributions of target search times, and with simulations we could verify that 

our model of Cascade DNA scanning indeed leads to the expected distribution of 

interference levels (Figure S3). Using our previous estimate of the overall target 

search time for a single Cascade of ~ 90 min, we calculate that the complex scans 

90.000 DNA sites in the cell before finding a target (Methods).  

To investigate the role of crRNAs in Cascade complex assembly, we deleted all 

CRISPR arrays in the K12 genome (ΔCRISPR). The resulting diffusion behavior 

can be described by fractions of free Cas8e and with Cascade-like diffusion behavior 

(Figure 2D) that almost entirely lacks interaction with DNA (fonDNA = 3%). This 
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indicates that although Cascade (sub)complex formation does not strictly require the 

presence of crRNA (Beloglazova et al., 2015; Brouns et al., 2008), Cascade 

assembly is greatly enhanced by crRNA. Taken together, the majority of Cas8e 

proteins are incorporated in Cascade complexes in the presence of crRNA, and this 

gives Cascade DNA interacting properties.  

Cascade is enriched but not exclusively present in the 
nucleoid 

Not all potential DNA interaction sites in the host chromosome might be accessible 

to Cascade. The host DNA is concentrated in the middle of the cell in the nucleoid 

and is very compact which excludes large complexes such as ribosomes (Mondal et 

al., 2011). Nucleoid exclusion would reduce the amount of DNA available for 

scanning and increase the amount of freely diffusing Cascade complexes. To 

investigate whether the DNA-bound fraction is governed by affinity properties of 

Cascade for DNA rather than a restricted search space outside the DNA-containing 

nucleoid region, we studied the spatial distribution of Cascade localizations. 

Nucleoid-excluded ribosomes are enriched away from the central long axis of the 

cell (Sanamrad et al., 2014). For Cascade, we found a homogeneous spatial 

distribution throughout the cell (Figure 3A), indicating that Cascade is small enough 

to freely scan the nucleoid for target sites.  

We furthermore used the spatial distribution of Cascade to extract quantitative 

information on the DNA-bound fraction. To that purpose, we created a DNA-free 

environment in the cell by adding cephalexin (Reyes-Lamothe et al., 2014). This 

antibiotic affects cell wall synthesis and causes cells to elongate, forming DNA-free 

cytoplasmic space between nucleoids without condensing the nucleoid (Figure 3B). 

The time Cascade is bound to DNA is inherently linked to the relative amount it 

spends in DNA-free and DNA containing regions. Therefore, by calculating the 

relative amount of localizations in both regions (Enrichment Factor; EF) we can 

extract the fraction of time spent on DNA independently from the DDA analysis. 

Cascade was only moderately enriched (EF of 1.8 ± 0.2 fold) in the nucleoid regions 

(Figure 3C), indicating that Cascade spends a considerable amount of time diffusing 

in the cytoplasm while not associated with DNA. From the enrichment factor, the 
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fraction of Cascade complexes bound to DNA can be approximated to 45% (Figure 

3D; for derivation see Methods). This value is consistent with the ~ 50% value we 

extracted from the DDA distribution of Cascade (Figure 2C).  
 Figure 3: Cascade 

localization inside 

the cell. (A) 

Localization of Cascade 

in the cell. Left: 

Distribution of Cascade 

over the cell width (n = 

33 cells; 15428 

localizations): in orange 

is indicated the 

expected distribution in 

case of a homogeneous 

localization within the 

cell. Right: same 

localizations plotted 

within dimensions of 

single cell in which the 

cell length and cell width 

of each cell was 

normalized. (B) 

Overlay of DAPI fluorescence and brightfield image (left) with Cascade localizations (right) in 

cephalexin treated cells. (C) The nucleoid enrichment in the WT strain (27 subregions in 18 cells). 

The average ratio is indicated with a black bar. The expected ratio if Cascade has no interaction 

with DNA is indicated in red (dashed). (D) Relation between DNA bound fraction and nucleoid 

enrichment. Left: A theoretical relation between nucleoid enrichment and DNA bound fraction was 

derived (Methods) and compared to simulated values for different amounts of fonDNA. Right: 

Localizations of simulated Cascade proteins (n =50.000) diffusing through part of an elongated cell 

are plotted on top of long cell axis. A DNA-free region (black bar) is visible due to enrichment of 

Cascade binding to DNA in nucleoid regions. Simulations of particles were performed with off-rate 

of 38 s-1 and an on-rate of 26 s-1 to reach a nucleoid enrichment of 1.8, similar to the average that 

was found for Cascade.  

However, it strongly contrasts other DNA binding proteins such as Fis and RNA 

polymerase, which show a much higher nucleoid enrichment (Reyes-Lamothe et al., 

2014; Stracy et al., 2015). The above findings indicate that Cascade inherently 
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spends more time freely diffusing the cell and that this is caused by the nature of 

DNA-Cascade interactions and not by size-based nucleoid exclusion, as is the case 

for ribosomes (Sanamrad et al., 2014). Therefore, we decided to study the nature of 

the DNA interactions in more depth. 

Cascade-DNA interactions are not only PAM-dependent 

Next, we assessed how PAM interactions contributed to DNA binding by 

introducing mutation G160A in the Cas8e subunit which abolishes the interaction 

with the PAM (Hayes et al., 2016). This G160A mutation decreased the fraction of 

DNA-bound Cascade from 41 ± 11 to 28 ± 6% (Figure 4A) without fully inhibiting 

DNA binding, suggesting that PAM-independent interactions (Van Erp et al., 2015; 

Hayes et al., 2016; Xiao et al., 2017) play a role in DNA probing as well. To assess 

the contribution of these different types of interactions to the average DNA residence 

time found previously, we measured the persistence of Cascade-DNA interactions 

by increasing the dark time between exposures (Figure 4B). Our data showed that 

sustained binding events at longer time scales (100 – 250 ms) were more frequently 

observed for WT Cascade than for the PAM binding mutant complex Cascade-

Cas8eG160A (Figure 4C). Together with the increased off-rate of the mutated complex 

(Figure 4A), this finding demonstrates that PAM-dependent interactions of Cascade 

with DNA last longer than PAM-independent interactions.  
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Figure 4: PAM-dependent and PAM-independent DNA probing. (A) D* distributions for 

Cascade and Cas8e with a mutation (G160A) deficient in PAM binding. To compare kinetic rates, 

we assumed that the relative Cas8e-Cascade fractions and the diffusion of free Cascade and Cas8e 

were not altered by the mutation and those values were fixed. (B) Depiction of persistence analysis.  

Increasing the integration time while keeping exposure time constant and counting the number of 

localizations within a certain radius allow the calculation of the persistence of binding events. (C) 

The relative amount of long binding events (6 consecutive localizations within rmax: 1 pixel (0.128 

μm) of the mean position) for WT and PAM binding mutant Cascade normalized to 50 ms 

integration time. Error estimation in (A) and (C) is based on bootstrapping (± standard deviation).  

 

Target DNA binding is influenced by the cellular 
environment 

 After establishing intrinsic DNA probing characteristics of Cascade, we next 

investigated its diffusion behavior in the presence of targets (Figure 5). To prevent 

target DNA degradation by Cas3 nucleases, we deleted the cas3 gene and verified 

that the deletion did not alter Cascade diffusion behavior (Figure S4). To verify that 

all Cascade complexes could bind a target, we measured the copy number of pTarget 

to be ~ 400 copies/cell (Figure S5). As the native E. coli CRISPR arrays contain 18 

spacers, this resulted in ~7000 target sites per cell which far outnumbers Cascade 

copy numbers under our growth conditions (~130, Figure 1D). 
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 Compared to a non-targeted control plasmid (Figure S4), the introduction of 

pTarget in cells decreased the fraction of free Cascade complexes (from 60 ± 4 to 29 

± 3%), and gave rise to a 34 ± 2% immobile, target-bound Cascade fraction 

(𝐷𝐷Cascade(bound)
∗  = 0.06 μm2/s) (Figure 5A). As expected, addition of pTarget 

increased the persistence of sustained binding events, indicating specific DNA target 

binding (Figure 5C). The combined information of plasmid copy number and the 

ratio of probing to target bound Cascade enabled us to determine a cellular KD value 

for the affinity of Cascade for targets of ~180 nM (Figure 5F; Methods), indicating 

that the affinity in vivo is around 10 times lower than what has been observed in 

vitro (Hayes et al., 2016).  

 



48 | C h a p t e r  2  
 

Figure 5: Cascade - DNA interactions in the presence of targets. (A and B), D* distribution 

for the Δcas3 strain carrying pTarget (A) and pTarget-RNAP (B). pTarget contains protospacers for 

all spacers in the K12 genome (colored, not all depicted) and are flanked by a 5’-CTT-3’ PAM (black 

bars). Cascade (probing) (green) and Cas8e (blue) fractions were fitted with parameters from Figure 

1C and 1D, and a new target-bound fraction (Cascade (bound)) was introduced as a single diffusion 

state (D* = 0.06 μm2/s (+σ2/t); red). (C) The abundance of sustained binding events as in Figure 3C, 

but for WT and pTarget-carrying cells. (D and E), D* distribution for the Δcas3 strain carrying 

pCRISPR1 (D) and pCRISPR1-RNAP (E). pCRISPR1 contains the same protospacers as pTarget that 

are now flanked by repeat PAMs. (F) In vivo KD estimates based on the ratio between Probing/Bound 

Cascade and the plasmid copy number (Figure S5; Methods).  (G) pTarget establishment for Δcas3 

(blue), WT (high induction; green), an empty high copy plasmid (pControl; pink), and low or high 

copy plasmids carrying CRISPR arrays (pCRISPR2_LC/pCRISPR2; grey/purple). Each dot represents 

an independent biological replicate. (H) pTarget establishment plotted for different copy numbers 

of Cascade. Same as Figure 1E but with addition of pCRISPR2. The Cascade copy number of the 

pCRISPR2 strain was estimated from the relative abundance of the Cascade (probing) fraction in 

the WT (high induction; Figure 2C) and pCRISPR2 (Figure S4) strain. Each dot represents an 

independent biological replicate. Error estimation in (A-F) is based on bootstrapping (± standard 

deviation). See also Figure S4, S5 and S6. 

 

We hypothesized that transcription of DNA along target sites would be one of the 

main factors influencing Cascade target DNA binding. To investigate the effects of 

transcription by host RNA polymerase (RNAP), we introduced a (lac) promoter in 

front of the pTarget sequence. To our surprise, we observed that the affinity of 

Cascade for target sites that undergo transcription (~100 nM) was higher than for 

non-transcribed target sites (~180 nM; probing/target bound Cascade from 0.5 ± 0.1 

to 0.9 ± 0.1). In addition, we observed an increased fraction of free Cas8e subunits 

(from 37 ± 2% to 54 ± 2%) in the strain containing transcribed pTarget (Figure 5B). 

Collectively, these findings suggest that transcription of a target DNA sequence 

somehow facilitates target search and increases the affinity of a target. In addition, 

it appears that collisions of RNAP with target-bound Cascade result in changes in 

the Cascade assembly, likely by dissociation of the Cas8e subunit from the complex 

upon collision with RNA polymerase, which potentially dissociates Cascade from 

the target. 



V i s u a l i z a t i o n  o f  C a s c a d e  t a r g e t  s e a r c h  | 49 
 

The relatively dynamic association of Cas8e within the Cascade complex has been 

observed previously in vitro (Jore et al., 2011) and was more recently also observed 

upon binding to the CRISPR array (Jung et al., 2017). We hypothesized that this 

dynamic behavior might be a functional characteristic and will also occur upon 

encountering CRISPR arrays inside the cell. To test this hypothesis, we made a 

variant of pTarget where all 18 interference PAMs were replaced by the trinucleotide 

sequence matching the repeats of the CRISPR array (pCRISPR1). Cascade did not 

show any interaction with the non-transcribed pCRISPR1 plasmid (Figure 5D). 

However, when we added a promoter sequence in front of the pCRISPR1 array of 

targets, we observed moderately enhanced levels of free Cas8e (from 40 ± 1 to 56 ± 

1%) (Figure 5E), reminiscent of Cas8e expulsion from the complex upon collision 

with RNA polymerase, or from targets with repeat like PAMs (Jung et al., 2017). 

Effectively this shows that transcribed CRISPR arrays may function as target decoys 

in the cell and can therefore potentially influence the levels of functional Cascade 

complexes in the cell.   

To test whether CRISPR array really form decoys in the cell and could impact 

interference levels, we constructed a compatible high copy number plasmid 

pCRISPR2 containing a normal CRISPR array (Figure S6). While the introduction 

of pCRISPR2 into cells containing pTarget only led to a small decrease in the 

number of Cascade complexes (15% less) (Figure S4), the CRISPR interference 

levels were reduced by as much as 50% (Figure 5G). This effect was not observed 

with low copy variant of pCRISPR2 (pCRISPR2_LC) or with a high copy plasmid 

lacking CRISPR arrays (pControl), indicating that this effect comes from the 

presence of a large number of CRISPR arrays in the cell (Figure 5G). We further 

found that the observed impact of CRISPR arrays on Cascade copy number and 

interference level fits well with our previously predicted relation between Cascade 

copy numbers and probability of successful MGE establishment (Figure 5H). It 

furthermore demonstrates how relatively small changes in Cascade copy numbers 

(15%) can have a big impact on CRISPR interference levels (50%). Taken together, 

our data indicate that Cascade target search and binding is strongly influenced by 

the action of RNA polymerase and that CRISPR arrays form target decoys in the 

cell, which can affect CRISPR interference levels. 
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Figure 6: Model of how Cascade protects the cell. Successful protection against an invader 

requires Cascade target search to circumvent several potential diversions (red). After Cascade is 

assembled, the complex probes the host DNA by rapidly binding and dissociating. It uses PAM-

dependent and PAM-independent DNA interactions and scans the entire nucleoid region. If it binds 

to a CRISPR array (S: spacer; R: Repeat), the complex disintegrates. When it has found its target, it 

depends on the search time (𝑡𝑡𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ) and the critical time (𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) whether the invader is cleared 

and the cell protected, or the invader can replicate and establish itself in the cell. Moreover, 

transcription by RNA polymerase (RNAP) can still remove bound complexes, compromising 

CRISPR protection. 
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Discussion 

How crRNA-effector complexes can achieve timely detection of incoming mobile 

genetic elements in the crowded environment of the cell is an intriguing aspect of 

CRISPR biology that remains poorly understood. We provide first insights into the 

fundamental kinetics of the surveillance behavior of type I crRNA-effector 

complexes in their native cellular environment. We determined how many copies of 

Cascade are required to establish effective immunity and uncovered how Cascade 

complexes navigate the crowded bacterial cell packed with DNA. Our results 

indicate that Cascade does not restrict its search space to parts of the cell, for 

example the nucleoid-free periphery, but instead is occupied scanning the entire host 

nucleoid for a match. Depending on genome size of a microbe and the number of 

copies of the genome in the cell, the nucleoid size may vary widely. To cover this 

vast sequence space sufficiently fast, the Cascade complex interrogates DNA 

sequences by using a combination of PAM-dependent and PAM-independent 

interactions which on average last only 30 ms. This probing interaction is much 

faster than previously reported interaction times determined of type I Cascade 

complexes by in vitro methods, which range between 0.1 and 10 s (Brown et al., 

2018; Redding et al., 2015; Xue et al., 2017). The ability to rapidly probe DNA 

sequences for potential matches with the crRNA, and to move from one place in the 

nucleoid to the next, may explain how a relatively low number of Cascade 

complexes in E. coli may still confer CRISPR immunity. Interestingly, the average 

probing time of 30 ms for Cascade matches values found for Streptococcus pyogenes 

dCas9 in E. coli (Jones et al., 2017; Martens et al., 2018), suggesting that DNA 

probing interactions of crRNA-effector complexes from both Class I and II systems 

may have evolved independently to take place at this time scale. 

The probing kinetics we measured for Cascade will allow the complex to scan 1000 

DNA sites per minute. Given the abundance of PAMs in the host DNA, this 

interaction time would lead to a search time in the order of hours. This value matches 

our independently calculated estimate of 1.5 hours for a single Cascade to find a 

single DNA target in the cell, which is four times faster than dCas9 search time 

estimates of 6 hours (Jones et al., 2017). However, our data also indicates that 

Cascade not only probes PAMs, the complex also spends a considerable amount of 
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time engaged in PAM-independent DNA interactions. These might be constituted 

by direct crRNA – DNA interactions (Blosser et al., 2015; Xue et al., 2016), or 

electrostatic interactions of Cascade with the DNA (Van Erp et al., 2015; 

Hochstrasser et al., 2014). This suggests an even larger DNA sequence space needs 

to be covered, creating the need for even more efficient and functionally flexible 

surveillance solutions. This more flexible probing behavior would be required to 

recognize targets with mutations in the PAM or protospacer in order to trigger a 

CRISPR memory update pathway called priming (Datsenko et al., 2012; Jackson et 

al., 2017), which appears to be unique for type I CRISPR-Cas systems. 

One possibility to reconcile Cascade DNA probing characteristics to the overall 

search time could be that Cascade undergoes facilitated 1D DNA sliding, where 

Cascade probes multiple sites per DNA binding event. We have shown that Cascade 

spends 50% of its search time on DNA, and the other 50% diffusing to a new site in 

the cytoplasm. This value may seem low compared to other DNA interacting 

proteins such as transcription factor LacI, which is DNA bound for 90% of the time 

(Elf et al., 2007). However, 50% has been theoretically derived as the optimum for 

a target search process involving one-dimensional DNA sliding and 3D 

translocation/hopping (Slutsky and Mirny, 2004). Indeed, recently it has been shown 

in vitro that Cascade and Cas9 can slide along the DNA in search of targets (Brown 

et al., 2018; Globyte et al., 2018). If this also occurs in vivo, this would be a striking 

example of a DNA binding protein having an optimized time division between 

DNA-bound and freely mobile states to survey the DNA content of the cell. 

The relatively high abundance (50%) of freely diffusing Cascade complexes may 

have benefits as well, as this will lead to more Cascade complexes in the periphery 

of the cell outside of the nucleoid. By surveying these peripheral regions more 

frequently, Cascade may be able to detect incoming bacteriophage or plasmid DNA 

more rapidly when these genetic elements enter the cell.  

Besides the chromosomal host DNA, other cellular constituents also affect target 

DNA binding properties. We found a much higher KD value in vivo (180 nM) than 

was reported earlier using in vitro methods (20 nM) (Hayes et al., 2016). The 

discrepancy in binding affinity between in vivo and in vitro measurements may be 

caused by an increase in target search time (i.e. a lower on-rate) or an increase in 
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target dissociation rate (i.e. a higher off-rate) in vivo. In any scenario, this 

discrepancy highlights the strong role of the crowded cellular environment on target 

binding. 

Counterintuitively, we have found that Cascade binds transcribed target sites with 

higher affinity (100 nM) than non-transcribed target sites (180 nM). Previous studies 

have shown that negative-supercoiling is required for Cascade binding (Westra et 

al., 2012), and that increased negative super-coiling accelerates the rate of R-loop 

formation (Szczelkun et al., 2014). As transcribed regions cause more negative 

supercoiled regions in the DNA (Ma and Wang, 2016), this could explain the 

increase in the affinity for transcriptionally active sites. Rates of spacer acquisition 

were also found to be higher for transcriptionally active regions (Staals et al., 2016), 

so together these effects may influence the abundance and effectivity of spacers in 

nature.  

Next to the positive effect of transcription on target search, we have also found that 

collisions between RNAP and target-bound Cascade lead to Cascade disassembly, 

where the Cas8e subunit is expelled from the Cascade core. Furthermore, CRISPR 

arrays themselves can trigger Cascade disassembly, indicating they form target 

decoys in the cell. When present at high copy number, CRISPR arrays can even 

impact CRISPR interference levels (Fig. 5G). The loose association of Cas8e with 

the core Cascade complex as observed in vitro (Jore et al., 2011), might serve a 

biological role in cells to recycle Cascade from off-targets including the CRISPR 

array, and may prevent Cas3 recruitment and subsequent self-targeting (Xiao et al., 

2018). 

By measuring cellular copy numbers, and accurately measuring CRISPR 

interference levels, we could uncover an exponential relationship between the 

number of Cascade complexes in the cell and CRISPR interference. This 

relationship describes that every 20 Cascade complexes loaded with one crRNA can 

provide 50% more protection from an invading DNA element (i.e. 20 copies provide 

50%, 40 copies 75% protection). Therefore at constant Cas protein production and 

degradation levels, the effective concentrations of Cascade complexes loaded with 

one type of crRNA will become diluted when CRISPR arrays become longer. The 

size of the CRISPR array is therefore a tradeoff between the higher protection levels 
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of a few spacers, and lower protection levels of many spacers. With our findings we 

can test optimality of this tradeoff under different conditions and help explain the 

observed sizes of CRISPR arrays found in nature (Martynov et al., 2017). 

The initial entry is the most vulnerable time for the invader, but invading MGEs 

have the possibility to outrun CRISPR-Cas immunity by replicating faster than being 

found. In the native cellular environment, we have found that scanning of host DNA, 

binding to CRISPR arrays and encountering transcribing RNA polymerases can 

prevent Cascade from finding the target before the critical time (tc) is reached and 

the invader is permanently established (Figure 6). We therefore hypothesize the 

presence of a kinetic arms race, in which invaders have evolved to replicate 

increasingly fast upon cell entry, while CRISPR-systems have evolved to increase 

the rate at which they are able to find the target. A recent study has indeed shown 

that the replication rate of foreign elements affects CRISPR interference levels 

(Høyland-Kroghsbo et al., 2018). Many bacteriophages use a two-stage injection 

(Chen et al., 2018; Davison, 2015), which may have evolved to limit the amount of 

time their DNA is exposed to intracellular defense mechanisms, while already 

allowing the production of proteins to replicate phage DNA, control host takeover, 

or to inhibit host defense (e.g. anti-CRISPR proteins) (De Smet et al., 2017). It has 

been previously shown that the host can counter this strategy by selectively targeting 

early injected DNA regions, maximizing the time available to look for targets 

(Modell et al., 2017).  

The specificity and kinetics of the CRISPR-system inside the crowded cellular 

environment is remarkable. Our study has observed very rapid scanning of DNA 

sites by Cascade complexes and our model predicts the impact of probing kinetics 

and copy numbers of Cascade on protection levels of CRISPR-Cas systems. We 

believe that not only specificity and evasion strategies such as anti-CRISPRs but 

also target search and infection kinetics have played an important role in the 

evolution of this immune system. The target search equations established here could 

be expanded to the population level, allowing to model how individual variability in 

Cascade expression levels and replication rates can impact the survival of entire 

populations. Therefore, our data provides an important framework for further 
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quantitative cellular studies that will address how CRISPR systems optimally deal 

with the challenges of cost-effective and rapid target search. 
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Star Methods 

Lead Contact and Materials Availability 

Further information and requests for resources and reagents should be directed to 

and will be fulfilled by the Lead Contact, Stan Brouns (stanbrouns@gmail.com). 

Cloning 

The inserts to create pTarget and pCRISPR1 plasmids were purchased as synthetic 

constructs from Gen9 (pTarget insert and pCRISPR1 insert; Table S3). To increase 

the copy number of targets in the cell, the constructs were cloned into a pUC19 

backbone with XbaI and KpnI restriction sites, yielding pTarget-RNAP and 

pCRISPR1-RNAP. The lac promoter was removed for both plasmids by digestion 

with SalI and PciI, creating blunt ends with Klenow Fragment and subsequently 

religated to yield pTarget and pCRISPR1. CRISPR arrays were amplified from the 

K12 BW25113 strain (primers BN383 and BN384; BN370 and BN385 for CRISPR 

array 2.1 and 2.3 respectively) and cloned into pJPC-12 plasmid containing the 

pSC101 ori with KpnI and SalI sites (for CRISPR array 2.1) and SalI and EcoRV 

sites (for CRISPR array 2.3). The copy number of the plasmid could be varied by 

introducing mutations in the repA gene with site-directed mutagenesis PCR (BN373-

375). The E96R mutation of RepA yields a reported copy number of ~240/cell 

(pCRISPR2) compared to the WT RepA (pCRISPR2_LC) copy numbers of ~7/cell 

(Peterson and Phillips, 2008). A plasmid was made from the high copy-variant that 

did not contain any CRISPR arrays (pControl). All constructs were verified by 

sequencing.  

 

Recombination 

The strains used in this study were created by using Lambda red recombineering 

(Datsenko and Wanner, 2000). Strains harbouring the pSC020 plasmid that contains 

both the Lambda red recombinase and Cre-recombinase were grown at 30 °C. Before 

transformation of an insert containing an antibiotic resistance marker, the expression 

of Red recombinase was induced with 0.2% L-Arabinose. Colonies on the specific 

mailto:stanbrouns@gmail.com
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antibiotic plate were verified with PCR and sequencing and subsequently Cre 

recombinase expression was induced with 1 mM IPTG at 37 °C to promote plasmid 

and antibiotic resistance gene loss. The strain was subsequently patch plated to 

screen for resistance sensitivity due to plasmid loss. 

If the scar that is left after lox-site recombination is directly upstream or downstream 

of a gene it might influence gene transcription/termination. In the design of 

constructs for pamcherry2 (Subach et al., 2009) the lox-cat-lox sequence was placed 

upstream of the IGR (Intergenic region) that is present between cas3 and cas8e. To 

allow for correct termination of cas3, a part of the IGR was also added at the 5’ end 

of the antibiotic resistance marker. The 3’ flank of the constructs overlapped with 

the cas8e gene. The 5’ flank of the constructs matched a sequence upstream and 

downstream of cas3 (PAmCherry ins; Table S3). Amplification of the constructs 

with a forward primer matching the downstream region kept cas3 intact upon 

insertion (BG7128), whereas a primer matching the upstream region deleted the cas3 

gene allowing measurements in the presence of targets (BG7129). The insert also 

contained a part of the cas8e sequence containing a G160A mutation. This mutation 

could be introduced into the gene simultaneously with the fluorescent protein, 

depending on the reverse primer that was used for insert amplification (BG7130 for 

WT, BG7131 for G160A). 

Knockouts of the CRISPR arrays and Cas gene subunits of the K12 strain were made 

by amplifying a lox-kan-lox or lox-cat-lox sequence with flanks matching the 

specific sequences and introducing them into the strain as described above 

(BG7366+BG7367 for CRISPR array 2.1; BG7368+BG7369 for CRISPR array 

2.2+2.3; BG8366+BG8367 for Δ(cas11-cas6e)). A full overview of the sequences 

of these inserts is given in Table S3. 

 

Growth conditions 

To prevent the high-copy target plasmids from influencing the growth rate of the 

strains and therefore changing the fraction of matured PAmCherry complexes we 

used a rich defined medium with minimal autofluorescence. Strains were grown in 

M9 minimal medium containing the following supplements: 0.4% glucose, 1x EZ 
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amino acids supplements (M2104 Teknova), 20 μg/ml uracil (Sigma-Aldrich), 1mM 

MgSO4 (Sigma-Aldrich) and 0.1 mM CaCl2 (Sigma-Aldrich) (further referred to as 

M9 medium). Strains were inoculated o/n from glycerol stocks and 200x diluted in 

fresh medium the next day. Cells were always grown with the required antibiotics. 

The expression level of Cascade for strains carrying the pKEDR13 plasmid could be 

tuned by different expression levels of LeuO. The expression level referred to in the 

text as low induction was achieved by leaky expression of LeuO (no addition of 

IPTG), medium induction was achieved by addition of low levels of IPTG (0.01 

mM), whereas high induction was achieved by addition of 1 mM IPTG upon dilution 

of the o/n culture. For all sptPALM measurements the high induction condition was 

used. The cells were grown for ~2.5 hours to an OD of 0.1 before use. For enforced 

elongation of cells, cephalexin (40 μg/ml) was added 0.5 hour after fresh inoculation 

and grown for two more hours. When required, DAPI for staining of DNA was added 

right before imaging (0.5 mg/ml).    
 

Transformation assay 

Each culture was grown under conditions described above and 30 ml were used to 

create competent cells. Cells were washed 3 times in ice-cold 10% glycerol solution 

and the final culture was reduced to 250 µl. The cells were aliquoted and stored at -

80 °C. A mixture of pTarget (10 pg/μl) and pGFPuv (10pg/μl) was transformed into 

40 µl of culture. In case of strong interference levels, the ratio was adjusted to a 

100:1 (pTarget (100 pg/μl):pGFPuv (1 pg/μl)). The transformability of strains was 

linear in these concentration regimes, allowing these different relative 

concentrations to be used.  

Electroporated cells were immediately plated in two dilutions on plates containing 

ampicillin (100 µg/ml) and glucose (0.4%). Glucose was added to prevent premature 

expression of GFPuv which would cause a decrease in fitness of cells containing this 

plasmid. The next day, 96 colonies from each replicate were reinoculated in 96-wells 

plate with LB containing ampicillin (100 µg/ml) and IPTG (1 mM). After overnight 

incubation, the 96 well colonies were analysed in a plate-reader (Synergy H1, 

Biotek). pTarget establishment was defined as 
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𝑝𝑝establishment  =  

# pTarget colonies
# GFPuv colonies 

[pGFPuv Transformed]
[pTarget Transformed]

 (1) 

pTarget establishment was further normalized to the interference level of a Δcas3 

strain. 

 

qPCR 

Each culture grew under conditions described above and 2 ml were used to extract 

the DNA. DNA was isolated with the Genejet Genomic DNA kit (Thermo Scientific) 

and concentrations were measured with the Qubit dsDNA HS Assay kit (Thermo 

Scientific). qPCR was performed with primers that have been used before in plasmid 

copy determination (BG8677-BG8680) (Reyes-Lamothe et al., 2014). The Ct value 

of the PCR amplifying the dxs gene and the bla gene was a measure for the ratio 

between chromosomal and plasmid DNA. 1 ng of genomic DNA and 0.5 μM of each 

primer were added to the iTaqTM SYBR Green SYBR Green PCR reaction mixture. 

A standard curve for the amplification efficiency was made by a dilution series of 

pMS011, a plasmid containing one copy of the dxs and the bla gene.   
 

Slide preparation 

In order to work with very clean slides, an extensive cleaning procedure was used 

(modified from (Chandradoss et al., 2014)). Slides were burned in the oven at 500 

°C for two hours, and stored in aluminium foil until the day of usage. Slides were 

subsequently sonicated in MilliQ, Acetone and KOH, incubated in Piranha Solution 

(75% H2SO4, 7.5% H2O2) and afterwards rinsed with MilliQ. 1% Agarose slabs 

containing the growth medium were hardened between two cleaned glass slides, 

spaced slightly apart using parafilm. After hardening, a concentrated culture of cells 

was added in between the slab and one of the slides. The agarose slab was always 

prepared within 20 minutes of the measurement to prevent desiccation. 

Microscope set-up 
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For the acquisition of microscopy data, a home-build TIRF microscope was used, 

which is described in more detail elsewhere (Martens et al., 2018). Briefly, four 

lasers with different wavelengths (405, 473, 561 and 642 nm) are situated in a 

Lighthub laser box (Omicron, Germany), and are transformed in a collimated beam 

via a reflective collimator and an optical fibre. Stroboscopic illumination was used 

to allow for 2 ms excitation in the temporal middle of the captured 10 ms long frame 

(Farooq and Hohlbein, 2015). The excitation laser is focused on the backfocal plane 

of a 100x oil immersion SR/HP objective (NA = 1.49, Nikon, Japan), and the 

emission is captured on a Zyla 4.2 plus sCMOS camera (Andor, UK). 2x2 pixel 

binning was used, resulting in 128x128 nm pixels. Data acquisition was performed 

using MicroManager (Edelstein et al., 2010). Measurements were performed at room 

temperature (21 °C) 

 

Single-molecule Measurements 

The cells were imaged with a brightfield light and 405 and 561 nm lasers. First 

brightfield images were taken to find contours of the cells. The 405 nm laser was 

used to stochastically activate PAmCherry and the laser intensity was slowly 

increased during the measurement up to 10 μW. The laser intensities were measured 

directly after the reflective collimator. With increasing the laser intensity of the 405 

nm laser during the measurements, we aimed at keeping the number of activated 

molecules relatively constant (~1-10 per FOV). The 561 nm laser was used to excite 

the fluorescent protein tags (40 mW pulses with 2ms pulse width, leading to average 

exposure intensity of 8 mW).  

To measure Cascade localization in cephalexin-treated cells that were stained with 

DAPI, we took an alternative approach. To prevent DAPI fluorescence from 

influencing the fluorescence measurements of the single molecules, we briefly 

activated a subset of particles with the 405 nm laser and subsequently tracked 

Cascade for a couple of frames with 561 nm excitation, repeatedly doing this, until 

most fluorescent proteins were photobleached. 

Analysis 



V i s u a l i z a t i o n  o f  C a s c a d e  t a r g e t  s e a r c h  | 61 
 

Detection, localization and tracking 

Analysis was done with home-built software, adapted from (Holden et al., 2010; 

Uphoff et al., 2013). The sCMOS camera we used has pixel dependent offset, gain 

and variance, which we took into account to minimize the detection of false positive 

localisations. We estimated these parameters by measuring 60.000 dark frames and 

20.000 homogeneously illuminated frames with increasing levels of intensity (Vliet 

et al., 1998). To further optimize our detection, we implemented a temporal median 

filter (time window 400 frames) for background estimation (Hoogendoorn et al., 

2015). The background estimate was not directly subtracted from the image, but 

photon statistics were incorporated in a likelihood-ratio test that calculated the 

probability of a scenario with and without an emitter for each pixel in every frame. 

Briefly, a raw image was first converted into photon counts by using the camera 

offset and gain maps. Subsequently for every pixel the intensity (Itot) of a potential 

emitter was estimated by Gaussian-weighted (σ =1 pixel) summation of a 7x7 

window to a background subtracted image. Subsequently, potential emitters of more 

than 50 photons were preselected and were further subjected to a ratio test. The ratio 

test uses the probability defined for pixel i to have a transformed value v in the 7x7 

region around the preselected pixels as previously described (Huang et al., 2013): 

 𝑝𝑝scmos(𝑣𝑣 = [(𝑑𝑑𝑖𝑖 − 𝑜𝑜𝑖𝑖)/𝑔𝑔𝑖𝑖 + 𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖/𝑔𝑔𝑖𝑖2]|𝜇𝜇𝑖𝑖, 𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑔𝑔𝑖𝑖, 𝑜𝑜𝑖𝑖)

=
𝑒𝑒−(𝜇𝜇𝑖𝑖+𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖/𝑔𝑔𝑖𝑖

2)(𝜇𝜇𝑖𝑖+𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖/𝑔𝑔𝑖𝑖2)𝑣𝑣

𝛤𝛤(𝑣𝑣 + 1)
 

(2) 

Where di is the raw image value, gi is the gain, vari the variance and oi the offset for 

pixel i. The ratio test calculates the product of the probability of all pixels in the 

subregion in case of an emitter 𝜇𝜇𝑖𝑖  =  𝑏𝑏𝑖𝑖 + 𝐼𝐼𝑖𝑖, where bi is the estimated background 

an Ii is the estimated intensity of the emitter at pixel i (which was estimated by a 

Gaussian from the centre of the 7x7 subregion with emitter intensity Itot) divided by 

the product of the probability of all pixels in the subregion in case of absence of an 

emitter 𝜇𝜇𝑖𝑖  =  𝑏𝑏𝑖𝑖. 

We set the likelihood to a level that achieved approximately one false positive per 

frame of 512 x 512 pixels. This method allowed the detection efficiency to be more 

robust across and between FOVs and independent of manual thresholding for each 
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measurement. Detected particles were subsequently localized with MLE-sCMOS 

software as previously described (Huang et al., 2013).  

The localized particles were subsequently linked. Localizations in subsequent 

frames which were closer to each other than 6 pixels in length (0.78 μm) were 

assigned as a track. Particles were allowed to disappear for one frame (due to 

blinking/moving out of focus), but these steps were not used in the calculation of the 

apparent diffusion coefficient, D*. 

 

Determination of diffusion coefficients 

Several methods were employed to extract diffusion states and their abundances 

from the analysed tracks. The distribution of the apparent diffusion coefficients can 

be fitted to an analytical equation as reported earlier (Stracy et al., 2015; Vrljic et 

al., 2002). These equations depend on the number of steps that is used to generate 

the average diffusion coefficients of each particle. We used tracks containing a 

minimum of four steps and only four steps were used in longer tracks.  

For a single diffusion coefficient fitting becomes: 

 

𝑓𝑓𝐷𝐷(𝑥𝑥;𝐷𝐷,𝑛𝑛) =
� 𝑛𝑛
𝐷𝐷 + σ2/dt�

𝑛𝑛
𝑥𝑥𝑛𝑛−1𝑒𝑒

− 𝑛𝑛𝑛𝑛
𝐷𝐷 + σ2/dt

(𝑛𝑛 − 1)!
 (3) 

With multiple states this equation becomes: 

 

𝑓𝑓𝐷𝐷(𝑥𝑥;𝐴𝐴𝑖𝑖,𝐷𝐷𝑖𝑖 ,𝑛𝑛) = �𝐴𝐴𝑖𝑖
� 𝑛𝑛
𝐷𝐷𝑖𝑖 +  σ2/dt�

𝑛𝑛
𝑥𝑥𝑛𝑛−1𝑒𝑒

− 𝑛𝑛𝑛𝑛
𝐷𝐷𝑖𝑖+ σ2/dt

(𝑛𝑛 − 1)!

𝑁𝑁

𝑖𝑖=1

 (4) 

Where Ai are the fractions (∑𝐴𝐴𝑖𝑖 = 1), Di* are the apparent diffusion coefficients of 

the different states and n are the number of steps. The localization error (σ) was 

found to be 40 nm, based on the apparent diffusion of the slowest moving fraction 

in our global data set and similar to other studies using the same fluorescent protein 

(Stracy et al., 2015; Uphoff et al., 2013) or set-up (Martens et al., 2018). This 

equation was fitted to our track distributions with a Maximum Likelihood Estimation 

algorithm. The uncertainty in the fit was estimated with Bootstrap resampling. The 
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list of D* values was resampled 20.000 times with replacement to the size of the 

original data set. Each resample was then fitted with the same Maximum Likelihood 

Estimation algorithm.  

 

Analytical Diffusion Distribution Analysis (DDA) 

D* Distributions have been fitted in numerous studies of DNA binding proteins (see 

above) (Stracy et al., 2015; Vrljic et al., 2002), making use of distributions developed 

by Qian et al. (Qian et al., 1991). The goal is to find the distribution of measured D* 

values (x), for a certain number of underlying states that each have a probability Ai 

and a diffusion coefficient Di. It is derived from repeated convolution of the 

exponential distribution of displacement, resulting in a gamma function for each 

state. These distributions assume, however, that there is no transitioning occurring 

between states.  

 

In order to incorporate dynamics of state transitions into our fitting, we incorporated 

statistics coming from photon distribution analysis (PDA) that is used for single 

molecule FRET  diffusion coefficient distributions (Antonik et al., 2006; Kalinin et 

al., 2008; Palo et al., 2006). This method, that we term Diffusion Distribution 

Analysis (DDA), describes the distribution of time spent in each state given a certain 

𝑘𝑘on∗ , 𝑘𝑘off and the integrated time 𝑡𝑡int. Here we discuss the analytical way to find this 

distribution.  

Firstly, the probability distribution function for time can be calculated by three 

equations corresponding to 0, an odd and an even number of transitions (Palo et al., 

2006): 

 𝑊𝑊cont𝑆𝑆1(𝑡𝑡𝑆𝑆1 = 𝑡𝑡int|𝑘𝑘off, 𝑡𝑡int) =  𝑒𝑒−𝑘𝑘off𝑡𝑡int (5) 

 𝑊𝑊odd𝑆𝑆1(𝑡𝑡𝑆𝑆1| 𝑘𝑘off,𝑘𝑘on∗ , 𝑡𝑡int)

= 𝑘𝑘off𝑒𝑒−𝑘𝑘off𝑡𝑡𝑆𝑆1−𝑘𝑘on
∗ 𝑡𝑡𝑆𝑆2𝐼𝐼0(2�𝑘𝑘off𝑘𝑘on∗ 𝑡𝑡𝑆𝑆1𝑡𝑡𝑆𝑆2) 

(6) 
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 𝑊𝑊even𝑆𝑆1(𝑡𝑡𝑆𝑆1|𝑘𝑘off,𝑘𝑘on∗ , 𝑡𝑡int) =

 �𝑘𝑘off𝑘𝑘on∗ 𝑡𝑡𝑆𝑆1/𝑡𝑡𝑆𝑆2𝑒𝑒−𝑘𝑘off𝑡𝑡𝑆𝑆1−𝑘𝑘on
∗ 𝑡𝑡𝑆𝑆2𝐼𝐼1(2�𝑘𝑘off𝑘𝑘on∗ 𝑡𝑡𝑆𝑆1𝑡𝑡𝑆𝑆2)  

(7) 

Where 𝑡𝑡𝑆𝑆1 and 𝑡𝑡𝑆𝑆2 are times spent in state S1 and state S2 and I0 and I1 are Bessel 

functions of order zero and one respectively. Note that 𝑡𝑡𝑆𝑆1 + 𝑡𝑡𝑆𝑆2 = 𝑡𝑡int. Equations 

for starting in state 2 (WcontS2, WoddS2 and WevenS2), can be found by exchanging 𝑘𝑘off 

for 𝑘𝑘on∗  and tS1 for tS2 and vice versa in equations 5-7. 

We can convert the time spent in the mobile state (𝑡𝑡𝑆𝑆2) to the diffusion coefficient 

by the following equation:  

 𝐷𝐷 =
𝐷𝐷free𝑡𝑡𝑆𝑆2
𝑡𝑡int

 (8) 

It follows that the probability distribution functions can be converted by: 

 𝑊𝑊(𝐷𝐷)  =  𝑊𝑊�𝑡𝑡𝑆𝑆2 =
𝐷𝐷𝑡𝑡int
𝐷𝐷free

� (9) 

Furthermore, the chance that the particle at the start is in state 1 or state 2 is provided 

by: 

 
𝑝𝑝𝑆𝑆1 =

𝑘𝑘on∗

𝑘𝑘on∗ + 𝑘𝑘off
 (10) 

 
𝑝𝑝𝑆𝑆2 =

𝑘𝑘off
𝑘𝑘on∗ + 𝑘𝑘off

 (11) 

To correctly describe the distribution over a certain number of frames, we first 

calculated the distribution over a single time frame 𝑡𝑡𝑓𝑓. Within a single frame, a 

particle started in that state can either end in the same state or in a different state. 

Therefore, in a two-state system the probability function for four scenarios have to 

be calculated: 

 𝑊𝑊(𝐷𝐷|𝑘𝑘off,𝑘𝑘on∗ , 𝑡𝑡𝑓𝑓)S1S1  =  𝑊𝑊even𝑆𝑆1(𝐷𝐷)  +  𝑊𝑊cont𝑆𝑆1 (12) 

 𝑊𝑊(𝐷𝐷|𝑘𝑘off,𝑘𝑘on∗ , 𝑡𝑡𝑓𝑓)S1S2  =  𝑊𝑊odd𝑆𝑆1(𝐷𝐷) (13) 
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 𝑊𝑊(𝐷𝐷|𝑘𝑘off,𝑘𝑘on∗ , 𝑡𝑡𝑓𝑓)S2S1  =  𝑊𝑊odd𝑆𝑆2(𝐷𝐷) (14) 

 𝑊𝑊(𝐷𝐷|𝑘𝑘off,𝑘𝑘on∗ , 𝑡𝑡𝑓𝑓)S2S2  =  𝑊𝑊even𝑆𝑆2(𝐷𝐷)  +  𝑊𝑊cont𝑆𝑆2 (15) 

Subsequently the probability to find a certain diffusion coefficient (x) for a single 

time step given the underlying average diffusion coefficient (D) is given by 

𝑓𝑓𝐷𝐷(𝑥𝑥|𝐷𝐷, 1) (Eq. 3). Then we find the distribution of measured diffusion coefficients 

for a single frame by: 

 𝑊𝑊�𝑥𝑥�𝑘𝑘off,𝑘𝑘on∗ , 𝑡𝑡𝑓𝑓�SiSj =  𝑓𝑓𝐷𝐷(𝑥𝑥|𝐷𝐷, 1) 𝑊𝑊�𝐷𝐷�𝑘𝑘off,𝑘𝑘on∗ , 𝑡𝑡𝑓𝑓�SiSj 

                 i = j = 1,2 
(16) 

Now that we have the distribution for a single time step, we need to find the 

distribution for the average of multiple frames. For this we use the same method as 

Qian et al. (Qian et al., 1991), namely repeated convolution of the distribution for a 

single frame, while keeping track of the start and end state. The probability 

distributions are therefore: 

 
𝑊𝑊(𝑥𝑥|2𝑡𝑡𝑓𝑓)S1S1  = � (𝑊𝑊(𝑥𝑥|𝑡𝑡𝑓𝑓)S1Si ∗ 𝑊𝑊(𝑥𝑥|𝑡𝑡𝑓𝑓)SiS1)

 

𝑖𝑖=1,2  

 (17) 

 
𝑊𝑊(𝑥𝑥|2𝑡𝑡𝑓𝑓)S1S2  = � (𝑊𝑊(𝑥𝑥|𝑡𝑡𝑓𝑓)S1Si ∗ 𝑊𝑊(𝑥𝑥|𝑡𝑡𝑓𝑓)SiS2)

 

𝑖𝑖=1,2  

  (18) 

 
𝑊𝑊(𝑥𝑥|2𝑡𝑡𝑓𝑓)S2S1  = � (𝑊𝑊(𝑥𝑥|𝑡𝑡𝑓𝑓)S2Si ∗ 𝑊𝑊(𝑥𝑥|𝑡𝑡𝑓𝑓)SiS1)

 

𝑖𝑖=1,2  

 (19) 

 
𝑊𝑊(𝑥𝑥|2𝑡𝑡𝑓𝑓)S2S2  = � (𝑊𝑊(𝑥𝑥|𝑡𝑡𝑓𝑓)S2Si ∗ 𝑊𝑊(𝑥𝑥|𝑡𝑡𝑓𝑓)SiS2)

 

𝑖𝑖=1,2  

  (20) 

For 4 frames, the distributions found for 2 frames can be convoluted again. The full 

distribution is then found by summing up each of the partial distributions multiplied 

by the chance they start in S1 or S2: 

 𝑊𝑊tot  =  𝑝𝑝𝑆𝑆1(𝑊𝑊(𝑥𝑥|4𝑡𝑡𝑓𝑓)S1S2 + 𝑊𝑊�𝑥𝑥�4𝑡𝑡𝑓𝑓�S1S1) 

            + 𝑝𝑝𝑆𝑆2(𝑊𝑊(𝑥𝑥|4𝑡𝑡𝑓𝑓)S2S1 + 𝑊𝑊(𝑥𝑥|4𝑡𝑡𝑓𝑓)S2S2) 
(21) 
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We then have to further correct for the broadening of the distribution of immobile 

particles where the apparent step size comes from localization error (Figure S2). As 

localization error, in contrast to diffusion, is correlated (Michalet, 2010), the 

distribution is not described by a gamma distribution, or any other known exact 

solution. We find very close agreement with simulations when we subtract the 

fraction of immobile particles after four time steps (𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1(𝑡𝑡𝑆𝑆1 = 4𝑡𝑡𝑓𝑓), Eq.5 ) 

multiplied with the distribution of expected D* for four time steps 𝑓𝑓𝐷𝐷(𝑥𝑥|0,4) (Eq. 3) 

and replace it with the same fraction of immobilized particles multiplied with the 

distribution of expected D* for 2.9 time steps 𝑓𝑓𝐷𝐷(𝑥𝑥|0,2.9). This value stems from 

the variance found for correlated MSD values due to localization error (Michalet, 

2010).  

The assumptions that underlie this model are as follows:  

• Each diffusing species can be in two states, namely an immobile and 

a mobile state. 

• The immobile state in our case includes all species bound to 

chromosomal DNA, including potential 1D sliding events, for which the 

diffusion is at such a low relative speed that we can consider them as 

immobile. Our model therefore cannot distinguish between bound and 1D 

sliding species. 

• The immobile state is still perceived as diffusing due to a localization 

error, σ, which in our case is 40 nm. As the distribution of sequential 

localization errors differs from sequential diffusion steps we correct for this 

(Figure S2). 

• The mobile state is defined by the parameter 𝐷𝐷free, which is the 

diffusion coefficient of a species in the absence of interactions with DNA. 

All slowing down in the motion because of transient DNA interaction are 

captured in our model by the introduction of transitions and do not affect the 

value found for this parameter. 

• The transition between the two states for each species is Markovian, 

meaning that transition rates are independent of past or future states.  
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For each species that you fit there are four degrees of freedom, namely the 

abundance of the species in the total population and the three kinetic parameters 𝑘𝑘on∗ , 

𝑘𝑘off, and 𝐷𝐷free. However because the sum of all fractions of species is one (∑𝑐𝑐 = 1) 

and the sum of the average time spent freely diffusing multiplied by the free 

diffusion coefficient for each species is equal to the average measured Diffusion 

Coefficient (< 𝐷𝐷 > =  ∑𝑐𝑐𝑖𝑖
𝑘𝑘off,i

𝑘𝑘off,i+𝑘𝑘on,i
∗ 𝐷𝐷free,𝑖𝑖), the amount of free fitting parameters 

is reduced by two. This means that for a single diffusing species (in our case 

monomeric Cas8e) we only need to fit two parameters and for a two-species 

distribution (in our case Cascade) for which one is already known (Cas8e) we need 

to fit three parameters (8 degrees of freedom – 3 already known Cas8e kinetic 

parameters – 2 from the above described equations). We found that the uncertainty 

of our fit, determined by bootstrapping and simulations, is reasonable up to three 

fitting parameters, therefore we designed our experiments in a way, that in the 

presence of multiple species (such as pTarget (Fig. 5)) we already predetermined the 

kinetic parameters for most species to limit the required fitting parameters to three.   

 

Copy number determination 

The copy number of the Cascade complex was determined by generating cell 

outlines from brightfield images (only well separated cells were chosen). The cell 

outlines were made with the Oufti software (Paintdakhi et al., 2016). The total 

number of tracks that were found in the outlined cells generated a copy number 

(Figure 1D). Because single localization events can partly stem from false positives, 

the total amount of tracks was estimated based on the distribution of tracks longer 

than 1 step and subsequently this distribution was fitted with an exponential to 

calculate the amount of particles that only had a single localization before bleaching. 

Similarly, as we know the false positive rate was approximately one per frame, we 

could also subtract the number of frames from the single step tracks and in this way 

estimate the total number of tracks. This approach yielded comparable results.  

The copy number of proteins in cells are hard to quantify (Lee et al., 2012). 

Currently, protein copy numbers can be estimated either by western blot or by single-
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molecule fluorescence based methods both of which have specific drawbacks. 

Although single molecule studies are regarded as the most accurate method, 

especially at low copy numbers (Huang et al., 2007), there are a lot of variables that 

can lead to over- or underestimation. Underestimation can originate from maturation 

time of the protein, misfolded/inactivated protein, false negative detections, overlap 

of PSFs and linking of two separate molecules in a single track. Overestimation can 

come from failed linking of tracks, false positive detections and blinking fluorescent 

proteins.  

As has been done in previous studies, we take the underestimations stemming from 

maturation time (23 min for PAmCherry (Subach et al., 2009)), close to growth rate 

of 31 min) and estimated in vivo folding efficiency (50% (Durisic et al., 2014)) into 

account (Uphoff et al., 2013). We also consider that an estimated 40% of the 

particles we observed come from Cas8e subunits not active complexes. Taken 

together, the number of particles we observe are subtracted by the amount of 

estimated autofluorescent particles and subsequently multiplied by a compensation 

factor of two to reach our estimated copy number values. 

We believe that the assumptions made in this study could maximally lead to over- 

or underestimating our estimated copy numbers by two to three-fold. We note that 

the relative amounts we observed between the different expression levels will be 

independent of these assumptions. 

 

Cascade in DNA-containing/DNA-free regions 

To get an independent measure of the total time fraction spent probing DNA, 

Cascade was visualized in cells that were elongated by addition of cephalexin. The 

drug cephalexin disabled the ability of the cells to divide, creating elongated cells 

where nucleoids were separated by DNA-free spaces (Reyes-Lamothe et al., 2014). 

Subregions of cell outlines were manually selected and further refined with the Oufti 

software (Paintdakhi et al., 2016). The relative amount of localizations of DNA-free 

and DNA-containing regions was not calculated for entire cells, as differences in 

illumination intensity between parts of the FOV could also change the amount of 

localizations detected for different parts of the cell. Each subregion contained one 
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nucleoid free region, flanked by two nucleoid containing regions with a total length 

of around 4 μm. Segments of 0.1 μm divided along the long axis of the cell are 

separated into nucleoid or DNA-free segments based on the sum of the DAPI 

fluorescence within each segment. The average number of localizations of Cascade 

molecules in nucleoid segments divided by the average number of localizations 

Cascade molecules in DNA-free segments could be used to infer the DNA bound 

time fraction (see below, fonDNA from nucleoid enrichment). 

 

Persistence sustained binding events for different integrated 
times  

To estimate how long binding events last, one could plot the number of particles 

remaining within a certain radius from the first frame position for different number 

of steps. However, particles can diffuse away when they are released from DNA or 

be lost due to photobleaching. To account for bleaching rates, previous studies 

increased dark time between exposures, while keeping exposure times the same (Ho 

et al., 2018; Knight et al., 2015). This approach uses the data of all time steps, 

including only single time steps.   

As we are investigating lifetime of binding events on a subsecond timescale this 

approach fails, as single steps of slow-moving particles, which can be clearly 

separated from bound particles on larger timescales (tint > 1 s), will be counted as 

bound particles leading to overestimated off-rates. At these timescales, it is more 

reliable to use tracks of at least 5 steps to distinguish bound from moving particles. 

As we are interested in how many of these events we observe, depending on the 

framerate, normalization is required.  

For this we cannot use the sum of all tracks observed at each frametime, as a larger 

amount of fast moving molecules diffuse further than the maximum tracking 

distance of 0.78 μm between two exposures, and are also more affected by 

confinement with increasing integrated time. Therefore, the number of moving 

particles of certain track length is not an accurate normalization when comparing 

different frame times. However, as we used similar exposure for all frame times, the 

number of detected localizations per protein is unaffected. Furthermore, bound 
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molecules are not affected by confinement or linking errors with increasing frame 

rates.  

 

The most robust normalization procedure was therefore to normalize the number of 

localizations within sustained bound tracks (all localizations within 1 pixel of the 

mean location of the track) to the total number of localizations, as those do not 

depend on the length of introduced dark time between exposures. A further increase 

of the dark time was not possible as on longer time scales the movement of the 

plasmid (𝐷𝐷free∗  = 0.06 μm2/s) made plasmid bound particles diffuse further than 1 

pixel.   

 

Confinement and localization error simulation 

To verify whether our new transitional D* analysis yielded accurate parameter 

predictions and investigate the influence of localization error and confinement on 

the parameters of the fit, we simulated particles moving and transitioning between 

bound and free moving states within the dimensions of an E. coli cell, adapted from 

methodology used in (34). At every time step particles were simulated to be either 

in a bound state S1 (D = 0 μm2/s), or a mobile state S2 (D = Dfree). At the starting 

time point, states were assigned to each particle according to the equilibrium 

probability 𝑝𝑝𝑆𝑆1 and 𝑝𝑝𝑆𝑆2 (Eq. 10 + 11). Subsequently, at following time steps of 0.1 

ms, particles in state S1 were assigned to S2 with a probability of 𝑝𝑝𝑆𝑆1→𝑆𝑆2 =  𝑘𝑘off𝑡𝑡step 

(where 𝑡𝑡step =  0.0001 𝑠𝑠) and particles in state S2 were assigned to S1 with a 

probability of 𝑝𝑝𝑆𝑆2→𝑆𝑆1 = 𝑘𝑘on∗ 𝑡𝑡step. Displacements in three dimensions at each time 

step were taken from a standard normal distribution multiplied with �2𝐷𝐷𝑡𝑡step 

(where D is either 0 for particles in state S1 or Dfree for particles in state S2). Steps 

beyond the boundaries of a cell were rejected and new displacements were randomly 

drawn.  

The 2D projection of five localizations at 10 ms time intervals for each molecule 

was generated as output and was analysed in our tracking software. Localization 

error was included in the simulation by addition of a random displacement for each 
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position taken from a Gaussian distribution (σ = 40 nm). It was found that changes 

in outcome of the simulation were not sensitive to cell length in the range of our 

bacteria (3-6 μm), decreasing less than 5% for the smallest size. Most of the 

confinement effect is caused by the cell width, which was relatively constant 

between all the cells measured.  

 

Cascade nucleoid enrichment simulation 

The simulation above was adapted to simulate the movement in DNA-free and 

DNA-containing regions. Particles were simulated to move inside of a cell of 10 μm 

in length and 1 μm in width consisting of 100 segments without endcaps (0.1 μm per 

segment). Five segments were modelled as DNA-free segments and the rest of the 

segments as DNA-containing segments.  

Cascade molecules were randomly placed throughout the cell and subsequently were 

simulating with similar time steps as described above, except that moving particles 

were only allowed to transition to S1 (bound state) inside of the nucleoid containing 

regions. Before recording the position of the simulated particles, the simulation ran 

for 100.000 time steps (10 s) so that equilibrium was reached. Localization error was 

added in the same way as described above.  

 

Expected free diffusion coefficients  

The diffusion coefficient of molecules in classic (Newtonian) fluids can generally 

be estimated by the Stokes-Einstein equation. A study measuring the diffusion of 

GFP multimers inside the E. coli cytoplasm has shown good agreement with the 

predictions of this equation (Nenninger et al., 2010), whereas a second study found 

a different relation attributed to the complex nature of the cytoplasmic fluid (Mika 

and Poolman, 2011). To compare our findings of the apparent free diffusion 

coefficient of Cas8e (~3.5 μm2/s) and Cascade (~ 1.0 μm2/s), we therefore looked 

for reported free cytoplasmic diffusion coefficient values of proteins of similar size 

inside E. coli cells. For Cas8e, two proteins have been studied with a similar size to 
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PamCherry-Cas8e (82 kDa), namely CFP-CheR-YFP (86 kDa) (Kumar et al., 2010) 

and TorA-GFP3 (84 kDa) (Nenninger et al., 2010), which have reported values of 

1.7 μm2/s and 6 μm2/s. Our estimate for Cas8e lies within the range of these values. 

For Cascade (430 kDa), the closest reported protein in size is RNA polymerase, for 

which the 𝐷𝐷free∗  was found to be 1.1 μm2/s (400 kDa core enzyme, 470 kDa 

holoenzyme) (Stracy et al., 2015). Furthermore larger proteins such β-Gal-GFP4 

(582 kDa; 0.6 μm2/s ) (Mika et al., 2010), and 30S ribosome subunits (900 kDa 0.4 

μm2/s) (Sanamrad et al., 2014) were reported with lower diffusion coefficients as 

expected. These findings support the free apparent diffusion value we found for 

Cascade (~ 1.0 μm2/s). 

 

fonDNA from nucleoid enrichment  

The distribution of Cascade in nucleoid-free and nucleoid containing regions 

depends on the time Cascade spends on DNA. We divided the cell up along the long 

axis into segments of 100 nm wide. During the time Cascade is bound to DNA it can 

only be inside of the nucleoid regions whereas, when it is not bound to DNA Cascade 

can be anywhere within the cell. Therefore, the average number of particles in a 

DNA-containing segment is given by: 

 
𝑁𝑁DNA������� = �

𝑓𝑓onDNA
𝑠𝑠𝑠𝑠DNA

+
1 − 𝑓𝑓onDNA
𝑠𝑠𝑠𝑠tot

�𝑁𝑁tot (22) 

and the average number of particles in a DNA-free segment is given by  

 
𝑁𝑁DNA−free������������� =

1 − 𝑓𝑓onDNA
𝑠𝑠𝑚𝑚tot

𝑁𝑁tot (23) 

Where fonDNA is the fraction of time bound to DNA, smDNA and smtot are the number 

of DNA segments and the total number of segments respectively and Ntot is the total 

number of particles in a cell. The ratio, which is equal to the enrichment factor EF, 

can then be expressed as: 

 

 
𝐸𝐸𝐸𝐸 =  𝑁𝑁DNA��������

𝑁𝑁DNA−free��������������� = �𝑓𝑓onDNA
𝑠𝑠𝑠𝑠DNA

+ (1−𝑓𝑓onDNA)
𝑠𝑠𝑠𝑠tot

� / 1−𝑓𝑓onDNA
𝑠𝑠𝑠𝑠tot

  (24) 
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If the number of DNA-free segments is much less than the number of DNA segments 

𝑠𝑠𝑠𝑠DNA ≈  𝑠𝑠𝑠𝑠tot the expression above can be simplified to: 

  𝐸𝐸𝐸𝐸 = 1
1−𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

  (25) 

This equation allows extraction of fonDNA from EF directly and implies that this value 

does not depend on the diffusion coefficients of the mobile population.  
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In vivo KD values  

The KD value is a commonly calculated affinity constant used for binding kinetics 

of proteins and assembly of multicomponent systems (McGuigan et al., 2006), but 

the KD has also been used as an estimate for in vivo binding affinity (Zawadzki et 

al., 2015). In the reaction scheme A + B ⇄ AB, the KD is calculated as 

 𝐾𝐾𝐷𝐷 =  [𝐴𝐴][𝐵𝐵]/[𝐴𝐴𝐴𝐴] (26) 

For Cascade the reaction scheme is as follows: [Cascade (probing)] + [free target 

sites] ⇄ [Cascade (bound)]. The concentration of a single entity inside of a cell of 

length 4 μm and width 1 μm with hemispherical endcaps is approximately 0.5 nM. 

The copy number for pTarget was estimated by qPCR to be approximately 100 

plasmids per chromosome. As the number of chromosomes in actively dividing cells 

is generally higher than one, we used literature values for the number of 

chromosomes/cell found in (Wallden et al., 2016), providing 4/cell which also used 

a glucose and amino acid enriched M9 medium as growth medium. This brings the 

copy number of pTarget to 400/cell, which is equal to 200 nM. For a Cascade 

complex carrying one of several crRNAs in the cell, the amount of free target sites 

is equal to the copy number of the plasmid pTarget minus the amount of already 

occupied target sites of that crRNA, but as the copy number of each target (400) is 

much higher than the number of Cascade complexes potentially carrying that crRNA 

(on average 130/18 ≈ 7), [free targets] ≈ [pTarget].The KD value was then calculated 

as: 

 𝐾𝐾𝐷𝐷 = [pTarget][Cascade(probing)]/[Cascade(bound)] 

       = 200 nM [Cascade(probing)]/[Cascade(bound)] 
(27) 
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Theoretical model interference level vs copy number 

In the case where the interference level is limited by the target search of the proteins, 

we can model the relation based on the distribution of search times of single proteins. 

The search time for a single protein, because it is the arrival time of a recurring 

independent random event, is exponentially distributed and characterized by the 

average search time, < 𝑡𝑡𝑠𝑠 >: 

 𝑝𝑝1(𝑡𝑡𝑠𝑠) = 1/< 𝑡𝑡𝑠𝑠 >��������� 𝑒𝑒−𝑡𝑡𝑠𝑠/<𝑡𝑡𝑠𝑠>������� (28) 

We have verified given our kinetic model of Cascade with simulations that this is 

the case (Figure S3). The chance that one of n proteins finds the target at search time 

ts while the other proteins have not yet found the target is: 

 
𝑝𝑝𝑛𝑛(𝑡𝑡𝑠𝑠) = 𝑛𝑛𝑝𝑝1(𝑡𝑡𝑠𝑠)(� 𝑝𝑝1(𝑡𝑡)𝑑𝑑𝑑𝑑

∞

𝑡𝑡𝑠𝑠
)𝑛𝑛−1 = 𝑛𝑛/< 𝑡𝑡𝑠𝑠 >��������� 𝑒𝑒−𝑛𝑛𝑛𝑛𝑠𝑠/<𝑡𝑡𝑠𝑠>������� (29) 

We have verified this derivation with simulations (Figure S3). The establishment 

probability of the plasmid is equal to the likelihood for all search times larger than 

tcritical (tc), the time point at which the cell can no longer clear the invader. Therefore:   

 
𝑝𝑝establishment(𝑡𝑡𝑐𝑐) = � 𝑝𝑝𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑 =  𝑒𝑒−𝑛𝑛𝑛𝑛𝑐𝑐/<𝑡𝑡𝑠𝑠>�������

∞

𝑡𝑡𝑐𝑐
 (30) 

As the chance of targeting after replication is low, we assume in our model that 

Cascade is only able to clear the foreign DNA before replication. Therefore 𝑡𝑡𝑐𝑐 is 

equal to the replication time of the plasmid 𝑡𝑡𝑅𝑅.  

As we found that 20 copies of Cascade reduce interference level by half, this leads 

to  

ln (0.5) = −20𝑡𝑡𝑅𝑅/< 𝑡𝑡𝑠𝑠 >��������� (31) 

or  

𝑡𝑡𝑅𝑅/< 𝑡𝑡𝑠𝑠 >���������= 0.035 (32) 

Right after transformation, the negative regulators of copy numbers are absent, so 

replication in that instant is faster than the growth rate of the cell. Replication time 

of pTarget has not been measured so far, but by using a temperature-dependent ori, 
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Olsson et al. measured a replication time of 3 min for a slightly larger plasmid in the 

absence of copy number control (Olsson et al., 2003b). If we assume pTarget 

replication occurs on a similar time scale, we get an estimated search time for one 

Cascade to find a single target of ~90 minutes. 

 

We can further describe the relationship between the average search time <ts > and 

the 𝑘𝑘off and 𝑘𝑘on∗  that were measured for Cascade. This relationship is found by 

multiplying the amount of time spent for each binding event times the average 

amount of binding events required to find the target. The amount of time spent for 

each binding event is equal to the sum of the time spent on binding (1
𝑘𝑘off� ) and the 

time spent on diffusing to the next site (1 𝑘𝑘on∗� ). Therefore the average search time 

is:  

< 𝑡𝑡𝑠𝑠 >���������= �
1
𝑘𝑘off

+
1
𝑘𝑘on∗ ,

�
#𝐷𝐷𝐷𝐷𝐷𝐷 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

#𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (33) 

We have again verified this description by using our simulations of our kinetic model 

of Cascade target search (Figure S3). 

 

It must be emphasized that the number of binding events is different from the number 

of binding sites in the fact that if a single binding event scans multiple sites (during 

1D sliding), the number of binding sites probed per event are more than one. Using 

Eq. 30 and 33, the chance of establishment of a single invader in the cell with 

multiple Cascade copies is therefore as follows: 

𝑝𝑝establishment~𝑒𝑒
−𝑛𝑛 #𝐷𝐷𝐷𝐷𝐷𝐷 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 1

𝑘𝑘off
+ 1
𝑘𝑘on∗ ,��

 (34) 

 

Simulation Cascade search times 

To see whether the above described theoretical model was compatible with our 

kinetic model of Cascade search, we simulated the search times of Cascade. To do 

so, we simulated Cascade probing DNA sites as was described above (See 
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Simulation Localization and Confinement). Subsequently every time Cascade 

changed from a mobile state to a bound state we added with a certain probability that 

the newly probed site is the target (1/90.000). When Cascade located the target the 

simulation for that particle was stopped and the search time was recorded for each 

individual Cascade complex. To simulate the search time for 5 Cascades, we 

grouped the single search times in multiples of five and took the fastest search time 

of 5 Cascades. 

 

Data and Code availability 

The data and code that support the findings of this study are available upon request 

to the Lead Contact, Stan Brouns (stanbrouns@gmail.com). 

mailto:stanbrouns@gmail.com
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Supplementary figures 

 

Figure S1. Static D* fitting, Related to Figure 2. (A) D* distribution (left) of the Cas8e strain 

(Figure 2B) fitted with two static states with extracted D* value of each fraction on the right (relative 

abundance). The slowest state (D1; brown) was fixed to 0 μm2/s. (B) Same as (A) but then for three 

static states. (C) D* distribution (left) of the WT strain (Figure 2C). Cas8e distribution from Figure 

S1B was taken and used to fit the distribution with additional three states for Cascade diffusion. The 

relative abundance of Cas8e and Cascade estimated from static D* fitting is similar to that found for 

dynamic fitting (60 and 40%), even though the distributions of Cascade and Cas8e are different. 

Error estimation in (A-C) is based on bootstrapping (± standard deviation). 
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Figure S2. Performance of analytical DDA, Related to Figure 2. (A) Comparison of 

simulation to the theoretical distribution (black line) found with the newly developed analysis 

method. 50.000 particles were simulated to move without boundaries and position was recorded 

for 4 consecutive steps. Particles were simulated with 𝑫𝑫𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
∗ = 2 μm2/s and increasing on- and off-

rates (from 0.3 to 300 s-1). The theoretical model (black line) is directly plotted on top of the 

histogram of simulated D* values. A localization error drawn from a Gaussian distribution with σ = 

40 nm was added to both the model and the simulation. (B) Influence of localization error. 

Distribution of an average of consecutive displacements that are offset by a localization error are 

correlated, which is why in the absence of localization error in the simulation (top) there is no 

requirement for correction. However immobile particles offset by localization error with the same 

mean apparent diffusion coefficient are slightly differently distributed (middle). Correction 

(described in Methods) for the immobile particles is sufficient to restore the fit (bottom). (C) 
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Influence of confinement. Particles were simulated inside of a cell 4 μm long and of 1 μm diameter. 

Simulations were run through analysis software to retrieve parameters. 𝑫𝑫𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
∗  estimates are 

influenced by confinement where fast moving particles appear to be slower. (D) The off-rate is not 

as influenced by effects of confinement and stays the same even for the fastest moving particles 

(purple). Estimates become more unreliable for much faster or slower transitions than are measured 

in the integrated time of typical tracks.  
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Figure S3. Comparison between theoretical prediction and independent simulations of 

Cascade search times, Related to Figure 2. (A) Probability density function (PDF) and (B) 

cumulative distribution function (CDF) of the distribution of search times. The equations of search 

time distributions for single and multiple (5) copies (Eq. 28 and Eq. 29) were tested against a 

simulation of Cascade search times using parameters of the kinetic model that were found 

experimentally (𝑘𝑘off = 38 s-1 ; 𝑘𝑘on∗ = 26 s-1) and an estimated 90.000 DNA sites to be scanned before 

reaching the target (See Methods, theoretical model interference level vs copy number). For the 

theoretical prediction, the average search time was calculated by using Equation 33. Both the 

theoretical prediction and simulations indicate that the average search time (indicated by a dot), 

decreases sharply from 90 minutes for a single Cascade copy to 4.5 minutes for 20 Cascade copies. 
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Figure S4. D* Histograms other conditions, Related to Figure 5. D* distributions for (A) 

Δcas3 strain, (B) Δcas3 strain + pUC19, the empty variant of pTarget-RNAP and pCRISPR1-RNAP 

and (C) Δcas3 strain + pCRISPR2. The amount of available Cascade complexes in the interference 

assay for strain pCRISPR2 targeting (Figure 5H) were extracted from the relative amount of Cascade 

complexes in this strain (51%) divided by the number of complexes in the WT strain (60%). 
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Figure S5. Plasmid copy number determination, Related to Figure 5. (A) Calibration curve 

of dxs and bla primer amplification with dilution series of pMS11 (plasmid containing both dxs and 

bla gene). The regression of six technical replicates was used to make the calibration curve for both 

primer sets (regression parameters of bla and dxs gene in orange and purple respectively). (B) The 

Ct values of bla and dxs gene amplifications were calculated from biological triplicates. These Ct 

values were converted to absolute copy numbers (CN) by using the regression values from the 

calibration curve. The plasmid copy number per chromosome (PCN/chromosome) was calculated 

by dividing the copy number of the bla gene by the copy number of the dxs gene. The plasmid copy 

number per cell was estimated by multiplying PCN/chromosome by the expected number of 

chromosomes per cell (4) based on a literature value (Wallden et al., 2016). 

 



84 | C h a p t e r  2  
 

 

Figure S6. Strains and plasmids used, Related to Figure 5. (A) Strains used in this study, 

strains were constructed with lambda recombination and verified by sequencing. Only part of each 

CRISPR array indicated (total 18 spacers). (B) Plasmids used in this study. Indicated are the ori (red), 

antibiotic resistance marker (light blue) and other components on the plasmid. Only part of the 

total 18 spacers are indicated for pTarget, pCRISPR1 and pCRISPR2. For sequences and descriptions 

see Table S3 and S4. 
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Supplementary tables 

 Doubling time 

K12 BW25113 24.9 ± 0.1 min 

WT + pKEDR13 24.5 ± 0.4 min 

WT + pKEDR13 + 1 mM IPTG 31.7 ± 0.6 min 

WT + pCas3 + pKEDR13 + 1 mM IPTG 33.3 ± 0.2 min 

ΔCas3 + pKEDR13 + pTarget + 1 mM 

IPTG 

31.8 ± 0.4 min 

 

Table S1. Growth rate of E. coli strains used in this study, Related to STAR Methods. 

Growth rates were determined in a plate reader where cells were inoculated in similar conditions 

as described in Methods. The instantaneous growth rate was determined at t = 2.5 hours, which 

represented the growth rate at the time of the microscope studies. Three independent cultures 

were measured to get the mean and standard error values.   



86 | C h a p t e r  2  
 

Name Description  Sequence (5’-3’) 

BG7128 PAmCherry (lox-cam-lox) insert fw 

(WT) 

GGAGGCTATTAAAGGTGCA

CAAT 

BG7129 PAmCherry (lox-cam-lox) insert fw 

(Δcas3) 

GTCTCTTCTTTGCAGGGAG

G 

BG7130 

 

PAmCherry (lox-cam-lox) insert rv 

(WT) 

TATCGTCACGGGGCAAACT 

BG7131 PAmCherry (lox-cam-lox) insert rv 

(G160A) 

AGCAGGTATAGACTCATTG

GACT 

BG7366 ΔCRISPR1 insert (lox-kan-lox) fw GCAGAGGCGGGGGAACTC

CAAGTGATATCCATCATCG

CATCCAGTGCGCCGGTGTC

TTTTTTACCTGTTTGACC 

BG7367 ΔCRISPR1 insert (lox-kan-lox) rv GGTTGTTTTTATGGGAAAA

AATGCTTTAAGAACAAATG

TATACTTTTAGATTCCTACC

TCTGGTGAAGGAGTTG 

BG7368 ΔCRISPR2+3 insert (lox-kan-lox) fw TAAGTGAGAAGGCCGGGC

GGGAAACTGCCCGGCCTGA

ACATACCTGAATTAGAGTC

GGACTTCGCGTTCGC 

BG7369 ΔCRISPR2+3 insert (lox-cam-lox) rv GATTGTGACTGGCTTAAAA

AATCATTAATTAATAATAG

GTTATGTTTAGAGCTAGTT

ATTGCTCAGCGGTGG 

BG8366 

 

Δ(cas11-cas6e) insert (lox-kan-lox) 

fw 

TTGAGTGGAATGGGATTAA

GGGGAAGCCAGGTCATTTT

ATTACACCTCAAGGTGTCT

TTTTTACCTGTTTGAC 

BG8367 

 

Δ(cas11-cas6e) insert (lox-kan-lox) 

rv 

ACAAACATTTACGGGAGTT

AAAACCGCAAGGAGGGCC

ATCAAATGGCTGATTCCTA

CCTCTGGTGAAGGAGTTG 

BG8677 qPCR bla fw CTACGATACGGGAGGGCTT

A 
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BG8678 qPCR bla rv ATAAATCTGGAGCCGGTGA

G 

BG8679 qPCR dxs fw CGAGAAACTGGCGATCCTT

A 

BG8680 qPCR dxs rv CTTCATCAAGCGGTTTCAC

A 

BN370 pCRISPR2 (array2.3) rv GTGAGCTGATACCGCTCGC

CTGAACCTCTC 

TGGCATGGA  

BN383 pCRISPR2 (array2.1) fw TGCTTTAAGAACAAATGTA

TACTTTTAG  

BN384 pCRISPR2 (array2.1) rv TCTAAACATAACCTATTAT

TACCAAGTGATA 

TCCATCATCGC  

BN385 pCRISPR2 (array2.3) fw GCGATGATGGATATCACTT

GGTAATAATAG 

GTTATGTTTAGA  

BN373 Site-directed mutagenesis RepA HC 

fw 

TGGTTAAAGGCTTTCGGAT

CTTCCAG 

BN374 Site-directed mutagenesis RepA LC 

fw 

TGGTTAAAGGCTTTGAGAT

CTTCCAG 

BN375 Site-directed mutagenesis RepA 

HC+LC rv 

AAGGATTCCTGATTTCCAC

AGTTC 

Table S2. Primers used in this study, Related to STAR Methods. 
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Description  Sequence (5’-3’) 

PAmCherry ins TGGCGTTAAGCATTCGCGAGGTTCCAGATGGACAAAAGCCCC

AGGCGATATTTCTATCAACCTGAGGCCAGCGTTCGAACCCAAA

CAATTCGAATGTTAGTCTCTTCTTTGCAGGGAGGCAAGACATG

TGTATATCACTGTAATTCGATATTTATGAGCAGCATCGAAAAA

TAGCCCGCTGATATCATCGATAATACTAAAAAAACAGGGAGG

CTATTAAAGGTGCACAATGTACATCTTCTTTTAATTTCCCGGTA

TGAGATTTTATATTCACAGTATGAATATTTTATGTAATAAAATT

CATGGTAATTATTATAACTAAAAGTTTCTTTAATAATAAGGCG

CCCCTAGGTACCGTTCGTATAATGTATGCTATACGAAGTTATG

AGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGGCAA

TGAGCTTGCACTGCAGAACTTTGATATACCATGGAGAAAAAA

ATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTA

AAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTA

TAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACC

GTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACA

TTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGC

AATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCT

TGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCT

CTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATA

TATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATT

TCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAAT

CCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATA

TGGACAACTTCTTCGCCCCCGTTTTCACTATGGGCAAATATTAT

ACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTT

CATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTA

ATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGT

AAATAACTTCGTATAATGTATGCTATACGAACGGTATCTAGAC

TTCGGGAATGATTGTTATCAATGACGATAATAAGACCAATAAC

GGTTTATCCCTACTTAAGTAGGGAAGGTGCACAATGTACATCT

TCTTTTAATTTCCCGGTATGAGATTTTATATTCACAGTATGAAT

ATTTTATGTAATAAAATTCATGGTAATTATTATAACTAAAAGT

TTCTTTAATAATAAAACGAATAACTTGCAGATTTGAAATGCAT

GCATTATTGTCTTTAAACAATTCAACACATCTTAATATATGTAT

AGGTTAATTGTATTAAACCAATGAATATATTTTTGCAGTGAAT

GTGATTATTGAATTAATTACGCCGTATTTTTTCTTTGTTTTTACC
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GATAACGGAAGTGTGCCGACGTATAGAAATGCAGGAGAAATG

TCGGAGCATATGAAGGAGAACAAATGGTGAGCAAGGGCGAGG

AGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGT

GCACCTGGAGGGGTCCGTGAACGGCCACGAGTTCGAGATCGA

GGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGC

CAAGCTGAAGGTGACCAAGGGTGGCCCCTTGCCCTTCGCCTGG

GACATCCTGTCCCCTCAGTTCATGTACGGCTCCAATGCCTACG

TGAAGCACCCCGCCGACATCCCCGACTACTTTAAGCTGTCCTT

CCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAAGA

CGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGAC

GGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCC

CCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGG

AGACCCTCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGA

AGGGAGAGCTCAAGGCGAGGACGAAGCTGAAGGACGGCGGC

CACTATGACACTGAGGTCAAGACCACCTACAAGGCCAAGAAG

CCCGTGCAGTTGCCCGGCGCCTACAACGTCAACCGCAAGTTGG

ATATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTA

CGAACGTGCCGAGGGCCTCCACTCCACCGGCGGCATGGACGA

GCTGTACAAGCCCGGGGCGCTCATGGCTAATTTGCTTATTGAT

AACTGGATCCCTGTACGCCCGCGAAACGGGGGGAAAGTCCAA

ATCATAAATCTGCAATCGCTATACTGCAGTAGAGATCAGTGGC

GATTAAGTTTGCCCCGTGACGATATGGAACTGGCCGCTTTAGC

ACTGCTGGTTTGCATTGGGCAAATTATCGCCCCGGCAAAAGAT

GACGTTGAATTTCGACATCGCATAATGAATCCGCTCACTGAAG

ATGAGTTTCAACAACTCATCGCGCCGTGGATAGATATGTTCTA

CCTTAATCACGCAGAACATCCCTTTATGCAGACCAAAGGTGTC

AAAGCAAATGATGTGACTCCAATGGAAAAACTGTTGGCTGGG

GTAAGCGGCGCGACGAATTGTGCATTTGTCAATCAACCGGGGC

AGGGTGAAGCATTATGTGGTGGATGCACTGCGATTGCGTTATT

CAACCAGGCGAATCAGGCACCAGGTTTTGGTGCCGGTTTTAAA

AGCGGTTTACGTGGAGGAACACCTGTAACAACGTTCGTACGTG

GGATCGATCTTCGTTCAACGGTGTTACTCAATGTCCTCACATTA

CCTCGTCTTCAAAAACAATTTCCTAATGAATCACATACGGAAA

ACCAACCTACCTGGATTAAACCTATCAAGTCCAATGAGTCTAT

ACCTGCTTCGTCAATTGGGTTTGTCCGTGGTCTATTCTGGCAAC

CAGCGCATATTGAATTATGCGATCCCATTGGGATTGGTAAATG

TTCTTGCTGTGGACAGGAAAGCAATTTGCGTTATACCGG 
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pTarget insert TCTAGAGAATTCGACAGAACGGCCTCAGTAGTCTCGTCAGGCT

CCTTCTGTTTTCGCAAATCTATGGACTATTGCTATTCTTGGGCG

CACGGAATACAAAGCCGTGTATCTGCTCTTTGGCTCTGCAACA

GCAGCACCCATGACCACGTCTTGAAATGCTGGTGAGCGTTAAT

GCCGCAAACACCTTATTACGCCTTTTTGCGATTGCCCGGTTTTT

GCCTTCCATGGCAGCGTCAGGCGTGAAATCTCACCGTCGTTGC

CTTTCGGTTCAGGCGTTGCAAACCTGGCTACCGGGCTTGTAGT

CCATCATTCCACCTATGTCTGAACTCCCTTCCGGGGGATAATG

TTTACGGTCATGCGCCCCCCTTTGGGCGGCTTGCCTTGCAGCC

AGCTCCAGCAGCTTAAGCTGGCTGGCAATCTCTTTCGGGGTGA

GTCCTTTAGTTTCCGTATCTCCGGATTTATAAAGCTGACTTGCA

GGCGGCGACGCGCAGGGTATGCGCGATTCGCTTGCGACCGCTC

AGAAATTCCAGACCCGATCCAAACTTTCAACATTATCAATTAC

AACCGACAGGGAGCCCTTAGCGTGTTCGGCATCACCTTTGGCT

TCGGCTGCTTTGCGTGAGCGTATCGCCGCGCGTCTGCGAAAGC

TTGGTACC 

pCRISPR1 

insert  

TCTAGAGAATTCGACAGAACGGCCTCAGTAGTCTCGTCAGGCT

CCGGCTGTTTTCGCAAATCTATGGACTATTGCTATTCGGGGGC

GCACGGAATACAAAGCCGTGTATCTGCTCGGTGGCTCTGCAAC

AGCAGCACCCATGACCACGTCGGGAAATGCTGGTGAGCGTTA

ATGCCGCAAACACCGGATTACGCCTTTTTGCGATTGCCCGGTT

TTTGCCGGCCATGGCAGCGTCAGGCGTGAAATCTCACCGTCGT

TGCCGGTCGGTTCAGGCGTTGCAAACCTGGCTACCGGGCGGGT

AGTCCATCATTCCACCTATGTCTGAACTCCCGGCCGGGGGATA

ATGTTTACGGTCATGCGCCCCCCGGTGGGCGGCTTGCCTTGCA

GCCAGCTCCAGCAGCGGAAGCTGGCTGGCAATCTCTTTCGGGG

TGAGTCCGGTAGTTTCCGTATCTCCGGATTTATAAAGCTGACG

GGCAGGCGGCGACGCGCAGGGTATGCGCGATTCGCGGGCGAC

CGCTCAGAAATTCCAGACCCGATCCAAACGGTCAACATTATCA

ATTACAACCGACAGGGAGCCCGGAGCGTGTTCGGCATCACCTT

TGGCTTCGGCTGCGGTGCGTGAGCGTATCGCCGCGCGTCTGCG

AAAGCGGGGTACC 

Table S3. Synthetic DNA inserts used in this study, Related to STAR Methods 
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Name in study Name in 

storage 

Description Source 

pKEDR13 pKEDR13 Expression plasmid LeuO (Westra et al., 

2010) 

pGFPuv pGFPuv Expression plasmid GFPuv Clontech 

pMS011 pMS011 Plasmid containing bla and 

dxs gene (qPCR) 

(Caforio et al., 

2018) 

pSC020 pSC020 Plasmid containing Cre and 

lambda recombinase 

S. Creutzberg 

(unpublished) 

pTarget pTU256 Target plasmid containing 

all 18 potential 

protospacers for flanked by 

5’-CTT-3’ 

This study 

pTarget-RNAP pTU150 Target plasmid containing 

all 18 potential 

protospacers for flanked by 

5’-CTT-3’ and plac 

upstream 

This study 

pCRISPR1 pTU258 Target plasmid containing 

all 18 potential 

protospacers for flanked by 

5’-CGG-3’ 

This study 

pCRISPR1-

RNAP 

pTU152 Target plasmid containing 

all 18 potential 

protospacers for flanked by 

5’-CGG-3’ and plac 

upstream 

This study 

pCRISPR2_LC pTU158 Plasmid containing all 18 

potential protospacers for 

flanked by repeat 

This study 
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sequences; low copy 

backbone variant of 

pSC101 

pCRISPR2 pTU160 Plasmid containing all 18 

potential protospacers for 

flanked by repeat 

sequences; high copy 

backbone variant of 

pSC101 

This study 

pControl 

 

pTU254 High copy backbone 

variant of pSC101 

This study 

pCas3 

 

pTU255 Expression plasmid Cas3 This study 

Table S4. Plasmids used in this study, Related to STAR Methods 
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Glossary 

Full name Symbol Description 

Apparent diffusion 

coefficient 

𝐷𝐷∗ Apparent due to confinement 

Bound state S1  

Dissociation constant KD Constant which is a measure 

for the binding affinity of two 

objects with each other 

DNA segments 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷 Amount of segments defined as 

containing DNA by DAPI 

staining 

Enrichment Factor EF The number of localizations in 

DNA-containing segments 

divided by the number of 

localizations in DNA-free 

segments 

Fraction DNA bound 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 Fraction of the time DNA 

binding proteins spend on 

DNA is calculated from the 

off- and on-rate (Figure 1). 

Frametime 𝑡𝑡f Positions of 

simulated/measured particles 

are recorded for each 

frametime 

Free diffusion coefficient 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∗  Diffusion coefficient in the 

absence of DNA binding. 

Apparent due to confinement. 

Integrated time 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 Overall timescale: can be one 

or multiple frametimes 

Localization error σ Average error in determination 

of particle position 
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Mobile state S2  

off-rate 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 Rate DNA bound protein is 

released from DNA. Inverse of 

residence time 

pseudo-first order on-rate 𝑘𝑘𝑜𝑜𝑜𝑜∗  Rate mobile protein is binding 

to DNA. As the amount of 

potential DNA probing sites is 

very large, on-rate is 

independent of DNA 

concentration (pseudo-first 

order) 

pTarget establishment 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Measure for interference level 

calculated from the 

transformation ratio of pTarget 

and pGFPuv (Eq. 1) 

Time step 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Displacements of simulated 

particles are calculated for each 

time step 

Total number of segments 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡 Total number of segments in 

the cell 
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Movie S1 Cascade diffusion through the cell. Real-time data from WT strain where on the 

left cumulative overlay of tracks (each track differently coloured) are plotted on top of a brightfield 

image showing the outline of the cells and on the right the fluorescent signal of the single molecules 

are depicted. Scale bar and time are indicated at the bottom (total duration 50 s). The movie shows 

only a small part of a normal FOV.   
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Abstract 

CRISPR-Cas9 is widely used in genomic editing, but the kinetics of target search 

and its relation to the cellular concentration of Cas9 have remained elusive. Effective 

target search requires the constant screening of the protospacer adjacent motif 

(PAM) and an upper limit for PAM screening (<30 ms) was recently found. To 

quantify the rapid switching between DNA-bound and freely-diffusing states of 

dCas9 further, we developed an open-microscopy framework that combines 

straightforward installation with high spatiotemporal resolution and introduce 

Monte-Carlo diffusion distribution analysis (MC-DDA). Our analysis revealed that 

dCas9 is screening PAMs 40% of the time in Gram-positive Lactoccous lactis, 

averaging just 17 ± 4 ms per binding event. Using heterogeneous expression of 

dCas9, we further determined the number of cellular target-containing plasmids and 

modelled the expected cleavage efficiency. We found that dCas9 is not irreversibly 

bound to target sites but can still interfere with plasmid replication. Taken together, 

our quantitative data will facilitate further optimization of the CRISPR-Cas toolbox.   
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Introduction 

The discovery of clustered regularly interspaced short palindromic repeats 

(CRISPR) and CRISPR-associated proteins (Cas) as a microbial defence mechanism 

triggered an ongoing scientific revolution, as CRISPR-Cas can be adapted to 

perform sequence-specific DNA modification in prokaryotes, archaea, and 

eukaryotes(Jiang et al., 2013; Komor et al., 2017; Liu et al., 2019; Qi et al., 2013). 

Streptococcus pyogenes Cas9 is a widely used variant(Sapranauskas et al., 2011) 

and an endonuclease activity-deficient version, termed ‘dead’ Cas9 (dCas9), has 

been used to visualise endogenous genomic loci in living cells(Chen et al., 2013). 

The biochemical interaction mechanisms of Cas9 are well understood(Anders et al., 

2014; Bonomo and Deem, 2018; Globyte et al., 2018; Knight et al., 2015; Singh et 

al., 2016; Sternberg et al., 2014). The DNA-binding protein domain probes the DNA 

for a specific protospacer adjacent motif (PAM; 5’-NGG-3’) via a combination of 

3-dimensional diffusion and 1-dimensional sliding on the DNA(Globyte et al., 

2018). Upon recognition of the PAM, the enzyme starts unwinding the DNA double 

helix to test for complementarity with a 20 nucleotide-long single guide RNA 

(sgRNA; R-loop formation). If full complementarity is found, Cas9 continues to 

cleave the DNA at a fixed position 3 nucleotides upstream of the PAM(Gasiunas et 

al., 2012). 

Optimization of Cas9-mediated genomic engineering in a desired incubation time 

whilst minimizing off-target DNA cleavage requires exact kinetic information. In 

the Gram-negative bacterium E. coli, an upper limit for the binding time (30 ms) of 

dCas9 with DNA has been determined in vivo(Jones et al., 2017), but it is unknown 

if such binding times are ubiquitous in prokaryotes. In addition, there is a limited 

understanding of the spatiotemporal relationship between cellular copy numbers of 

Cas9 proteins, the number of DNA target sites and the duration and dissociation 

mechanisms of target-bound dCas9. Since genomic engineering of food-related 

microbes such as Gram-positive lactic acid bacteria(Machielsen et al., 2011) is 

becoming increasingly valuable(Hidalgo-Cantabrana et al., 2017; Zhang et al., 

2016), it is important to assess whether previously determined dCas9 kinetic 

information can be transferred to food-related microbes.  
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To study the behaviour of dCas9 in vivo with millisecond time resolution, we used 

single-particle tracking photo-activated localisation microscopy 

(sptPALM)(Manley et al., 2008; Uphoff et al., 2013). In sptPALM, a photo-

activatable fluorescent protein, which is by default not fluorescently active but can 

be activated via irradiation, is fused to the gene of interest, and the fusion protein is 

expressed in living cells. By stochastically activating a subset of the available 

chromophores, the signal of a single emitter is localized with high precision (~ 30 - 

40 nm(Rieger and Stallinga, 2014; Smith et al., 2010)) and, by monitoring its 

position over time, the movement of the protein fusion is followed and 

analysed(Shen et al., 2017).  

However, sptPALM mostly provides quantitative information if the protein of 

interest remains in a single diffusional state for the duration of a track (e.g. > 40 ms 

using at least 4 camera frames of 10 ms). As this temporal resolution is insufficient 

to elucidate in vivo Cas9 dynamic behaviour (< 30 ms)(Jones et al., 2017), we 

developed a Monte-Carlo based variant of diffusion distribution analysis (MC-DDA, 

for analytical DDA see(Vink et al.)) to extract dynamic information on a timescale 

shorter than the duration of a single track.  

For the experimental realisation, we refined existing single-molecule microscopy 

frameworks by designing the super-resolution microscope miCube. This in-house 

built microscope is constructed from readily available parts, ensuring accessibility 

for interested laboratories. We then used MC-DDA in combination with the miCube 

in an assay that employs a heterogeneous expression system in order to explore the 

dynamic nature of DNA-dCas9 interactions in live bacteria and their dependency on 

(d)Cas9 protein copy numbers. In particular, we assessed dCas9 fused to photo-

activatable fluorophore PAmCherry2 in in the lactic acid bacterium L. lactis, in the 

presence or absence of DNA targets. The results were combined in a model that 

predicts Cas9 cleavage efficiencies in prokaryotes. 
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Results 

Monte-Carlo diffusion distribution analysis (MC-DDA) to 
elucidate sub 30 ms dynamic interactions with sptPALM 

In the absence of cellular target sites, dCas9 is expected to be present in either one 

of two states (Fig.1a): bound to DNA (red), which results in low diffusion 

coefficients (~ 0.2 µm2/s); or freely diffusing in the microbial cytoplasm (yellow), 

which results in high diffusion coefficients (~ 2.2 µm2/s). If the transitioning 

between these states is slow compared to the length of each track (here: 40 ms), 

diffusion coefficient histograms can be fitted with two static states (Fig. 1b, top, 

Supplementary Fig. 1). 

However, if transitioning between the states is on a similar or shorter timescale as 

the length of sptPALM tracks, these transient interactions of dCas9 with DNA 

(orange) will result in temporal averaging of the diffusion coefficient obtained from 

a single track. Therefore, we developed a Monte-Carlo diffusion distribution 

analysis (MC-DDA; Fig. 1b, bottom, Methods, with an analytical approach available 

elsewhere(Vink et al.) that used the shape of the histogram of diffusion coefficients 

to infer transitioning rates between diffusional states. The analysis is based on 

similar approaches used to describe dynamic conformational changes observed with 

single molecule Förster resonance energy transfer(Farooq and Hohlbein, 2015; 

Santoso et al., 2010b, 2010a). Briefly, MC-DDA consists of simulating the 

movement and potential interactions of dCas9 inside a cell with a Monte-Carlo 

approach: the simulated protein is capable of interchanging between interacting with 

DNA and diffusing freely, defined by kbound→free and kfree→bound. The MC-DDA 

diffusional data is compared with the experimental data, and by iterating on the 

kinetic rates and diffusion coefficients a best fit is obtained. 

miCube: an open framework for single-molecule and super-
resolution microscopy 

For MC-DDA to deduce high kinetic rates, experimental data with high 

spatiotemporal resolution (< ~ 50 nm, < ~ 20 ms) is required. This is challenging, as 

individual fluorescent proteins have a limited photon budget (< 500 photons(Subach 
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et al., 2009)), and substantial background fluorescence is introduced by the living 

cells in which the fluorescent proteins are embedded. While suitable commercial 

microscopes are available, they often lack accessibility or are prohibitively 

expensive. This has led to the creation of a plethora of custom-built microscopes in 

the recent past(Aristov et al., 2018; Arsenault et al., 2015; Auer et al., 2018; 

Babcock, 2018; Diederich et al., 2018; Diekmann et al., 2017; Holm et al., 2014; 

Kwakwa et al., 2016; Ma et al., 2017; Nicovich et al., 2017; Zhang et al., 2015), 

ranging from simplified super-resolution microscopes(Auer et al., 2018; Babcock, 

2018; Diekmann et al., 2017; Holm et al., 2014; Ma et al., 2017) to additions to 

commercial microscopes(Kwakwa et al., 2016) or extremely low-cost 

microscopes(Diederich et al., 2018; Zhang et al., 2015). 

 

Fig. 1 Probing cellular dynamics of dCas9 on an open-source microscope using 

sptPALM. a Simplified expected dynamic behaviour of dCas9 in absence of DNA target sites. The 

protein can be temporarily bound to DNA (PAM screening), or diffuse freely in cytoplasm, with two 

kinetic rates governing the dynamics. If the interaction is on a similar timescale as the detection 

time, a temporal averaging due to transient interactions is expected. b If the dynamic transitions are 

slow with respect to the camera frame time used in sptPALM, the obtained diffusional data can be 

fitted with a static model (top), which assumes that every protein is either free (yellow) or DNA-

bound (red), but does not interchange. If the dynamic transitions are as fast or faster than the frame 

time used, Monte-Carlo diffusion distribution analysis (MC-DDA; bottom) can fit the diffusional 
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data. In MC-DDA, dCas9 can interchange between the two states, resulting in a broader distribution. 

c Render of the open-source miCube super-resolution microscope. The excitation components, 

main cube, and emission components are indicated in blue, magenta, and green, respectively. Details 

are provided in Methods. d Brightfield images of L. lactis used for computationally obtaining the 

outline of the cells via watershed (top), and raw single molecule data (bottom; red outline in top is 

magnified) as obtained on the miCube as part of a typical experiment, overlaid with the determined 

track where this single molecule belongs to (starting at red, ending at blue). 

 

To increase accessibility of single-molecule microscopy with high spatiotemporal 

resolution further, we developed the miCube, an open-source, modular and versatile 

super-resolution microscope, and provide details to allow interested researchers to 

build their own miCube or a derivative instrument (Fig. 1c, Supplementary Fig. 2, 

Methods, https://HohlbeinLab.github.io/miCube). We used 3D printed components 

where possible, surrounding a custom aluminium body to minimize thermal drift and 

provide rigidity. All custom components are supported by technical drawings 

(Appendix), along with STL files for direct 3D printing. We provide full details on 

the chosen commercial components, such as lenses, mirrors, and the camera. A 

detailed description on building a functioning miCube, along with rationale of the 

design choices, is given in the Methods section. Moreover, we discuss additional 

options for replacing expensive components with cheaper options.  

To facilitate straight-forward installation and flexible usability of the miCube, we 

simplified the alignment of the excitation module by decoupling the movement in 

the three spatial dimensions (Supplementary Fig. 2e). A variety of imaging 

modalities are possible on the miCube; super-resolution microscopy in 2D and 

3D(Martens et al., 2017), total internal reflection fluorescence (TIRF) microscopy, 

and LED-based brightfield microscopy. In its current version, the sample area fits a 

96-wells plate. The excitation and illumination pathways of the microscope are fitted 

with 3D-printed enclosures, allowing the instrument to be used under ambient light 

conditions (including single-particle microscopy). Lastly, we restrained the footprint 

of the microscope to a 600 x 300 mm breadboard (excluding lasers; Supplementary 

Fig. 2b), further improving accessibility. 

https://hohlbeinlab.github.io/miCube
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Linear drift calculations indicate that the system experiences a drift of 13 ± 12 

nm/min in the lateral plane and 25 ± 15 nm/min in the axial plane without active 

drift-suppressions systems in place(Coelho et al., 2018) (average of three super-

resolution measurements performed on three different days). A typical drift 

measurement is shown in Supplementary Fig. 3. 

In vivo sptPALM in L. lactis on the miCube 

For our sptPALM assay(Beljouw et al., 2019), we introduced dCas9 fused to the 

photo-activatable fluorophore PAmCherry2(Subach et al., 2009) in L. lactis under 

control of the inducible and heterogeneous nisA promotor(Mierau and Kleerebezem, 

2005) (pLAB-dCas9, Methods). On the same plasmid, a sgRNA with no fully 

matching targets in the genome is constitutively expressed. We immobilized the L. 

lactis cells on agarose, and using diffused brightfield LED illumination we 

computationally separated the cells via the ImageJ watershed(Vincent and Soille, 

1991) plugin (Fig. 1d top). Single-particle microscopy was performed with low 

induction levels (0.1 ng/mL Nisin) and low activation intensities (3 – 620 µW/cm2, 

405 nm) to obtain on average PAmCherry2 activation of < 1 fluorophore/frame/cell 

to avoid overlapping tracks (Fig. 1d, bottom). Single-particle tracks were limited to 

individual cells by using the previously obtained cell outlines. 

 

dCas9 is PAM-screening for 17 ms 

We first assessed the diffusional behaviour of dCas9-PAmCherry2 (hereafter 

described as dCas9, unless specifically mentioned) in L. lactis in the absence of 

target sites (pNonTarget plasmid; Methods). Under these conditions, dCas9 is 

expected to diffuse freely around the cytoplasm and screen PAM sites on the DNA 

for under 30 ms(Jones et al., 2017). Under this assumption, diffusion ranges from 

completely immobile (and thereby fully determined by the localization uncertainty: 

~ 40 nm leads to ~ 0.16 µm2/s) to freely-moving dCas9. The expected free-moving 

diffusion coefficient can be theoretically described: the fusion protein has a 

hydrodynamic radius of 5 - 6 nm(Nishimasu et al., 2015; Subach et al., 2009), 

resulting in a diffusion coefficient of 36 – 43 µm2/s(Edward, 1970). Cytoplasmic 
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retardation of ~ 20x due to increased viscosity and crowding effects reduces this to 

~ 1.8 – 2.2 µm2/s(Trovato and Tozzini, 2014). We obtained diffusion coefficients in 

the range of ~ 0 – 3 µm2/s (Fig. 2a), which is within the expected range. 

 

 

 

Fig. 2 sptPALM of dCas9-PAmCherry2 in pNonTarget L. lactis with increasing dCas9 

concentration. a Identified tracks in single pNonTarget L. lactis cells. Tracks are colour-coded 

based on their diffusion coefficient. Three separate cells are shown with increasing cellular 

concentration of dCas9. Green dotted outline is an indication for the cell membrane. b Diffusion 

coefficient histograms (light green) belonging to 20 - 200, 400 - 600, and 800 - 1000 dCas9 copy 

numbers, from left to right. Histograms are fitted (dark green line) with a theoretical description of 

state-transitioning particles between a mobile and immobile state (dashed line represents 95% 

confidence interval based on bootstrapping the original data). Five diffusion coefficient histograms 

(Supplementary Fig. 4) were globally fitted with a single free diffusion coefficient (2.0 ± 0.1 µm2/s), a 

single value for the localization error (σ = 38 ± 3 nm = 0.15 ± 0.03 µm2/s), and 5 sets of kboundfree 

and kfreebound values (indicated in the figures). Residuals of the fit are indicated below the respective 

distribution. c kboundfree (red) and kfreebound (blue) plotted as function of the apparent cellular dCas9 

copy number. Solid dots show the fits of the actual data; filled areas indicate the 95% confidence 

intervals obtained from the bootstrapped iterations of fitted MC-DDAs with 20.000 simulated 

proteins. 

 

We used a heterogeneous promotor (nisA, Methods), causing the apparent cellular 

dCas9 copy numbers to vary between 20 and ~ 1000 (Fig. 2a, Supplementary Fig. 

4; cells with less than 20 copies were excluded as we corrected for ~ 7 tracks (~ 14 

apparent dCas9) found in non-induced cells). The value of the cellular dCas9 is an 
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approximation (Discussion), but a relative increase in cellular dCas9 copy number 

is certain. We then created five diffusional histograms belonging to cells with a 

particular apparent dCas9 copy number range (ranges of ~ 200 dCas9 copy number 

intervals; Fig. 2b, Supplementary Fig. 4). These diffusional histograms are fitted 

with the aforementioned MC-DDA, where the shape of the MC-DDA is governed 

by the localization uncertainty, the free-moving diffusion coefficient, and the kinetic 

rates of PAM-screening. The localization uncertainty and free-moving diffusion 

coefficient are independent of cellular dCas9 copy number, since they are 

determined by the number of photons and a combination of hydrodynamic radius 

and cytoplasm viscosity, respectively. Therefore, the histograms were globally fitted 

with a combination of 5 MC-DDAs, each consisting of 20.000 simulated dCas9 

proteins, containing a single value for free-moving diffusion coefficient (Dfree = 2.0 

± 0.1 µm2/s, in agreement with the theoretical expectation of ~ 1.8 – 2.2 µm2/s), a 

single value for localization uncertainty (σ = 38 ± 3 nm, or Dimmobile* = 0.15 ± 0.03 

µm2/s, expected for fluorescent proteins illuminated for 2 ms(Beljouw et al., 2019; 

Martens et al., 2017)), and five pairs of kfree→bound and kbound→free (specified in Fig. 2b 

and 2c). 

The obtained kinetic constants of kfree→bound and kbound→free were 40 ± 12 s-1 and 60 ± 

13 s-1
 (mean ± 95% CI), respectively, and did not show a significant dependence on 

apparent cellular dCas9 copy number (Fig. 2c). This indicates that dCas9 is PAM-

screening for 17 ± 4 ms in L. lactis, consisting of screening 1 or more PAMs via 1D 

diffusion. This value is in the same order of magnitude as the upper limit of 30 ms 

reported earlier for PAM-screening in E. coli(Jones et al., 2017), suggesting that 

these PAM-screening kinetics are a general feature of dCas9. Additionally, dCas9 is 

on average diffusing within the cytoplasm for 25 ± 8 ms before finding a new site 

for PAM screening. This duration is governed by the diffusion coefficient of the 

fusion protein, along with the average distance between DNA PAM sites. These 

results also entail that dCas9 is diffusing in the cytoplasm ~ 60% of the time, while 

interacting with the DNA ~ 40% of the time. Removal of the sgRNA resulted in 

similar diffusional data, which agrees with PAM-screening being a solely protein-

DNA interaction (kfree→bound: 34 ± 16 s-1; kbound→free: 62 ± 21 s-1; diffusion time on 

average 29 ± 18 ms; PAM-screening time on average 16 ± 6 ms; Supplementary Fig. 



V i s u a l i z a t i o n  o f  d C a s 9  t a r g e t  s e a r c h  | 115 
 

 

5). This also indicates that partial sgRNA-DNA matching of dCas9 with non-targets 

is not prevalent enough in our assay to affect the screening time significantly. 

Target-binding of dCas9 can be observed with sptPALM 

We then investigated the effect of DNA target sites complementary to the sgRNA 

loaded dCas9. To this end, we introduced 5 target sites on a plasmid (pTarget; 

Methods), which replaced the pNonTarget plasmid used so far. Qualitative 

visualisation of diffusion in the L. lactis bacteria shows tracks with small diffusion 

coefficients (Fig. 3a, black tracks), indicative of target-bound dCas9. This immobile 

population can be observed throughout the dCas9 copy number range but is more 

prevalent in cells with lower cellular dCas9 copy numbers. 

 

 

Fig. 3: sptPALM of dCas9-PAmCherry2 in pTarget L. lactis shows target-binding 

behaviour of dCa9s. a Identified tracks in individual pTarget L. lactis cells. Tracks are colour-coded 

based on their diffusion coefficient. Three separate cells are shown with increasing dCas9 

concentration. Blue dotted outline is an indication for the cell membrane. b Diffusion coefficient 

histograms (light blue) are fitted (dark blue line) with a combination of the respective fit of 

pNonTarget L. lactis cells (green line), along with a single globally fitted population corresponding to 

target-bound dCas9 (purple) at 0.38 ± 0.04 µm2/s. c Left: The population size of the plasmid-bound 

dCas9 decreases as a function of the cellular dCas9 copy number. The error bar of the measurement 

is based on the 95% confidence interval determined by bootstrapping); the solid line is a model fit 

with 20 plasmids, with a 95% confidence interval determined by repeating the model simulation. 
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Right: Occupancy of DNA targets by dCas9 based on 20 target plasmids (100 DNA target sites), 

based on the same data as presented in the left figure. 

We expect target-bound dCas9 to move with a diffusion coefficient determined by 

the plasmid size, which is independent on the cellular dCas9 copy number. 

Therefore, we globally fitted the pTarget-obtained diffusional histograms with a 

combination of the corresponding pNonTarget MC-DDA fit and an additional single 

diffusional state belonging to target-bound dCas9 (Fig3b, Dplasmid* = 0.38 ± 0.04 

µm2/s = Dimmobile* + 0.23 µm2/s, which agrees with the expected diffusion coefficient 

from plasmids of similar size in bacterial cytoplasm(Prazeres, 2008; Trovato and 

Tozzini, 2014; Vos and M, 1987)). The plasmid-bound dCas9 population decreases 

with increasing apparent cellular dCas9 copy numbers from 28 ± 3% at 105 (20 – 

200) copies to 10 ± 5 % at 900 (800 – 1000) copies (Fig. 3c left, purple squares; 

mean ± 95% CI). No target-binding behaviour was observed when the sgRNA was 

removed (Supplementary Fig. 5). 

dCas9 is bound to target DNA for ~ 1.6 minutes and 
interferes with plasmid replication  

This anti-correlation between dCas9 copy number and the size of the plasmid-bound 

population is indicative of competition for target sites by an increasing amount of 

dCas9 proteins. To evaluate this hypothesis, we consecutively simulated dCas9 

proteins until the cellular dCas9 copy number was reached (Methods). In the 

simulation, every protein binds or dissociates from a PAM with the kinetic constants 

determined previously, and will instantly bind to a target site if it binds to a PAM 

directly adjacent to it. We thus disregard effects of 1D sliding on the DNA, but we 

believe these effects are limited, as 1D sliding between PAM sites has a low 

probability when PAMs are randomly positioned on the DNA (<< ~ 5% at 32 bp 

distance average(Globyte et al., 2018)). A koff is introduced which dictates removal 

of dCas9 from the target sites.  

This model fully explained the dependency of the target-bound dCas9 fraction on 

the cellular dCas9 copy number (Fig. 3c left, black line). The slope of the curve 

towards low cellular dCas9 concentration is dependent on the total cellular number 

of PAM sites and koff. Assuming on average 1.5 genome’s worth of DNA (haploid 
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genome replicated in half the cells) present in the cell, the koff is ~ 0.01 ± 0.003 s-1. 

The number of DNA target sites determines the lower bound of the model, and ~ 

100 ± 50 DNA target sites (~ 20 ± 10 plasmids) led to the observed bound fraction 

at 900 cellular dCas9 proteins. The fit of the number of target sites at high cellular 

dCas9 concentration is independent of koff, since at the modelled concentrations and 

PAM-screening kinetic parameters, the target sites are essentially fully occupied 

(Fig. 3c, right). It thus follows that the used pTarget plasmid, a derivative of 

pNZ123, is present at a lower copy number than expected (~ 60 - 80) during 

measurements(Vos and M, 1987). This could hint towards interference of plasmid 

replication due to dCas9 binding(Whinn et al., 2018). We investigated this with 

quantitative polymerase chain reaction (qPCR)(Tal and Paulsson, 2012), and we 

indeed observed a decrease in the amount of pTarget DNA with dCas9 production 

(Supplementary Fig. 6).  

These collective results lead to the model presented in Fig. 4a. dCas9 diffuses freely 

in the cytoplasm for 25 ± 8 ms on average, and will then interact with a PAM site 

for 17 ± 4 ms. If the PAM site is not directly adjacent to a target site, dCas9 will 

move back to freely diffusing in the cytoplasm. However, if the PAM is directly 

followed by a target site, dCas9 will be bound to this site for 1.6 minutes on average, 

before it is removed by intrinsic or extrinsic factors. 

 

 

Fig. 4: Extrapolation of the dCas9 dynamic model to assess single target cleavage by 

Cas9 a The proposed model surrounding dCas9 interaction with the obtained kinetic 

rates. Free dCas9 (yellow) in the cytoplasm interact with PAM sequences (5’-NGG-3’) on average 
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every 25 ms. If the PAM is not in front of a target sequence (red), only PAM-screening will occur 

for on average 17 ms. If the PAM happens to be in front of a target, the dCas9 will be target-bound 

(purple). We extend this model to predict Cas9 cleavage under conditions where target-bound 

Cas9 will always cleave the target DNA. b Calculated predicted probability that a single target in 

the L. lactis genome is cleaved after a certain period of time with a certain cellular Cas9 copy number, 

based on the model shown in a. Error bars indicate standard deviation calculated from iterations of 

the model. 

 

A single copy of Cas9 find a single DNA target in ~ 4 hours 

We adapted the computational target-binding model to predict Cas9 cleavage in L. 

lactis and other prokaryotes with similar DNA content. We assume that all DNA is 

accessible to Cas9 and that Cas9 behaves identical to dCas9, but will cleave a target 

directly after binding. Our proposed Cas9 kinetic scheme depends only on PAM-

screening kinetic rates and the ratio of total PAM sites to target sites. We predicted 

the incubation time-dependent probability that a certain number of cellular Cas9 

proteins will bind a single target site on the L. lactis genome (Fig. 4b).  

The model shows that a single Cas9 protein can effectively find a single target with 

50% probability in ~ 4 hours. It also shows that an increasing cellular Cas9 copy 

number quickly decreases this search time: With 10 cellular copies of Cas9, the 

search time is reduced to ~ 25 minutes, and 20 copies reduce the search time to ~ 3 

minutes. Therefore, a single target is almost certainly found within a typical 

prokaryotic cell generation time (> ~ 20 min). This agrees with in vivo data of 

Cas9(Jones et al., 2017) (accounting for E. coli’s larger genome (~ 4.6 mbp versus 

~ 2.5 mbp)) and with in vivo data of Cascade in E. coli(Vink et al.), though in 

different organisms or with different CRISPR-Cas systems.  

Discussion 

We have designed a sptPALM assay to probe DNA-protein interactions in vivo, and 

assessed the kinetic behaviour of dCas9 in L. lactis on the open-hardware, super-

resolution microscope miCube. The high spatiotemporal resolution of the 

experimental data along with the heterogeneity of the used induction protocol 
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allowed us to develop a Monte-Carlo diffusion distribution analysis (MC-DDA) of 

the diffusional equilibrium.  

The obtained dCas9 PAM-screening kinetic rates (kfree→bound = 40 ± 12 s-1, kbound→free 
= 60 ± 13 s-1) indicate that non-target binding of dCas9 has a mean lifetime of 17 ± 

4 ms, and spends ~ 40% of its time on PAM screening. In fact, a 1:1 ratio between 

diffusing and binding was shown to be optimal for target search time of DNA 

binding proteins(Slutsky and Mirny, 2004). The MC-DDA further suggests that the 

kinetic rates governing PAM-dCas9 interactions do not depend on cellular copy 

number levels of dCas9. 

We observed target-binding of dCas9, and showed that higher cellular dCas9 copy 

numbers resulted in lower probabilities of target-bound dCas9, although absolutely 

more targets were occupied by dCas9. We linked this finding to the previously found 

kfree→bound and kbound→free rates and postulate that dCas9 dissociation from target sites 

is responsible for the obtained probabilities of target binding by dCas9. We made 

two assumptions when obtaining absolute cellular dCas9 copy numbers. Firstly, we 

assumed that measurements directly end after all fluorophores in the centre of the 

microscopy field of view have been imaged once. Secondly, we assumed a 

maturation grade of 50% (identical to that of PAmCherry1 in Xenopus(Durisic et al., 

2014)). Although an exact determination is possible(Durisic et al., 2014; Nagai et 

al., 2002), this is beyond the scope of this study. 

We obtained a dCas9-target koff rate of ~ 0.01 s-1 that is dependent on the exact 

cellular dCas9 copy number and total L. lactis genomic content. The biological cause 

of dissociation of target bound dCas9 from DNA remains speculative: it could be an 

intrinsic property, resulting in spontaneous release from target-sites, or  it could be 

caused by an extrinsic factor, such as RNA transcription or DNA replication. We do 

not expect RNA polymerase activity on the DNA target sites, although we did not 

actively block transcription. It is currently unknown whether genomic target-bound 

dCas9 dissociates from the DNA due to DNA replication, with studies contradictory 

showing that dCas9 is removed during cell duplication(Jones et al., 2017) and that 

dCas9 is hindering genomic DNA replication(Whinn et al., 2018). We note that 

genomic DNA replication substantially differs from the rolling-circle DNA 

replication of pTarget(Khan, 1997).  
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Our data indicates that dCas9 binding to plasmid DNA hinders DNA rolling-circle 

replication. The pNZ123 plasmid, of which pTarget is a derivative, is believed to be 

high-copy(Vos and M, 1987) (60 – 80 plasmids per cell), although the quantification 

of plasmid copy numbers is challenging (discussed for the single-cell level in 

reference (Tal and Paulsson, 2012)). Our model suggests that pTarget is present in 

only ~ 20 copy numbers during our measurements. Although we saw an effect of 

dCas9 production on pTarget copy number via qPCR, the obtained decrease (~ 20%) 

is not as large as observed with sptPALM (~ 70%). The median cellular dCas9 copy 

number, however, is low (~ 40; Supplementary Fig. 6) compared to most of the 

dCas9 copy number bins evaluated with MC-DDA. Therefore, using the averaged 

cellular community, not all pTarget (60 – 80 cellular plasmids containing 300 – 400 

target sites), are occupied by a dCas9 protein, which would affect the ensemble 

qPCR results. The sptPALM plasmid copy number determination, on the other hand, 

is mostly determined by the L. lactis sub-population with high dCas9 copy numbers, 

for which pTarget replication is restricted more strongly.  

We used our model to make predictions about Cas9 cleavage probabilities, based on 

kinetic values extracted from the MC-DDA, which are not influenced by the 

approximated cellular dCas9 copy number. The kinetic parameters of dCas9-

PAmCherry2 provide estimates for those of Cas9. We reason that kbound→free will be 

unchanged, since this rate is based on the duration of the PAM screening, while 

kfree→bound will be slightly lower for Cas9 compared to dCas9-PAmCherry2, due to 

the relatively higher diffusion coefficient of Cas9. The model can be expanded to 

incorporate a protein diffusion coefficient to obtain a modified kfree→bound rate, and 

to include accessibility of the DNA. These additions would allow the model to 

predict Cas9 behaviour in more diverse environments such as eukaryotic cells. Other 

computational models have taken these parameters into account(2016), but these 

models were not based on experimental in vivo data, and were based on different 

assumptions. 

Our open microscopy framework enables the study of in vivo protein-DNA 

interactions with high spatiotemporal resolution, here shown for CRISPR-Cas9 

target search, and improves the general accessibility of super-resolution microscopy. 

Our data shows that heterogeneity in an expression system can be used to obtain new 
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insights in any protein-DNA or protein-protein interaction in vivo, here indicating 

that target-bound dCas9 interferes with rolling-circle DNA replication. The derived 

kinetic parameters and information on target search times provides valuable 

practical insights in CRISPR-Cas engineering and gene silencing in lactic acid 

bacteria specifically, and suggest to reflect prokaryotic Cas9 search times in general. 

Methods 

Detailed description miCube 

We designed the miCube to be easy to set up and use, while retaining a high level of 

versatility. The instrument and its design choices will be described in three parts: the 

excitation path; the emission path, and the ‘cube’ connecting the sample with the 

excitation and emission paths. Throughout this description, we will refer to 

numbered parts as shown in Supplementary Fig. 2a and c and described in 

Supplementary Table 1. The information on the miCube presented here can also be 

found on https://HohlbeinLab.github.io/miCube/component_table.html. The 

instrument is fully functional in ambient light, due to a fully enclosed sample 

chamber, illumination pathway and emission pathway. Moreover, the miCube has a 

small footprint: the final design of the miCube, excluding the lasers and controllers, 

fits on a 300 x 600 mm Thorlabs breadboard. We placed the whole ensemble in a 

transparent polycarbonate box (MayTec Benelux, Doetinchem, The Netherlands) to 

minimize airflow disturbing the setup during experiments.  

miCube excitation path 

The excitation path is designed to be both robust and easy to align and adjust. The 

four laser sources located in an Omicron laser box are combined and guided via a 

single mode fibre towards a reflective collimator (nr. 18) ensuring a well-collimated 

beam. The reflective collimator is attached directly to an aperture (nr. 17), a focusing 

lens (nr. 16, 200 mm focal length), and an empty spacer (nr. 12). This excitation 

ensemble is placed in the 3D-printed piece designed to hold the assembly into place 

(nr. 13). This holder is then attached to a right-angled mounting plate (nr. 14), which 

is placed on a 25mm translation stage (nr. 15). The translation stage should be placed 

at such a position on the breadboard that the focusing lens (nr. 16) is exactly 200 

https://hohlbeinlab.github.io/miCube/component_table.html
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mm separated from the back-focal plane of the objective when following the laser 

path. 

Easy alignment and adjustment are ensured by isolating the three axes of movement 

of this excitation ensemble (Supplementary Fig. 2e). Adjustments of distance from 

objective is achieved by moving the collimator ensemble (nrs. 12, 16-18) inside its 

holder (nr. 13). Height of the path can be adjusted via a bracket clamp that supports 

the collimator ensemble (nrs. 13 and 14), and the horizontal alignment can be 

adjusted via a translation stage where the bracket clamp rests on (nr. 15). We note 

that the excitation pathway is uncoupled from any laser source due to the fibre-

connection, allowing for freedom of choice for the excitation laser unit. 

Additionally, the translation stage (nr. 15) can be used to enable highly inclined 

illumination (HiLo) or total internal reflection (TIR). The stage allows fine and 

repeatable adjustment of the excitation beam position on the back focal plane of the 

objective. By aligning the excitation beam in the centre of the objective, the 

microscope will act as a standard epifluorescence instrument. If the excitation beam 

is aligned towards the edge of the back focal plane, the miCube will operate in HiLo 

or TIR.  

miCube cube and sample mount 

The central component of the miCube is the cube (nr. 5) that connects excitation 

path, emission path, and the sample. The cube is manufactured out of a solid 

aluminium block maximising stability and minimising effects of drift due to thermal 

expansion. Black anodization of the block prevents stray light and unwanted 

reflections. The illumination path is further protected from ambient light by 

screwing a 3D-printed cover (nr. 11) on the side of the cube, as well as a door to 

close the cube off. 

Next, the ‘dichroic mirror – full mirror’ part is assembled (nrs. 6-10). The dichroic 

mirror unit (nr. 7) consists of a dichroic mount that is magnetically attached to an 

outer holder. On the side of the dichroic mirror unit, opposing the excitation path, a 

neutral density filter (nr. 6) is placed to prevent scattered non-reflected light entering 

the miCube thereby minimizing background signal being recorded by the camera. 

At the bottom of the dichroic mount assembly, a TIRF filter (nr. 8) is placed to 



V i s u a l i z a t i o n  o f  d C a s 9  t a r g e t  s e a r c h  | 123 
 

 

remove scattered back-reflected laser light from entering the emission pathway. This 

ensembled dichroic mirror unit is screwed via a coupling element (nr. 9) to a mirror 

holder containing a mirror placed at a 45° angle (nr. 10), which reflects the emission 

light from the objective to the camera. This completed ‘dichroic mirror – full mirror’ 

part is screwed into the backside of the miCube via two M6 screws, which hold the 

ensemble into place and directly in line with the excitation path (nrs. 12-18), the 

objective (nr. 3), and the tube lens (nr. 30). 

Then, an objective (nr. 3) (Nikon 100x oil, 1.49 NA, HP, SR) is directly screwed 

into an appropriate thread on top of the cube. Around the objective, a sample mount 

(nr. 4) is screwed on top of the cube, which is designed to ensure correct height of 

the sample with respect to the parfocal distance of the chosen objective. We opted 

for using a sample mount, as it can be easily swapped for another to retain freedom 

in peripherals. For example, only the height of the sample mount has to be changed 

if an objective has a different parfocal distance as the one used here. We designed 

two different sample mounts (nr. 4a, 4b). The first one can hold an xy-translation 

stage with z-stage piezo insert (nr. 2), to enable full spatial control of the sample (nr. 

4a). The second one only holds the z-stage piezo insert, which decreases instrument 

cost (nr. 4b). In any case, the xy-translation stage with z-stage piezo insert, or only 

the z-stage piezo insert is screwed in place into corresponding threaded holes in the 

sample mount. A glass slide holder (nr. 1) is made from aluminium to fit inside a 

96-wells-holder like the z-stage (nr. 2). 

miCube detection path 

A tube lens ensemble is made (nrs. 27-30) which houses a 200 mm focal length tube 

lens (Thorlabs) in a 3D-printed enclosure which provides space to slot in an emission 

filter (nrs. 27,28). This ensemble is then attached directly to the miCube by screwing 

it into place with four M6 screws. The alignment of the tube lens is therefore exactly 

in line with the emission light, as the centre of the full mirror (nr. 10) is at the same 

height of the tube lens. The direction of the emission light can be aligned, which can 

simply be achieved by tuning the angle of the full mirror (nr. 10).  

A cover (nr. 25) is attached to the tube lens ensemble to ensure darkness of the 

emission path, which is connected to the tube lens by a 3D-printed connector piece 
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(nr. 26). On the other end of the cover, a 3D-printed holder for 2 astigmatic lenses 

(nr. 21) is placed and screwed into place in the breadboard. Astigmatic lenses (nrs. 

22-24) can optionally be used to enable 3D super-resolution microscopy(Huang et 

al., 2008). They can be easily changed for lenses with a different focal length or with 

empty holders. With this, astigmatism can be enabled or disabled, and a choice 

between more accurate z-positional information with a lower total z-range, or less 

accurate information with a larger range can be made. The Andor Zyla 4.2 PLUS 

camera (nr. 19) is placed behind the astigmatic lens holder, and is positioned in a 

3D-printed camera mount (nr. 20) to ensure correct height and position of the 

camera, so that the focus of the tube lens is at the camera chip. We chose for a 

scientific Complementary Metal-Oxide Semiconductor (sCMOS) camera to take 

advantage of a larger field of view and increased temporal resolution compared to 

the more traditional electron-multiplying charge coupled device (EMCCD) 

cameras(Almada et al., 2015). 

Note that the length of the cover (nr. 25) and the alignment of the holes at the feet 

of the 3D-printed astigmatic lens holder (nr. 21) are dependent on the focal length 

of the tube lens, and of the position of the chosen camera chip with regards to the 

3D-printed mount for the camera. The pieces used here were designed for the Andor 

Zyla 4.2 PLUS, a 200 mm focal length tube lens, and the used custom-designed 

camera mount (nr. 20). 

Biological methods 

Strain preparation and plasmid construction 

Lactococcus lactis NZ9000 was used throughout the study. NZ9000 is a derivative 

of L. lactis MG1363(Kuipers et al., 1998) in which the chromosomal pepN gene is 

replaced by the nisRK genes that allow the use of the nisin-controlled gene 

expression system(Mierau and Kleerebezem, 2005). Cells were grown at 30°C in 

GM17 medium (M17 medium (Tritium, Eindhoven, The Netherlands) supplemented 

with 0.5% (w/v) glucose (Tritium, Eindhoven, The Netherlands) without agitation.  

DNA manipulation and transformation 
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Vectors used in this study are listed in Supplementary Table 2. Oligonucleotides 

(Supplementary Table 3) and primers Supplementary Table 4) were synthesised at 

Sigma-Aldrich (Zwijndrecht, The Netherlands). Plasmid DNA was isolated and 

purified using GeneJET Plasmid Prep Kits (Thermo Fisher Scientific, Waltham, 

MA, USA). Plasmid digestion and ligation were performed with Fast Digest 

enzymes and T4 ligase respectively, according to the manufacturer’s protocol 

(Thermo Fisher Scientific, Waltham, MA, USA). DNA fragments were purified 

from agarose gel using the Wizard SV gel and PCR Clean-Up System (Promega, 

Leiden, The Netherlands). Electro competent L. lactis NZ9000 cells were generated 

using a previously described method(Wells et al., 1993). Prior to electro-

transformation, ligation mixtures were desalted for one hour by drop dialysis on a 

0.025 µm VSWP filter (Merck-Millipore, Billerica, US) floating on MQ water. 

Electro-transformation was performed with GenePulser XcellTM (Bio-Rad 

Laboratories, Richmond, California, USA) at 2 kV and 25 µF for 5 ms. 

Transformants were recovered for 75 minutes in GM17 medium supplemented with 

200 mM MgCl2 and 2 mM CaCl2. Chemically competent E. coli TOP10 

(Invitrogen, Breda, The Netherlands) were used for transformation and amplification 

of the Pnis-dCas9-PAmCherry2-containing pUC16 plasmid (Supplementary Fig. 7). 

Antibiotics were supplemented on agar plates to facilitate plasmid selection: 10 

µg/ml chloramphenicol (for pTarget/pNonTarget) and 10 µg/ml erythromycin (for 

pLAB-dCas9). Screening for positive transformants was performed using colony 

PCR with KOD Hot Start Mastermix according to the manufacturer’s instructions 

(Merck Millipore, Amsterdam, the Netherlands). Electrophoresis gels were made 

with 1% agarose (Eurogentec, Seraing, Belgium) in tris-acetate-EDTA (TAE) buffer 

(Invitrogen, Breda, The Netherlands). Plasmid digestions were compared with in 

silico predicted plasmid digestions (Benchling; https://benchling.com). 

pLAB-dCas9 plasmid construction 

Construction of the pLAB-dCas9 plasmid is described in detail elsewhere(Beljouw 

et al., 2019). Briefly, the fragment containing the sequence of Pnis-dCas9-

PAmCherry2 is flanked by XbaI/SalI restriction sites (Supplementary Fig. 7, 

Supplementary Note) and was synthesized by Baseclear (Baseclear B.V., Leiden, 

https://benchling.com/
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The Netherlands), and cloned in a pUC16 plasmid. After transformation in E. coli, 

the plasmid was isolated and digested with XbaI and SalI to obtain the Pnis-dCas9-

PAmCherry2 fragment. The Cas9 expression module was removed from the 

pLABTarget expression vector(Els et al., 2018) by digestion with XbaI and SalI and 

replaced by the XbaI-SalI fragment containing Pnis-dCas9-PAmCherry2. The 

single-stranded guide RNA (sgRNA) for targeting pepN was constructed and 

inserted according to earlier described protocol(Els et al., 2018) to yield the pLAB-

dCas9 vector. The plasmids used in this study, and vector maps for pLABTarget and 

pLAB-dCas9 are available upon request. pLAB-dCas9-PAmCherry2 was 

sequenced, and was confirmed to be intact in the used strains.  

pLAB-dCas9 no-sgRNA 

The pLAB-dCas9-nosgRNA plasmid was constructed by BoxI/SmaI digestion of the 

pLAB-dCas9-PAmCherry2 plasmid, and subsequent self-ligation. This resulted in 

deletion of the sgRNA handle and transcriptional terminator, successfully removing 

the functional sgRNA. The resulting pLAB-dCas9-nosgRNA plasmid was 

confirmed via sequencing. 

pTarget and pNonTarget plasmid construction 

The plasmid with binding sites for dCas9 (pTarget) was established by engineering 

five pepN target sites in the pNZ123 plasmid(van Asseldonk et al., 1990). To this 

end, two single-stranded oligonucleotides (10 µl of 100 µM, each, Supplementary 

Table 3) that upon hybridization form the a single target sequence for the pepN-

targeting sgRNA were incubated in 80 µl annealing buffer (10 mM Tris [pH = 8.0] 

and 50 mM NaCl) for 5 minutes at 100°C, followed by gradual cooling to room 

temperature. The annealed mixed multiplexed oligonucleotides were cloned in 

HindIII-digested pNZ123. Afterwards we selected a derivative that contains five 

pepN target sites via colony PCR (Supplementary Table 4). HindIII re-digestion was 

prevented by flanking the pepN DNA product by different base pairs, changing the 

HindIII site. Plasmids with five pepN target sites were designated pTarget 

(Supplementary Fig. 8). Plasmids without the pepN target sites (the original pNZ123 

plasmids) were designated pNonTarget. The vector maps for pTarget and 
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pNonTarget are shown in Supplementary Fig. 8. Correct insertion of the five pepN 

target sites was confirmed via sequencing. 

Construction of strains harbouring both pLAB-dCas9 and 
pTarget/pNonTarget 

Electro competent L. lactis NZ9000 cells(Wells et al., 1993) harbouring pLAB-

dCas9 were transformed with pTarget or with pNonTarget and subsequently used 

for sptPALM or stocked at -80°C.  

Quantitative Polymerase Chain Reaction (qPCR) for plasmid 
copy number detection 

Both L. lactis strains containing pLAB-dCas9 and pTarget or pNonTarget were 

grown under similar lab conditions as the imaging experiments performed in this 

study (N=2). After 3 hours of growth, the cultures were split and dCas9 was induced 

(0 ng/ml Nisin, 0,4 ng/ml Nisin and 2 ng/ml Nisin). The cells were then harvested 

after 12 hours of growth by centrifugation. The cell pellets were washed, and DNA 

was extracted using InstaGene Matrix (Bio-Rad Laboratories, Richmond, California, 

USA).  

Oligonucleotides were designed to amplify a region of spanning approximately 1000 

base pairs on both pTarget and pNonTarget, and a region of similar length on the 

NZ9000 chromosome (Q3 + Q4 and Q7+Q8; Supplementary Table 4). These 

oligonucleotides were used in a PCR reaction to generate templates which were 

diluted to function as a calibration curve in the following qPCR. Both qPCR 

reactions were performed on each isolated DNA sample (6 technical replicates) and 

the ratio between measured chromosomal amplicons (Q5+Q6) and plasmid 

amplicons (Q1+Q2) was determined. The samples which were uninduced with Nisin 

were used to standardize the estimated pTarget and pNonTarget copy numbers. 

Single molecule microscopy  

Strain preparation 
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The strains to be used for single molecule microscopy were grown o/n from glycerol 

stocks at 30°C in chemically defined medium for prolonged 

cultivation(CDMPC)(Goel et al., 2011). Then, they were sub-cultured at 5% v/v and 

grown for 3 hours (average duplication time in CDMPC is ~ 90 minutes (determined 

via OD600 measurements)), before induced with 0.1 ng/ml Nisin. 90 minutes later, 

the sample preparation began (see below). 

Sample preparation 

Samples were prepared as described previously(Beljouw et al., 2019). Briefly, after 

culturing of the cells, 0.5 µg/mL ciprofloxacin (Sigma-Aldrich, Zwijndrecht, The 

Netherlands) was added to slightly inhibit further cell division and DNA replication 

for sgRNA-pTarget and sgRNA-pNonTarget experiments(Drlica et al., 2008). Then, 

cells were centrifuged (3500 RPM for 5 minutes; SW centrifuge (Froilabo, Mayzieu, 

France) with a CENSW12000024 swing-out rotor fitted with CENSW12000006 15 

ml culture tube adaptors) and washed two times by gentle resuspension in 5 mL 

phosphate-buffered saline (PBS; Sigma-Aldrich, Zwijndrecht, The Netherlands). 

After removal of the supernatant, cells were resuspended in ~ 10-50 µL PBS from 

which 1-2 µL was immobilized on 1.5% 0.2 µm-filtered agarose (Certified 

Molecular Biology Agarose; BioRad, Veenendaal, The Netherlands) pads between 

two heat-treated glass coverslips (Paul Marienfeld GmbH & Co. KG, Lauda-

Königshofen, Germany; #1.5H, 170 µm thickness). Heat treatment of glass 

coverslips involves heating the coverslips to 500°C for 20 minutes in a muffle 

furnace to remove organic impurities. 

Experimental settings 

All imaging was performed on the miCube as described at 20°C. A 561 nm laser 

with ~ 0.12 W/cm2 power output was used for HiLo-to-TIRF illumination with 4 ms 

stroboscopic illumination(Farooq and Hohlbein, 2015) in the middle of 10 ms 

frames. Low-power UV illumination (µW/cm2 range) was used and increased during 

experiments to ensure a low and steady number of fluorophores in the sample until 

exhaustion of the fluorophores. A UV-increment scheme was consistently used for 

all experiments (Supplementary Table 5). No emission filter was used except for the 
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TIRF filter (Chroma ZET405/488/561m-TRF). The raw data was acquired using the 

open source Micro-Manager software(Edelstein et al., 2014). During acquisition, 

2x2 binning was used, which resulted in a pixel size of 128x128 nm. The camera 

image was cropped to the central 512x512 pixels (65.64 x 65.64 µm) or smaller. For 

sptPALM experiments, frames 500-55,000 were used for analysis, corresponding to 

5-550 seconds. This prevented attempted localization of overlapping fluorophores 

at the beginning, and ensured a set end-time. 200-300 brightfield images were 

recorded by illuminating the sample at the same position as during the measurement. 

For the brightfield recording, we used a commercial LED light (INREDA, IKEA, 

Sweden) and a home-made diffuser from weighing paper. 

Localization  

To extract single molecule localizations, a 50-frame temporal median filter 

(https://github.com/marcelocordeiro/medianfilter-imagej) was used to correct 

background intensity from the movies(Hoogendoorn et al., 2014). In short, the 

temporal median filter determines the median pixel value over a sliding-window of 

50 pixels to determine the median background intensity value for a pixel at a specific 

position and time point. This value is subtracted from the original data, and any 

negative values are set to 0. In the process, all pixels are scaled according to the 

mean intensity of each frame to account for shifts in overall intensity. The first and 

last 25 frames from every batch of 8096 frames are removed in this process.  

Single particle localization was performed via the ImageJ(Schneider et al., 

2012)/Fiji(Schindelin et al., 2012) plugin ThunderSTORM(Ovesný et al., 2014) with 

added phasor-based single molecule localization algorithm (pSMLM(Martens et al., 

2017)). Image filtering was done via a difference-of-Gaussians filter with Sigma1 = 

2 px and Sigma2 = 8 px. The approximate localization of molecules was determined 

via a local maximum with a peak intensity threshold of 8, and 8-neighbourhood 

connectivity. Sub-pixel localization was done via phasor fitting(Martens et al., 2017) 

with a fit radius of 3 pixels (region-of-interest of 7-by-7 pixels). Custom-written 

MATLAB (The MathWorks, Natick, MA, USA) scripts were used to combine the 

output files from ThunderSTORM. 

https://github.com/marcelocordeiro/medianfilter-imagej
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Cell segmentation 

A cell-based segmentation on the localization positions was performed. First, a 

watershed was performed on the average of 300 brightfield-recorded frames of the 

cells. The watershed was done via the Interactive Watershed ImageJ plugin 

(http://imagej.net/Interactive_Watershed). Second, the localizations were filtered 

whether or not they fall in a pixel-accurate cell outline. If they do, a cell ID is added 

to the localization information. 

Estimating the copy number of dCas9 

The total copy number of dCas9 in a cell is not identical to the number of tracks 

found in each cell. Firstly, the UV illumination (405 nm wavelength) on the miCube 

required to photo-activate PAmCherry2 is not homogeneous over the complete field 

of view. To correct for this, a value for the average UV illumination experienced by 

each L. lactis cell is calculated. For this, a map of the UV intensity is made by placing 

a mirror on top of the objective and measuring the reflected scattering of the UV 

signal. Then, the mean UV intensity in the pixels corresponding to a cell according 

to the segmented brightfield images is stored. The cellular apparent dCas9 copy 

number is corrected for this normalized mean cellular UV intensity. Moreover, the 

cellular apparent dCas9 copy number was corrected for the average maturation grade 

of PAmCherry1, which is ~ 50%(Durisic et al., 2014) (shown schematically in 

Supplementary Fig. 9). We assume the maturation grades of PAmCherry1 and 

PAmCherry2 to be similar. 

Tracking and fitting of apparent diffusion coefficient 
histogram 

A tracking procedure was performed in MATLAB, using a modified Particle Point 

Analysis script(Crocker and Grier, 1996) 

(https://nl.mathworks.com/matlabcentral/fileexchange/42573-particle-point-

analysis) with a tracking window of 8 pixels (1.0 µm) and no memory. Localizations 

corresponding to different cells were excluded from being part of the same track. As 

the tracking window is of similar size as the cells itself, in practice all localizations 

in a cell are linked together in a track if they appear in successive frames.  

http://imagej.net/Interactive_Watershed
https://nl.mathworks.com/matlabcentral/fileexchange/42573-particle-point-analysis
https://nl.mathworks.com/matlabcentral/fileexchange/42573-particle-point-analysis
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An apparent diffusion coefficient, D*, was then calculated for each track from the 

mean-squared displacement (MSD) of single-step intervals(Stracy and Kapanidis, 

2017). In short, for every track with at least 4 localizations, the D* was calculated 

by calculating the mean square displacement between the first four steps and taking 

the average of that. Qualitative tracking information in cells (Fig. 2a, Fig. 3a) shows 

that diffusion coefficients up to ~ 4 µm2/s are obtained. These high diffusion 

coefficient tracks are caused by including false positive localizations in tracks, 

Therefore, tracks with a diffusion coefficient clearly caused by inclusion of false 

positive localizations (D* > 2.5 µm2/s) were excluded from further analysis; we 

binned the diffusion coefficients in 40 logarithmic-divided bins from D* = 0.01 to 

D* = 2.5 µm2/s. The pNonTarget diffusional information was first corrected for the 

diffusion histogram obtained from a non-induced sample, subtracting the non-

induced histogram from the pNonTarget histogram based on the approximated 

relative size of the non-induced histogram (~ 7.2 tracks per cell were found in non-

induced cells).  

Then, a Monte-Carlo diffusion distribution analysis (MC-DDA; described below) 

consisting of 20.000 dCas9 proteins was fitted via a general Levenberg-Marquardt 

fitting procedure in MATLAB. The error of this fit was determined via a general 

bootstrapping approach, where a D*-list with the same length as the original, but 

randomly filled with values from the original (allowing for more than one entry of 

the same data), was fitted via the same procedure. For the pTarget diffusional 

information, the pNonTarget best fitted model (calculated via the same model, but 

with 100.000 dCas9 proteins) was fitted and smoothed via a Savitzky-Golay filter 

with order 3 and length 7, to reduce noise on the fit, alongside a single population 

following the following equation: 

 

y =  
� n

Dplasmid
�
n
∙ x(n-1) ∙ e

 -n x
Dplasmid

(n-1)!
 (1) 

Where Dplasmid is the D*-value corresponding to plasmid-bound dCas9, n the number 

of steps in the trajectory (set to four in this study), y the count of the histogram, and 

x the D*-value of the histogram. Dplasmid was kept constant in the global fit, while 

the size of this population and the size of the pNonTarget model were allowed to 
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vary between apparent cellular dCas9 copy number bins. Again, the error of this fit 

was determined via a general bootstrapping approach. 

pNonTarget Monte-Carlo diffusion distribution analysis 

The pNonTarget data is fitted with a Monte-Carlo diffusion distribution analysis 

(MC-DDA), in which a variable Dfree, localization error, kfree→bound, and kbound→free 

need to be provided. A set number of dCas9 proteins are simulated (20.000 for the 

fit, 100.000 for visualising the fit). These proteins are then randomly placed in a cell, 

which is simulated as a cylinder with length 0.5 µm and radius 0.5 µm, capped by 

two half-spheres with radius 0.5 µm, and the current state of the proteins is set to 

free or immobile, based on the respective kinetic rates (cbound = kfree→bound /(kbound→free 

+ kfree→bound), cfree = 1-cbound). Moreover, the proteins are given a time before they are 

changed between states (log(rand)/-k, where rand is a random number between 0 

and 1, and k is the respective kinetic rate). Then, the movement of the proteins is 

simulated with over-sampling with regards to the frame time (0.1 ms). The free 

proteins will move a distance equal to a randomly sampled normal distribution with 

σ = �2 ∙ Dfree ∙ steptime , where steptime is 0.1 ms. Then, it checked if this 

position is still within the cell outline. If not, a new location will be pulled from the 

distribution and checked against the cell outline. Every time-step, the time until 

state-change is subtracted with the time-step, and if this value becomes ≤ 0, the 

proteins will switch states, getting a new diffusion coefficient and state-change time. 

Every 10 ms after an initial equilibrium time of 200 ms, the current location of the 

proteins is convoluted with a random localization error, from a randomly sampled 

normal distribution with σ = localization error. The simulation is ended after 5 

localization points are acquired for every protein. Further tracking and diffusion 

coefficient calculations are done the same as the experimental data. 

Target simulation 

For the target simulation, a certain number of dCas9 are simulated (similar to the 

average of the bins used in experiments), alongside a variable total DNA content (~ 

7.5mln base pairs, or 1.5x double-stranded L. lactis genome(Linares et al., 2010)), 

plasmid copy number, target sites (5 per plasmid), incubation time (90 minutes), 
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fluorophore maturation time (20 minutes(Subach et al., 2009)), and a koff rate. The 

dCas9 proteins are simulated one by one. The first dCas9 will have access to all 

target sites, and will be simulated for [incubation time], assuming the first dCas9 

was made exactly at the start of the Nisin incubation. Subsequent dCas9 proteins 

will have access to fewer target sites, depending on whether or not earlier dCas9 

proteins have ended the simulation bound to target sites. Subsequent dCas9 proteins 

will also be simulated for a shorter time, linearly scaling from [incubation time] to 

[fluorophore maturation time], which assumes that dCas9 proteins are steadily 

produced throughout the incubation time, but allowing for the fact that dCas9 

proteins that do not yet have a matured PAmCherry2 are not visible during 

sptPALM.  

Then, the dCas9 proteins randomly start in the free, PAM-probing, or target-bound 

state, based on the previously determined kinetic constants, similarly as in the 

pNonTarget simulation. The proteins are also given a time until state change, as was 

done in the pNonTarget simulation. Next, the simulation time of a single dCas9 

protein was decreased by this time until state change, whereupon a new state was 

given to the protein: free proteins changed to PAM-probing or target-bound, with 

the target-bound chance being equal to nr target sites
total nr of PAM sites� ; PAM-

probing or target-bound proteins were changed to free proteins. This was continued 

until the end of the simulation, after which the final state was determined. If the 

dCas9 was bound to a target, the available target sites were decreased by 1 for the 

next simulated dCas9. The reported values are the mean of 50 repetitions of the 

simulation, with the 95% confidence interval determined via the standard deviation 

of these repetitions. 

For simulating Cas9 cleavage rates, it was assumed that a single target site was 

present and that a dCas9 would never be removed from a target site. By then 

analysing the ‘bound’ dCas9, it indicates whether the target site has been cleaved by 

Cas9. The other simulation parameters were kept constant. 

miCube drift quantification 

We characterised the positional stability of the miCube via super-resolution 

measurements of GATTA-PAINT 80R DNA-PAINT nanorulers (GATTAquant 
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GmbH, Germany). We imaged the nanorulers in total internal reflection (TIR) mode 

using a 561 nm laser (~ 7 mW) with a frame time of 50 ms using 2x2 pixel binning 

on the Andor Zyla 4.2 PLUS sCMOS. Astigmatism was enabled by placing a 1000 

mm focal length astigmatic lens (Thorlabs) 51 mm away from the camera chip. A 

video of 10.000 frames was recorded via the MicroManager software(Edelstein et 

al., 2014).  

After recording the movie, we first localized the x, y, and z-positions of the point 

spread functions of excited DNA-PAINT nanoruler fluorophores with the 

ThunderSTORM software(Ovesný et al., 2014) for ImageJ(Schneider et al., 2012) 

with the phasor-based single molecule localization (pSMLM) add-on(Martens et al., 

2017). The ThunderSTORM software was used with the standard settings, and a 7 

by 7 pixel region of interest around the approximate centre of the point spread 

functions was used for pSMLM. To determine the z-position, we compared the 

astigmatism of the point-spread function to a pre-recorded calibration curve 

recorded using immobilized fluorescent latex beads (560 nm emission peak, 50 nm 

diameter).  

After data analysis we performed drift-correction in the lateral plane using the cross-

correlation method of the ThunderSTORM software. The cross-correlation images 

were calculated using 10x magnified super-resolution images from a sub-stack of 

100 original frames. The fit of the cross-correlation was used as drift of the lateral 

plane. Drift of the axial plane was analysed by taking the average z-position of all 

fluorophores, assuming that all DNA-PAINT nanorulers are fixed to the bottom of 

the glass slide. 

Code and data availability 

All code necessary to perform this study is made available as Supplementary Data, 

along with an accompanying programming flowchart. Raw data of part of the 

experiments is available upon reasonable request.  
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Supplementary information 

 

Supplementary Fig. 1 Effect of state transitions on diffusion coefficient histogram. The 

pNonTarget model as described in Methods was ran with varying kbound→free and kfree→bound values as 

indicated in the figure, while keeping the localization error and Dfree constant at the values 

determined while fitting the actual data (38 nm and 2.0 µm2/s, respectively). a Diffusion coefficient 

histogram if no state transitions would be present. b to e Diffusion coefficient histograms with the 

same kbound→free : kfree→bound ratio as the determined best-fitting values of ~ 3:2, while varying the 

absolute values of the two. f Diffusion coefficient histogram if the kinetic parameters were swapped. 
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Supplementary Fig. 2 The open-source miCube single-particle microscope. a Exploded 

render of the miCube highlighting individual components. A full list of components indicated by the 

numbered items can be found in Supplementary Table 5. b Top-down schematic view of the miCube 

on the breadboard, allowing clear view of mounting positions. Distance between mounting holes on 

the breadboard is 25 mm. c Schematic overview of the miCube instrument. Numbered items 

correspond to the items in a and Supplementary Table 5. The excitation path is visualized with 

dashed lines, the emission path is visualized with dotted lines. d Photograph of the fully assembled 

miCube as used for measurements in this manuscript. e Detailed view of the miCube excitation 

path. This sub-assembly is comprised of numbers 12-18. Arrows indicate isolated movement in the 
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three spatial dimensions: distance from objective (blue), height of excitation unit (green), and 

horizontal position with respect to the objective (red).  
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Supplementary Fig. 3 Typical drift experienced by the miCube. Typical drift in X (black), 

Y (red), and Z (blue) as experienced by the miCube used throughout this study. Repetition of this 

experiment led to the values specified in the main text. 
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Supplementary Fig. 4 Individual pNonTarget and pTarget distributions. a All five 

pNonTarget diffusional distributions fitted with MC-DDA, as explained in the main text, Methods 

section, and Fig. 2. At the bottom, the Chi-squared value is plotted for a range of MC-DDAs (100k 

simulated proteins) with different kfree→bound and kbound→free. b All five pTarget diffusional distributions 

fitted with the computational target-binding model, as explained in the main text, Methods section, 

and Fig. 3.  
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Supplementary Fig. 5 no-sgRNA distributions fitted with MC-DDA or the target-

binding model. The fitting of diffusional data was performed identically as for samples with sgRNA. 

We note that no target-bound dCas9 diffusional data could be fitted with the same fitting algorithm 

as used for the sgRNA-pTarget diffusional data. 
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Supplementary Fig. 6 Effect of dCas9 on pTarget copy number. a Representative 

normalized cumulative number of cells that have certain mean dCas9 copy numbers. Black squares 

are values taken from pNonTarget dataset, the dotted line is a fitted curve with equation 1.05 ∙

[dCas9 copy number]
44 ∙ [dCas9 copy number]�  . b Normalized qPCR-determined ratio of 

plasmid:genome DNA for pTarget and pNonTarget for different Nisin induction. Error bars are the 

standard deviation determined from the average of two biological replicates (both averaged on two 

technical replicates). 
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Supplementary Fig. 7 Outline of the pLAB-dCas9 vector.Top: The sequence encoding 

dCas9(Qi et al., 2013) (S. pyogenes; AddGene.org plasmid #44249) is fused to the sequence encoding 

PAmCherry2(Subach et al., 2009) (AddGene.org plasmid #31932) with a flexible linker (amino acid 

sequence GSGSS), downstream of the nisA-promoter (Pnis) with an ribosomal binding site (15 bp 

spacing) and ending with a transcriptional terminator sequence derived from a lactococcal pepN 

gene. PAmCherry2 is flanked by two KpnI sites which should allow for interchanging fluorophores. 

The whole sequence is flanked by XbaI and SalI restriction sites to allow convenient cloning into a 

(expression) vector of choice. Bottom: The pLAB-dCas9 expression vector consists of 

PAmCherry2-labelled dCas9, an erythromycin resistance marker (Ery) and replication genes (repD, 

repE and repG)(Campelo et al., 2014). The pepN DNA matching region together with the dCas9 

binding hairpin and the S. pyogenes terminator form the sgRNA, which is expressed under a 

constitutive promoter (Peps). Once the sgRNA molecule is transcribed, it folds to form the 

secondary structure that allows complex formation with dCas9. 
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Supplementary Fig. 8 pNonTarget and pTarget construction and verifiction. a,b Vector 

maps of pNonTarget and pTarget. Both targets contain repA and repC (DNA replication initiators) 

and a chloramphenicol-resistance marker (cm). Moreover, pTarget contains 5 target sites specified 

at ‘Target Sites’. c dCas9 binding sites consisting of a 20 base pairs pepN recognition site, a 5’-NGG-

3’ PAM sequence, and spacing and overhang sequence motifs that are complementary to each other 

(indicated with black stripes) were annealed and ligated. This formed an array of five dCas9 binding 

sites in pNZ123, resulting in pTarget. Digestion and subsequent gel electrophoresis of plasmids 

isolated from two colonies revealed the expected length of the binding array in pTarget. One binding 

site is 54 base pairs in length, the final array of five binding sites is 278 base pairs (the expected PCR 

amplicon is 300 base pairs).  
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Supplementary Fig. 9 Schematic representation of obtaining cellular dCas9 copy 

number from number of tracks. The raw track count (first subfigure) is convoluted with the 

experience UV intensity that the cell on average experienced (second subfigure; deduced via 

reflective scattering of excitation lasers), and with the expected maturation grade of PAmCherry2 

(Methods). 
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Supplementary Note: DNA and amino acid sequences 

> dCas9-PAmCherry2 DNA sequence 
ATGGACAAAAAATACAGCATCGGCCTTGCCATCGGCACCAACAGCGTCGGGTGGGCCGTCATCACTGACGAGTATAAAGTGCC

TAGTAAGAAGTTCAAGGTGCTAGGCAACACTGACCGACACAGCATTAAGAAGAACCTGATCGGTGCTCTGCTATTCGATAGTG

GTGAGACGGCCGAAGCTACAAGATTAAAAAGAACTGCAAGACGTAGATATACAAGACGTAAAAATCGTATTTGTTATTTACAG

GAAATTTTTAGTAATGAGATGGCTAAGGTTGATGATAGTTTCTTTCATAGATTAGAAGAATCATTTTTAGTAGAAGAAGATAA

AAAACATGAACGACATCCTATATTTGGAAATATAGTAGATGAAGTAGCTTATCATGAAAAATATCCTACTATTTATCATTTAC

GTAAAAAATTAGTTGATAGTACTGATAAAGCTGATTTAAGATTGATATATTTAGCATTAGCACACATGATTAAATTTCGTGGT

CATTTTCTAATTGAAGGAGATTTAAATCCTGATAACTCTGATGTTGATAAACTTTTTATTCAATTAGTCCAAACTTATAATCA

ATTATTTGAAGAAAATCCAATTAATGCTAGCGGTGTAGATGCTAAAGCTATTTTATCAGCTAGATTAAGTAAAAGCAGAAGAC

TAGAAAATTTAATTGCACAACTTCCTGGTGAGAAAAAGAATGGTTTATTTGGAAATTTGATTGCACTTAGTTTAGGTTTAACA

CCTAATTTTAAAAGTAATTTTGATTTAGCTGAAGATGCAAAACTTCAATTGAGTAAAGATACATATGATGATGATTTAGATAA

TTTATTAGCTCAAATTGGTGATCAATATGCAGATTTATTTTTAGCTGCCAAAAATTTATCTGATGCTATTTTATTAAGTGATA

TATTACGTGTAAATACTGAAATTACTAAAGCACCTTTATCAGCATCTATGATTAAAAGATATGATGAACATCATCAAGACTTA

ACATTATTAAAAGCATTAGTTAGACAACAATTACCAGAAAAATATAAAGAAATTTTCTTTGATCAATCAAAAAATGGATATGC

TGGATATATTGATGGTGGAGCATCACAAGAAGAATTTTATAAATTTATAAAACCTATTTTAGAAAAAATGGATGGAACTGAAG

AATTACTTGTTAAACTTAATAGAGAAGATTTATTAAGAAAACAAAGAACATTCGATAATGGATCAATCCCACATCAAATTCAT

TTAGGTGAATTGCATGCTATTTTACGTAGACAAGAAGATTTTTATCCATTCTTGAAAGATAATAGAGAAAAAATTGAAAAAAT

TTTAACTTTTAGAATTCCATATTATGTAGGACCTTTAGCACGAGGTAATTCTCGATTTGCATGGATGACACGTAAATCTGAAG

AAACAATTACACCATGGAATTTTGAAGAAGTTGTTGATAAAGGTGCTAGTGCACAATCTTTTATTGAAAGAATGACTAATTTT

GATAAAAATTTACCTAATGAAAAAGTATTACCAAAACATTCTTTATTATATGAATATTTTACTGTTTATAATGAACTTACAAA

AGTAAAATATGTTACTGAAGGAATGAGAAAACCAGCATTTTTATCAGGTGAACAAAAGAAAGCAATAGTTGATTTGTTATTTA

AAACAAATCGTAAAGTTACTGTTAAACAACTTAAAGAAGATTATTTTAAGAAAATTGAATGTTTTGATAGTGTTGAAATTTCT

GGAGTTGAAGATAGATTTAATGCTAGTTTAGGTACATATCATGATTTATTAAAAATTATTAAAGATAAAGATTTTCTTGATAA

TGAAGAAAATGAAGATATTTTAGAAGATATTGTTTTAACATTAACATTATTTGAAGATCGTGAAATGATTGAAGAACGTTTAA

AAACATATGCACATTTATTTGATGATAAAGTAATGAAACAATTAAAAAGACGTAGATATACTGGATGGGGACGTTTATCTCGT

AAATTAATTAATGGTATTAGAGATAAACAATCTGGTAAAACAATTTTAGACTTTCTAAAATCTGATGGATTCGCTAATCGTAA

TTTTATGCAATTAATTCATGATGATTCATTAACTTTTAAAGAAGATATTCAAAAAGCTCAGGTTAGTGGTCAAGGTGATAGCC

TTCATGAACATATAGCTAACCTAGCTGGTAGTCCAGCAATTAAAAAAGGTATTTTGCAAACAGTGAAAGTAGTTGATGAACTT

GTTAAAGTTATGGGTCGTCATAAACCTGAAAACATTGTTATTGAAATGGCACGAGAAAATCAAACTACACAAAAAGGACAAAA

GAATTCACGTGAACGTATGAAACGTATTGAAGAAGGTATTAAAGAACTAGGTAGTCAAATTCTTAAAGAACATCCAGTTGAAA

ATACACAATTACAAAATGAGAAATTATATTTATATTATTTACAAAATGGTCGTGATATGTATGTTGATCAAGAATTAGATATA

AATCGCTTGTCAGATTATGATGTAGATGCAATTGTTCCTCAATCATTTTTGAAAGATGATTCAATTGATAATAAAGTTTTGAC

ACGTAGTGATAAAAATCGTGGTAAAAGTGATAATGTTCCTAGTGAAGAAGTTGTCAAGAAAATGAAAAATTATTGGAGACAAT

TACTTAATGCTAAATTAATTACTCAACGTAAATTTGATAATTTAACAAAAGCAGAACGGGGAGGATTAAGTGAACTTGATAAA

GCTGGTTTTATAAAACGTCAATTAGTTGAAACAAGACAAATTACTAAACATGTAGCTCAAATATTAGATTCGCGTATGAATAC

TAAATATGATGAAAATGATAAATTAATTAGAGAAGTTAAAGTTATAACATTAAAATCTAAATTAGTTAGTGATTTTAGAAAAG

ATTTTCAATTTTATAAAGTTCGTGAAATAAATAATTATCATCATGCTCATGATGCCTATCTTAATGCAGTAGTTGGAACAGCT

TTAATTAAAAAATATCCAAAACTTGAAAGTGAATTTGTTTATGGTGATTATAAAGTCTATGATGTTCGCAAAATGATTGCTAA

ATCTGAACAAGAAATTGGTAAAGCTACAGCTAAATATTTCTTTTATAGTAATATTATGAATTTCTTTAAAACTGAAATTACTT

TAGCAAATGGAGAAATTAGAAAAAGACCATTAATTGAAACTAATGGTGAAACTGGAGAAATTGTTTGGGATAAAGGAAGAGAC

TTTGCAACAGTACGTAAAGTGTTATCTATGCCTCAAGTAAATATAGTTAAGAAAACTGAAGTTCAAACAGGCGGATTTAGTAA

AGAATCTATCTTACCAAAAAGAAATAGTGATAAATTAATTGCTCGTAAGAAAGATTGGGACCCTAAAAAATATGGTGGTTTTG

ATTCTCCAACTGTCGCTTATTCGGTCTTAGTTGTTGCTAAAGTAGAAAAAGGTAAAAGTAAAAAATTAAAATCAGTTAAAGAA

TTGTTAGGTATTACTATTATGGAAAGAAGTTCATTTGAAAAGAATCCTATTGACTTTTTAGAAGCCAAAGGTTACAAAGAGGT

CAAGAAAGACCTGATCATCAAACTGCCAAAGTACTCTCTCTTTGAATTAGAAAATGGACGTAAAAGAATGTTAGCATCTGCTG

GTGAATTGCAAAAAGGAAATGAATTAGCATTACCTAGTAAATATGTAAATTTCTTATACTTAGCTTCTCATTATGAAAAATTA

AAAGGTTCACCGGAGGACAACGAGCAGAAGCAACTTTTCGTGGAGCAACATAAACACTACCTCGACGAGATAATCGAACAAAT
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TAGCGAGTTTTCAAAACGCGTCATCCTTGCCGATGCCAATTTAGATAAAGTTTTATCAGCTTATAATAAACATAGAGATAAAC

CTATTAGAGAACAAGCTGAAAATATTATTCATTTATTTACTTTAACTAATTTAGGTGCACCAGCTGCATTTAAATATTTCGAT

ACAACAATTGATCGAAAAAGATATACATCAACTAAAGAAGTTTTAGATGCAACATTAATACATCAATCAATTACAGGATTATA

TGAAACACGTATTGATTTATCTCAATTAGGTGGTGATGGATCCGGAAGTTCAGCTATTATTAAAGAATTTATGCGTTTTAAAG

TTCATTTAGAAGGTAGCGTTAATGGTCATGAATTTGAAATTGAAGGAGAAGGTGAAGGTAGACCATATGAAGGTACACAAACA

GCTAAATTAAAAGTTACAAAAGGTGGTCCATTACCTTTTGCTTGGGATATTTTGTCACCACAATTTATGTATGGTTCAAATGC

TTATGTTAAACATCCAGCTGATATTCCAGATTATTTTAAATTATCATTTCCAGAGGGTTTTAAATGGGAAAGAGTTATGAATT

TTGAAGATGGTGGTGTTGTAACAGTTACACAAGATTCATCTTTACAAGATGGTGAATTTATTTATAAAGTTAAATTAAGAGGT

ACTAATTTCCCTAGTGACGGACCGGTGATGCAAAAGAAAACCATGGGATGGGAGACATTAAGTGAACGTATGTATCCTGAAGA

TGGTGCGTTGAAAGGTGAGCTGAAAGCTAGAACTAAATTGAAAGATGGAGGCCACTATGATACTGAAGTAAAAACAACGTATA

AGGCTAAGAAACCCGTTCAGTTACCAGGGGCATATAACGTTAATCGTAAACTAGACATAACCTCTCATAATGAGGATTACACG

ATAGTTGAGCAATATGAACGAGCTGAAGGGCTTCATAGCACAGGTGGAATGGATGAACTTTATAAAtaa 

> dCas9-PAmCherry2 amino acid translation 

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQ

EIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRG

HFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLT

PNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDL

TLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIH

LGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNF

DKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEIS

GVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSR

KLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL

VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDI

NRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDK

AGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTA

LIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRD

FATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKE

LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKL

KGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFD

TTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDGSGSSAIIKEFMRFKVHLEGSVNGHEFEIEGEGEGRPYEGTQT

AKLKVTKGGPLPFAWDILSPQFMYGSNAYVKHPADIPDYFKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRG

TNFPSDGPVMQKKTMGWETLSERMYPEDGALKGELKARTKLKDGGHYDTEVKTTYKAKKPVQLPGAYNVNRKLDITSHNEDYT

IVEQYERAEGLHSTGGMDELYK* 

The asterisk (*) represents the stop codon ‘taa’.  
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Supplementary Table 1: Descriptive list of components 

miCube.  

Numbers are in accordance with Supplementary Fig. 1. Entities marked with 

‘custom-built’ have their complete technical drawings present in the Appendix. A 

more exhaustive list can be found on 

https://HohlbeinLab.github.io/miCube/component_table.html. 

Main cube 

Nr Description Details Manufacturer 

1 Glass plate insert  Custom built – CNC 

milled 

2 ASI XYZ stage MS-2000 stage with 

Piezoconcept Z-insert 

Applied Scientific 

Instrumentation, 

Eugene, OR, USA; and 

Piezoconcept, Lyon, 

France 

3 Objective TIRF 1.49NA HP SR 

objective 

Nikon, Amsterdam, The 

Netherlands 

4 TopCover  Custom built – CNC 

milled 

5 miCube block  Custom built – CNC 

milled 

6 Neutral density filter NE60A-A Thorlabs GmbH, 

Dachau/Munich, 

Germany 

7 Dichroic mirror 

holder 

DFM1/M Thorlabs GmbH, 

Dachau/Munich, 

Germany 

 Dichroic mirror ZT405/488/561rpc-UF2 

or 

ZT405/488/561/640rpc-

UF2 

Chroma, Bellows Falls, 

VT, USA 

https://hohlbeinlab.github.io/miCube/component_table.html
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8 TIRF filter ZET405/488/561m-

TRF or 

ZET405/488/561/640m-

TRF 

Chroma, Bellows Falls, 

VT, USA 

9 Connector  C4W-CC Thorlabs GmbH, 

Dachau/Munich, 

Germany 

10 45˚ elliptical mirror KCB1E/M and BBE1-

E02 

Thorlabs GmbH, 

Dachau/Munich, 

Germany 

11 Cover  Custom built – 3D 

printed 
 

 

 

 

Excitation path 

Nr Description Details Manufacturer 

12 Spacer  Custom built – 3D printed 

13 Reflective collimator 

holder 

 Custom built – 3D printed 

14 Right-angle mounting 

plate 

 Custom built – 3D printed 

15 25 mm Translation 

Stage 

PT1/M Thorlabs GmbH, 

Dachau/Munich, Germany 

16 TIRF lens AC254-200-A-ML Thorlabs GmbH, 

Dachau/Munich, Germany 

17 Aperture SM1D12SZ Thorlabs GmbH, 

Dachau/Munich, Germany 

18 Reflective collimator RC12APC-F01 Thorlabs GmbH, 

Dachau/Munich, Germany 
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- Laser box Lighthub 6 

containing 4 lasers 

at 405 nm (60 mW), 488 

nm (200 mW), 561 nm 

(500 mW), and 642 nm 

(2x 200 mW). 

Omicron, Rodgau-

Dudenhofen, Germany 

 

Emission path 
Nr Description Details Manufacturer 

19 Camera Zyla 4.2 PLUS Andor, Belfast, Northern 

Ireland 

20 Camera Mount  Custom built – 3D printed 

21 Astigmatism block  Custom built – 3D printed 

22 Astigmatism lens LJ1516RM or 

LJ1144RM 

Thorlabs GmbH, 

Dachau/Munich, Germany 

23 Astigmatism lens holder  Custom built – 3D printed 

24 Astigmatism lens holder  Custom built – 3D printed 

25 Cover SC600, cut to 

length 

Thorlabs GmbH, 

Dachau/Munich, Germany 

26 Connector  Custom built – 3D printed 

27 Emission filter ET525/50m or 

ET595/50m or 

ET700/75m 

Chroma, Bellows Falls, 

VT, USA 

28 Emission filter holder  Custom built – 3D printed 

29 Tube lens holder  Custom built – 3D printed 

30 Tube lens ITL200 Thorlabs GmbH, 

Dachau/Munich, Germany 

 

3D printing (Ultimaker 2+) settings 

Nr Material Support Adhesion 

Layer 

height 

(µm) 

Top / 

Bottom 

Wall 

Thickness 

(mm) 

Infill 

% 
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Thickness 

(mm) 

13/14 PLA Yes Brim (5) 200 1.0 1.2 20 

20/26 ABS Yes Brim (5) 200 0.8 0.8 20 

21/23/24/28 PLA Yes Brim (5) 200 1.0 1.6 20 
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Supplementary Table 2: List of vectors 

Vector Relevant properties Size 

(kb) 

Selection marker Reference 

pNZ123  Vector replicating 

in L. lactis.  

2.8 Chloramphenicol de Vos, 1987 

pLABTarget Encoding functional 

Cas9 expression 

system 

10 Erythromycin van der Els et 

al., 2018 

pNonTarget pNZ123 without 

binding sites 

2.8 Chloramphenicol This study 

pTarget pNZ123 containing 

five binding sites 

cognate to pepN 

sgRNA 

3.1 Chloramphenicol This study 

pLAB-

dCas9-

nosgRNA 

Cas9 module of 

pLABTarget 

replaced with Pnis – 

dCas9 – 

PAmCherry2 

10.2 Erythromycin This study 

pLAB-

dCas9 

pLAB-dCas9-

nosgRNA with 

added pepN sgRNA 

under constitutive 

promotor 

10.3 Erythromycin This study  
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Supplementary Table 3: List of oligonucleotides. 

Experime

nt 

Construct Oligonucleotide (5’- 3’) 

pTarget 

constructi

on 

Forms pepN 

dCas9 

binding site 

with 

complementa

ry overhangs 

upon 

annealing.  

AGCTGGACTTGCCAGTCCGTGACCTTGTAACTAT

GCAATG 

GATTGGCTTCAGCGG 

AGCTCCCGCTGAAGCCAATCCATTGCATAGTTAC

AAGGT 

CACGGACTGGCAAGTCC 

 

  

pLAB-

dCas9 

constructi

on 

Forms pepN 

sgRNA upon 

annealing. 

TGATGTGACCTTGTAACTATGCAA 

AAACTTGCATAGTTACAAGGTCAC 

 

Supplementary Table 4: List of primers. 

Experiment Construct Primer sequence (F=forward, R=reverse) 

PCR insert 

validations and 

colony PCR 

For pNZ123 (to check 

pepN binding site 

insertion) 

F: TGAGATAATGCCGACTGTAC 

R: CATTCAGTCATCGGCTTTCA 

 

 For pLAB-dCas9 (to 

check pepN sgRNA 

insertion)  

F: TGATGTGACCTTGTAACTATGCAA 

R: TTGAAGAACCCGATTACATGG 

qPCR Q1, Q2: 

pTarget/pNonTarget  

F: ACGAAAGTCGACGGCAATAGTT 

R: CGTTTGTTGAACTAATGGGTGC 

 Q3, Q4: Nested 

pNonTarget 

F: GGGAGCGGAGTTTGGAATTT 

R: ATAACCTAACTCTCCGTCGC 

 Q5, Q6: ColonyCount F: TCGATATGCACGTTGTCACC  

R: CCCTCTCAGCTGCAATCTCT 

 Q7, Q8: Nested qPCR 

Colony 

F: GTGCTGAACCAGCGATTACA 

R: TTGCTTTCACGTCAAGTTGG 
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Supplementary Table 5: Adjustment of the 405 nm laser power during sptPALM 

experiments. 

Time (s) 

Approximate 405 nm laser power for 

photo activation (µW/cm2) 

0 2.7 

30 2.8 

50 3.2 

70 3.8 

100 4.7 

130 6.2 

150 8.9 

180 13.7 

200 20.1 

220 27.6 

240 36.2 

260 46.1 

280 62.1 

300 78.1 

320 83.8 

340 97.0 

360 113.9 

380 126.3 

400 146.2 

430 194.4 

450 260.7 

470 320.9 

490 383.6 

510 455.4 

530 508.4 

540 619.0 
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Abstract 

CRISPR-Cas systems confer adaptive immunity in prokaryotes and feature a large 

diversity of subtypes. Currently, it is not known, how this diversity translates into 

differences in the kinetics of target search and under which conditions one subtype 

could be more advantageous than another for the survival of the cell. In this study, 

we compare the target search efficiency and dynamics of two native CRISPR-Cas 

systems found in E. coli, type I-E and type I-F. We show that their interference 

efficiencies, which represent the number of effector complexes required to clear an 

invader, are very similar (20 complexes offering 50% protection for I-E, 25 

complexes for I-F). We found that the free diffusion of the I-F Cascade complex is 

considerably faster than for the I-E Cascade complex (~3.5 µm2/s versus 1 µm2/s), 

making it experimentally difficult to differentiate the I-F complex diffusion from the 

free I-F Cas8f subunit under the same conditions. We could show, however, that the 

DNA binding interactions of I-F Cas8f are slower compared to the I-E Cas8e 

subunit, which could be a result of (fast) PAM-independent interactions in the case 

of the I-E subunit. Furthermore, we reveal that in vivo target binding still occurs with 

many PAM-distal mutations, but is abolished with PAM-proximal mutations for 

Cascade I-F. This study is a first step in unraveling the different ways in which 

CRISPR-Cas systems balance the tradeoffs of the target search process that are 

crucial to successful CRISPR immunity 

 

Introduction 

The CRISPR system is the only known adaptive immune system in prokaryotes and 

can be found in a large percentage of bacterial and archaeal genomes (Koonin et al., 

2017). CRISPR-Cas systems are currently classified into 6 main types and 33 

subtypes (Makarova et al., 2020). This rich diversity represents differences in the 

adaptation machinery (either containing or missing Cas4), the surveillance 

complexes (either composed of a single or of multiple complexes), and the target 

molecule (DNA or RNA).   
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Approximately 20% of completely sequenced genomes with a CRISPR-Cas system 

contain multiple system types (Pourcel et al., 2020). This co-occurrence in a single 

organism could have several reasons. First, since immune systems are shared via 

horizontal gene transfer at a high rate relative to other genes (Puigbò et al., 2017), 

redundant systems in bacterial genomes could accumulate in the absence of natural 

selection. Second, natural selection could favor the co-occurrence of CRISPR-Cas 

systems, if they provide benefits to host survival. 

One way of providing a benefit would be direct cooperation. Examples among 

CRISPR-Cas systems were demonstrated in Pyrococcus furiosus (Subtype I-A, I-B 

and III-B) (Majumdar et al., 2015), Marinomonas mediterranea (Subtype I-F and 

III-B) (Silas et al., 2017) and Flavobacterium columnare (Subtype II-C and V-A) 

(Hoikkala et al., 2020). In these examples, either crRNAs were shared between 

surveillance complexes or adaptation machineries were shared between different 

CRISPR array types. In all cases, it allows the host to prevent phage escape via type-

specific anti-CRISPRs or PAM mutations.  

A second benefit that multiple systems could provide is if each CRISPR-Cas system 

type is specialized in a certain type of invader. It was shown that some CRISPR 

types have preferential targets. The type IV system, for example, was found to 

mainly target plasmids (Pinilla-Redondo et al., 2019) and the RNA-targeting Type 

III systems was found to target jumbo phages that evade DNA-targeting systems 

(Malone et al., 2020; Mendoza et al., 2020). Specialization can occur at the 

adaptation stage, where acquisition machineries would specialize in recognizing and 

preferentially incorporating a certain feature of the invader, such as demonstrated in 

I-E Cas1-2, with preferential acquisition spacers from replication forks (Levy et al., 

2015). In some systems, Cas1 is naturally fused to a reverse transcriptase which 

allows these systems to incorporate spacers from RNA molecules (Mohr et al., 2018; 

Silas et al., 2016; Toro et al., 2019). These systems can therefore specialize towards 

RNA invaders or invaders that lead to a large expression of RNA inside the cell.   

Another way of specialization can occur at the interference stage at which the target 

search of surveillance complexes plays a crucial role in the interference efficiency 

(Vink et al., 2020a). Recent single-molecule studies revealed kinetic details on the 
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target search mechanism of CRISPR systems in vivo (Jones et al., 2017; Knight et 

al., 2015; Martens et al., 2019; Vink et al., 2020a). Surveillance complexes of DNA-

targeting CRISPR systems spend most of their time scanning the PAMs (protospacer 

adjacent motif) that occur throughout the host chromosome. This oligonucleotide 

motif differs between CRISPR types, whereas some are short (CC; Pseudomonas I-

F) or promiscuous (AWG; Escherichia I-E), others can be long (NAAAAY; 

Treponema II-C) (Gasiunas et al., 2020; Leenay et al., 2016). More stringent PAMs 

would require fewer strand openings and would therefore potentially find their target 

faster, but more permissive PAMs would allow for more functional spacers to be 

incorporated and reduce the chances of invader escape via point mutations. This 

trade-off raises the question whether CRISPR systems have different target search 

kinetics and whether this could allow for subtypes to specialize towards certain 

targets. 

In this study, we report the target search kinetics of the native CRISPR I-F system 

of E. coli Ed1A, which contains a smaller surveillance complex (350 kDa vs 405 

kDa) and shorter dinucleotide PAM (CC) than the PAM (AAG) of the previously 

studied I-E system of E. coli K12 (Vink et al., 2020a). The target efficiency, 

expressed as the number of complexes required to find a target within the time of 

replication, were found to be comparable. We then measured the DNA probing 

speeds by following single I-F Cascade complexes with single particle tracking 

photo-activation light microscopy and found similarities and differences between I-

E and I-F target search kinetics for both free Cas8 subunits as full complexes 

(Manley et al., 2008). We furthermore investigated mismatch tolerance for the I-F 

Cascade complex and found a high tolerance for PAM-distal mutated segments, but 

complete abolishment of binding with mutations in PAM-proximal segments, which 

contrasts in vitro observations on I-E Cascade with similarly mutated targets. This 

work demonstrates that the diversity of CRISPR systems not only occurs on the 

genetic or molecular level, but that there is also a diversity in target search kinetics 

between these systems arising from these molecular differences and this might 

indicate that each subtype performs best under a different set of conditions in the 

host and invader.   
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Materials and Methods 

Cloning 

The insert to create pTarget was purchased as synthetic constructs from Gen9 

(pTarget insert; Table S3). To increase the copy number of DNA targets in the cell, 

the constructs were cloned into a pUC19 backbone with XbaI and KpnI restriction 

sites. Subsequently, pTarget variants were created in which several regions of each 

protospacer regions were systematically mutated. To maximize the effect of mutated 

regions on target binding we based the nucleotide mutation rules on Künne et al., 

2018, where it was found that guanine – adenosine base mismatches clash thereby 

significantly reducing the binding of the Cascade complex. In the mutated sections 

of the array, every thymine base was changed to a guanine base to induce a G – A 

clash. Every cytosine base was changed to an adenosine base to induce a A – G 

clash. In addition, every adenosine was changed to a thymine and every guanine was 

changed to a cytosine for further mismatching. Since every sixth nucleotide in the 

target site is not involved in Cascade complex target binding (Jung et al., 2017), the 

32 to 33 base pair targets were mutated in segments of 5 nucleotide (except for the 

last segment of two to three base pairs) in a scheme from (Blosser et al., 2015) 

(Figure 9). The mutated arrays were ordered as genomic blocks from Twist 

Bioscience, with XbaI and KpnI sites included on the ends. The backbone of the 

mutant arrays was amplified through PCR from pTarget using primers BG5825 and 

BG7848. Subsequently the amplified backbones and ordered constructs were 

restricted and ligated.    

Cas2/3 was amplified from the E.coli Ed1A genome using primers BN1387 and 

BN1386 which added restriction sites SpeI and SphI. The backbone was amplified 

from an existing pCas3 plasmid (Vink et al., 2020a) using primers BN1388 and 

BN1390. The restriction, ligation, and transformations were carried out as described 

above.  Cas1-Cas2/3 was amplified from the E.coli Ed1A genome using primers 

BN1437 and BN1386 which added restriction sites SpeI and SphI. The backbone 

was amplified from the existing pCas3 plasmid using primers BN1388 and BN1389. 

All constructs were verified by sequencing. 
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Recombination 

The knockout insert containing the kanamycin resistance cassette flanked by lox 

sites was amplified using primers BG8387 and BG 8388. To ensure continued 

transcription/termination of the cas8f gene, the 5’ flank of the insert overlapped with 

the cas8f gene and the 3’ flank overlapped with the downstream region of the cas6f 

gene. The E.coli Ed1A strain harboring the temperature sensitive pSC020 plasmid 

was grown in LB with ampicillin at 30°C and made competent. After transformation, 

the cells were plated on LBA with ampicillin, kanamycin, and glucose (to suppress 

Cre recombinase expression). Colonies were verified with PCR and sequencing. 

Subsequently, the Cre recombinase was induced with 1mM IPTG at 37°C to promote 

plasmid and antibiotic resistance loss. The strain was then sequence verified to 

ensure antibiotic resistance loss. No mutations occurred within the cas8f gene. 

The pamcherry2 gene containing the chloramphenicol resistance (cat) cassette 

flanked by lox sites was amplified using primers BN43 and BN291. Due to the 

possibility of the lox-site recombination scar influencing gene 

transcription/termination, the chloramphenicol resistance cassette was placed 

upstream of the IGR (Intergenic region) present between cas2-3 and cas8f. Part of 

the IGR was also added to the 5’ flank of the insert to insure correct termination of 

the cas2-3. The 3’ flank was constructed to overlap with the beginning of the cas8f 

gene. The further recombination procedure was performed as described above 

(Δcas5-7). 

Growth conditions 

To prevent the high-copy target plasmids from influencing the growth rate of the 

strains and therefore changing the fraction of matured PAmCherry complexes we 

used a rich defined medium with minimal autofluorescence. Strains were grown in 

M9 minimal medium containing the following supplements: 0.4% glucose, 1x EZ 

amino acids supplements (M2104 Teknova), 20 μg/ml uracil (Sigma-Aldrich), 1mM 

MgSO4 (Sigma-Aldrich) and 0.1 mM CaCl2 (Sigma-Aldrich) (further referred to as 

M9 medium). Strains were inoculated o/n from glycerol stocks and 200x diluted in 

fresh medium the next day. Cells were always grown with the required antibiotics. 

The expression level of I-F and I-E Cascade complexes for strains carrying the 
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pKEDR13 plasmid could be tuned by different expression levels of LeuO. The 

expression level referred to in the text as low induction was achieved by leaky 

expression of LeuO (no addition of IPTG), whereas high induction was achieved by 

addition of 1 mM IPTG upon dilution of the o/n culture. For all sptPALM 

measurements we used the high induction condition. The cells were grown for ~2.5 

hours to an OD of 0.1 before use.  

Transformation assay 

Transformation assay was performed as described previously (Vink et al., 2020a). 

In brief, a mixture of pTarget and pGFPuv was electroporated and establishment 

probabilities were calculated from the formula below: 

pestablishment =
# pTarget colonies
# GFPuv colonies 

×
[pGFPuv Transformed]
[p Target Transformed]   

Slide preparation 

In order to work with very clean slides, an extensive cleaning procedure was used 

(modified from (Chandradoss et al., 2014)). Slides were burned in an oven at 500 °C 

for two hours, and then wrapped in aluminum foil until the day of usage. Slides were 

subsequently sonicated in MilliQ, Acetone and KOH, incubated in Piranha Solution 

(75% H2SO4, 7.5% H2O2) and afterwards rinsed with MilliQ. 1% Agarose slabs 

containing the growth medium were hardened between two cleaned glass slides, 

spaced slightly apart using parafilm. After hardening, a concentrated culture of cells 

was added in between the slab and one of the slides. The agarose slab was always 

prepared within 20 minutes of the measurement to prevent desiccation. 

Microscope set-up and imaging 

The image acquisition of the fluorescently labeled samples was carried using the 

Nikon Ti2E TIRF microscope at Delft University of Technology. The Gataca iLAS 

TIRF illumination module (used in HILO mode) was used to image the cells. A 100x 

Nikon 100x/1.49NA TIRF objective lens was used for visualization. The 405 nm 

laser was used to photo-activate PAmCherry and the 561 nm laser was used for 
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fluorescence excitation. Stroboscopic illumination was used to allow for 2 ms of 

excitation within each 10 ms frame. The camera filter used during image capture 

was a band pass filter of 609 nm ± 27 nm. The Andor iXon Ultra 897 EM-CCD 

camera (fluorescence) had a pixel size of 125 nm in the sample plane and was 

maintained at -70°C during use. The EM gain was set to 300. Samples were imaged 

for 4000 frames three times at three different locations using the acquisition software 

Metamorph. The pixel size of the Retiga R1 CCD from QImaging (phase contrast) 

camera is 64 nm. 

Detection, localization and tracking 

Analysis was done with home-built software described in our previous study (Vink 

et al., 2020a) and adapted from (Holden et al., 2010; Uphoff et al., 2013). Different 

from the previous study, measurements here were performed from an EM-CCD 

camera. Therefore, localizations were detected by different filtering and 

thresholding, considering the noise characteristics of these type of cameras. After 

finding all localizations in each frame, localizations in subsequent frames that were 

closer to each other than 6 pixels in length (0.78 μm) were assigned as a track. 

Particles were allowed to disappear for one frame (due to blinking/moving out of 

focus), but these steps were not used in the calculation of the apparent diffusion 

coefficient, D*. 

Analytical Diffusion Distribution Analysis (anaDDA) 

Analytical Diffusion Distribution Analysis was previously developed and described 

(Vink et al., 2020b).  

Copy number determination 

Cells were imaged for 20000 frames of 10 ms each. The 405 nm laser intensity was 

increased by 0.3% every 10 seconds to induce new PAmCherry fluorescence as old 

ones were photobleached. The number of fluorescence particles with a minimum 

number of steps of two or greater were counted. A distribution of step sizes from 

those particles was fitted to an exponential decay (the number of particles decreases 



C o m p a r i n g  t h e  t a r g e t  s e a r c h  o f  n a t i v e  I - E  
a n d  I - F  C R I S P R  s y s t e m s  | 171 

 

 

exponentially as the step size increases) and the number of complexes of step size 

one and zero was determined. The sum of all tracks was divided by the number of 

cells in the field of view to determine the average number of complexes per cell. The 

effect of differences in growth rate in different media on the fraction of matured 

proteins was taken into account during calculations (50% more complexes in Ed1A 

pKEDR13 induced in glucose and 75% more complexes in Ed1A induced in 

glycerol than visible at the moment of imaging (unmatured)). The number of 

complexes was then normalized to the number of complexes in strain K12 

pKEDR13 induced grown in glucose from our previous study (Vink et al., 2020a). 

Results 

Interference efficiency in E. coli Type I-F can be measured 
with LeuO induction 

The interference efficiency, the number of proteins required to achieve a certain 

protection level, can be quantified by performing a transformation assay and a 

single-molecule copy number measurement in parallel as described in our previous 

study of the Type I-E system (Vink et al., 2020a). In that study, we found an 

exponential relation between the probability of MGE establishment and the number 

of crRNA-guided complexes. To test whether Type I-F systems also follow the same 

relationship, we first looked for ways to modulate the expression levels of these 

complexes. Regulation of Type I-F systems have been known to be regulated by 

CRP-cAMP (Hampton et al., 2019; Patterson et al., 2015), Quorum Sensing 

(Høyland-Kroghsbo et al., 2017; Patterson et al., 2016) and iron depletion (Ahator 

et al., 2020), but no studies have described regulation of Type I-F systems in E. coli. 

To be able to predict potential regulators of Type I-F in E. coli, we looked for 

regulator binding sites in the promoter region of the cas8f gene. We found a potential 

CRP binding site, indicating that CRP-cAMP could function as a regulator 

(Supplementary Figure 1A). We furthermore found a putative binding site of LeuO, 

a known regulator of the type I-E E. coli CRISPR system (Supplementary Figure 

1B) (Westra et al., 2010). This was surprising, since the leuO gene in strain Ed1A is 

disrupted by a transposon (Supplementary Figure 1C).  
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Figure 1. pTarget survival levels and interference efficiency of E. coli Ed1A Type I-F and 

E. coli K12 Type I-E. (A) pTarget contains 30 protospacers against all spacers in the Ed1A Type 

I-F system (pTargetF). pTarget establishment, calculated from the ratio of the transformation of 

pTarget/pGFPuv, is a measure of the interference level of the CRISPR system. The system was 

induced with different levels of LeuO and strains were grown on two different carbon sources 

(glycerol or glucose). (B) Same as Figure 1A but for data from the K12 Type I-E system. Modified 

from (Vink et al., 2020a). (C) The number of tracks is divided by the number of cells to determine 

the average number of tracks per cell. The growth rate to fluorescent protein maturation time 

difference is compensated for (Materials and Methods) and the results are then normalized to the 

values determined in Vink et al., (2019) to be able to compare results obtained with different 

microscopy set-ups. (D) The combination of the observed pTarget establishment levels (Figure 1A; 

High induction) and normalized copy numbers (Figure 1C) were fitted with an exponential decay 

function. (E) The same fit as Figure 1D but for data from the K12 Type I-E system, modified from 

(Vink et al., 2020a). 
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To test whether these predicted regulators were functional, we performed 

transformation assays with pTargetF, a high copy plasmid containing target sites for 

all 30 spacers found in the genomic arrays of E. coli Ed1A. We found that the 

pTargetF survival probability when challenged by the I-F system in Ed1A grown in 

glucose M9 media is lower (48 ± 1%; Figure 1A) than pTarget survival challenged 

by the I-E system in K12 (101 ± 8%; Figure 1B). This baseline protection level has 

been previously observed in Ed1A (Vorontsova et al., 2015) and markedly differs 

from the almost fully repressed I-E CRISPR system in K12. The pTarget survival 

probability further decreased when Ed1A was grown in glycerol (17 ± 6%), 

suggesting that CRP-cAMP induces the I-F CRISPR system in E. coli in a similar 

fashion to the previously studied P. atrosepticum system (Patterson et al., 2015). 

We previously found that for the I-E CRISPR system in E. coli K12 increasing levels 

of LeuO, led to increasing levels of protection (Figure 1B; from (Vink et al., 2020a)). 

For the I-F system we found that low levels of LeuO (without addition of IPTG) did 

not significantly change the survival probability of pTargetF, but that high levels of 

LeuO induction (1 mM IPTG) lead to a significantly lower the survival probability 

was in glucose and glycerol growth medium (9 ± 1%, and 5 ± 1% respectively; 

Figure 1A).    

Altogether, these findings indicate that increased levels of both CRP-cAMP and 

LeuO enhance expression of the Cascade complex in E. coli Type I-F systems.  

25 Cascade complexes provide 50% CRISPR protection  

Being able to regulate the copy numbers through LeuO expression and glucose levels 

and having measured different levels of MGE establishment, we set out to determine 

the interference efficiency by measuring the single-molecule copy numbers under 

the different conditions previously described. We fused the pamcherry2 gene to the 

N terminus of cas8f. Subsequently we determined the copy number by counting the 

number of tracks and compensating for maturation time of the fluorophore and 

growth rate of cells (Materials and Methods). Furthermore, we calibrated the Nikon 
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Ti2E TIRF microscope set-up used in this study to our previous copy number 

measurements on the miCube (Martens et al., 2019; Vink et al., 2020a), by 

measuring the copy number of the I-E Cascade in E. coli K12 on both systems. We 

found that the average Cascade copy number measured on the Nikon Ti2E TIRF set-

up (~155 copies) was close to the copy number under similar conditions in the 

miCube (~130 copies) enabling the comparison of I-F and I-E interference 

efficiency.   

We subsequently measured the levels of I-F Cascade complexes and found that in 

presence of LeuO the complex copy number was higher when cells were grown in 

glycerol culture media (~110 copies; Figure 1C) compared to glucose (~75 copies), 

which matches the trend observed in the interference levels (Figure 1A). When we 

combined these observations with protection levels found in the transformation 

assays, we found that the relation between MGE establishment and complex copy 

number follow a similar exponential relation (Figure 1D) as described for the Type 

I-E system (Figure 1E). We deduced that ~25 copies of I-F Cascade complexes were 

required to provide 50% CRISPR protection which is similar to the ~20 complexes 

that were required to provide the same protection levels in the Type I-E E. coli 

system. 

The I-F Cascade complex diffuses faster in the cell than the I-

E Cascade complex 

After finding a similar interference efficiency, we wondered whether the target 

search strategies of the Type I-E and Type I-F were also alike. We studied the target 

search by following the diffusion of thousands of fluorescently labeled Cas8f 

proteins as previously described for the Type I-E system (Vink et al., 2020a). 

Subsequent analysis with anaDDA (Vink et al., 2020b), enabled us to extract the 

free diffusion coefficient, the rate of diffusion in the absence of DNA binding, and 

the on and off-rates of DNA binding events from the distribution of measured 

displacements. To distinguish the diffusion behavior of Cas8f assembled within I-F 

Cascade complexes from monomeric Cas8f proteins, we first studied the diffusion 
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of the PAmCherry-Cas8f fusion in a strain lacking the other three subunits of the I-

F Cascade complex.  

 

Figure 2. Diffusion dynamics of Cas8f subunit and complex in the absence and presence 

of targets.  D* distributions for (A) Cas8f, (B) Cas8e, (C) I-E Cascade and (D) I-F Cascade complex. 

The fraction of complex and free subunit could not be determined for the I-F Cascade complex as 

the D* distribution was not significantly different from the Cas8f diffusion (ND: Not Determined). 

(E) Due to the lack of resolution between subunit and complex, the fraction of complexes bound in 

the presence of pTargetF could not be accurately determined. Instead, we used the threshold of 1 

µm2/s (red line) to approximate the fraction slow/moving immobile vs mobile I-F Cascade 

complexes. Error estimation is based on bootstrapping (±SD). Figure 2B-C were taken from (Vink 

et al., 2020a). 

 

The diffusion behaviour of PAmCherry-Cas8f (Figure 2A) was distinct from the 

diffusion behavior of PAmCherry-Cas8e (Figure 2B). When we analyzed the 

distribution with anaDDA, we found that even though the free diffusion coefficients 
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were relatively the same (3.8 ± 0.3 µm2/s for Cas8f and 3.5 ± 0.3 µm2/s for Cas8e), 

the on and off-rated of PamCherry-Cas8f on DNA (koff = 23 ± 5 s-1; kon* = 11 ± 3 s-

1) were slower than for PAmCherry-Cas8e (koff = 33 ± 4 s-1 ; kon* = 37 ± 4 s-1). Also, 

the fraction of time spent on DNA, calculated from the ratio between the on and off-

rates, is different, where Cas8e spends roughly half its time on DNA (53 ± 5%), 

Cas8f only spends 33 ± 4% of its time on DNA.  

 

When we subsequently measured PAmCherry-Cas8f in the presence of all subunits, 

we expected to observe slower average diffusion due to complex formation, which 

we previously observed in the Type I-E system (Figure 2C). However, in this case 

the distribution stayed relatively the same (Figure 2D). This made it impossible to 

distinguish the diffusion of Cas8f and the I-F Cascade complex and therefore the 

fraction of subunits that assembled into a complex could not be determined.  

To exclude the possibility that the I-F Cascade complex was not able to assemble in 

the presence of a fluorescent tag, we studied the diffusion distribution in the presence 

of pTargetF. We performed the measurement in a Δcas2-3 background to prevent 

degradation of the target plasmid. In the presence of pTargetF, the number of 

immobile/slow-moving tracks (D* < 1 μm2/s) increased (Figure 2E). As we only 

expect assembled complexes containing matching crRNA to be able to tightly bind 

to pTargetF, this indicated that a significant fraction of PamCherry-Cas8f was part 

of a complex, but that it was moving too fast to accurately resolve from the Cas8f 

subunit.   

Despite the absence of a detailed quantification of complex formation and target 

search kinetics of the I-F Cascade complex, we can thus far determine that the I-F 

Cascade complex is formed in the presence of a fluorescent tag and able to bind to 

pTargetF and that the free diffusion coefficient of the I-F Cascade complex is higher 

than of the I-E Cascade complex. Given their overlapping distributions, it is likely 

that Cas8f and I-F Cascade complex have similar DNA probing dynamics. In that 

case, the interaction kinetics with DNA of the I-F complex are slower and less 

frequent than of its I-E counterpart Cascade.     
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The I-F Cascade complex only tolerates PAM-distal mutations 

So far we have studied the target search kinetics of the Type I-E and Type I-F 

systems by investigating the interference efficiency and the diffusion behavior in the 

cell in the absence and presence of targets. Another feature that is important for the 

functioning of immune system is its tolerance to escape mutations. An in vitro study 

has shown that Cascade in the I-E system has two binding modes, the canonical 

binding mode, occurring through PAM-proximal RNA-DNA interactions and the 

non-canonical PAM-distal RNA-DNA interactions (Blosser et al., 2015; Jung et al., 

2017). The non-canonical binding mode, would still allow partial binding of targets 

mutated in the region close to the PAM. We wanted to test whether the Cascade 

complex of the Type I-F system also can bind targets through these two binding 

modes. We made variants of pTargetF where each certain segments of each target 

on the plasmid was systematically mutated following the scheme of previously 

published I-E in vitro work (Figure 4A). The protospacers (32 nt length) were 

subdivided in 6 segments (S1-6) of 6 nucleotides long (except S6, 2 nt long) and 

segments were either mutated starting from the PAM-proximal or PAM-distal 

segment.   

 

Figure 3. Diffusion dynamics of I-F Cascade complex in the presence of mutated 

targets. Each of 30 targets was divided in six segments which were systematically mutated (red) or 

kept intact (green) either starting from segments far away from the PAM (yellow; PAM-distal) or 
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close to the PAM (PAM-distal). (A-C) Cascade diffusion in the presence of targets with PAM-distal 

mutated segments. (D) Cascade diffusion in the presence of targets with PAM-proximal mutated 

segments. The threshold of 1 µm2/s (red line) was used to approximate the fraction slow/moving 

immobile vs mobile Cascade complexes.  

 

The presence of PAM-distal mutated segments increased the fraction of unbound 

Cascade complexes (D*>1) compared to the bona fide target plasmid pTargetF (9%, 

Figure 2E) progressively from 24% for mutated segments S5-6, 54% for mutated 

segments S4-6 and 71% for mutated segments S3-6 (Figure 3A-C). However, even 

with many mutated segments (S3-S6), we still observed slightly higher levels of 

immobile/slow-moving tracks (29%) compared to the absence of targets (21%, 

Figure 3C) indicating that complexes were able to bind to targets only containing 

the first 12 nucleotides of the protospacer. In contrast, mutating a single segment on 

the PAM-proximal side led to almost complete abolishment of binding (Figure 3D). 

This data suggest that in vivo I-F Cascade exclusively uses the canonical binding 

mode, which entails directional R-loop formation from a PAM-proximal seed 

sequence (Guo et al., 2017; Tuminauskaite et al., 2020) and does not utilize the 

PAM-distal RNA-DNA interactions as an initial step as was shown for I-E Cascade 

in vitro (Blosser et al., 2015).  

Altogether, this data suggests that unlike I-E Cascade, the I-F Cascade does not 

contain multiple binding modes, but that it can accommodate many mutations in the 

PAM-distal region of the protospacer.  

Discussion 

In this study, we have investigated, whether the native I-F E. coli CRISPR-Cas 

system uses similar or different target search strategies and whether this process 

attains similar efficiencies compared to the native I-E E. coli CRISPR-Cas system.  

Our data indicated that the Cascade complex diffuses as fast as the subunit, which is 

unlikely given the large differences in size. We think that measured apparent 

diffusion coefficient of the subunit is limited by the temporal resolution of our setup 

and our tracking algorithm and therefore higher than what we can currently measure.  
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However, even though we are unable to quantify the diffusion coefficient further, 

we can conclude that the diffusion of the I-F complex is faster (~ 3.5 µm2/s) than the 

I-E Cascade (1.0 µm2/s) in native E. coli cells. The fast diffusion coefficient of the 

I-F system is unexpected, given their mass is not so different (I-E Cascade 405 kDa; 

I-F Cascade: 350 kDa). However, the shape of the I-F Cascade complex is very 

different, the helical pitch of Cas7 is much tighter in I-F compared to I-E, resulting 

in an almost complete ring shape (Chowdhury et al., 2017), compared to the more 

seahorse shape of I-E Cascade. However, software (Fleming and Fleming, 2018) 

predicting the hydrodynamic radius of structures only show a minor decrease in the 

hydrodynamic radius (65 Å for I-F Cascade (Guo et al., 2017); 68 Å for I-E Cascade 

(Xiao et al., 2018)), making it unlikely that it could have a large impact on diffusion 

(Erickson, 2009). Another potential explanation that could account for the difference 

is that for the I-E system it was shown in vitro that Cas3 (101 kDa) and Cas1-2 (154 

kDa) are associated with Cascade (Dillard et al., 2018). This would make the 

combined size much larger and therefore their diffusion slower. For the I-F Cascade 

complex it was shown that Cas2-3 is not associated to Cascade in the cell 

(Govindarajan et al., 2020).   

Apart from the free diffusion rate, if we assume the binding kinetics of the complex 

are comparable to the Cas8f subunit, which is the case for the Cascade I-E system 

(Vink et al., 2020a), we can also conclude that the DNA binding and unbinding occur 

less frequently in the I-F system. The less frequent binding kinetics are also 

contradictory to what you would expect, given that the smaller CC PAM occurs more 

frequently (~4x) in the genome than the consensus PAM of the I-E Cascade (AAG). 

However, a recent study of genome surveillance demonstrated that the I-F Cascade 

complex only has PAM-dependent interactions (Govindarajan et al., 2020), whereas 

our previous I-E study demonstrated both PAM-dependent and PAM-independent 

interactions (Vink et al., 2020a). The less frequent DNA interactions could be 

explained by the lack of PAM-independent interactions in the case of the I-F system.  

We found that the interference efficiencies are roughly similar between the two 

systems, while their binding and diffusion kinetics are more distinct. The faster 

diffusion of the I-F complex would make it more efficient, however it could be 
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counterbalanced by the less frequent DNA binding interactions. It will be interesting 

to add more systems to this comparison to find out whether this efficiency is a 

general physical limit of DNA-targeting CRISPR systems.  

It was previously shown that the I-F system of E. coli preferentially targets plasmids, 

whereas the I-E system has more spacers targeting phages (Díez-Villaseñor et al., 

2010). The findings of this study show similar efficiencies when given a transformed 

plasmid, which cannot explain the higher preference for I-F systems in targeting. It 

could be that conjugation, with its distinct single stranded DNA entry and different 

replication kinetics, does confer a specific advantage with I-F systems. Secondly, 

this preference for plasmids has however not been described in other organisms and, 

given the low number of spacer matches in that study (Díez-Villaseñor et al., 2010), 

could be coincidental. Thirdly, the main cause of different subsystem usage might 

not only be attributed to efficiency and speed, but also to their robustness in dealing 

with mutated targets. 

In this study, we tested the robustness of I-F Cascade in vivo given PAM-proximal 

and PAM-distal mutations. Compared to a previous in vitro study of I-E, we did not 

observe Cascade binding to targets with PAM-proximal (seed) mutations. This could 

mean that the I-E Cascade offers more robust binding, whereas the I-F Cascade 

might show less off-target binding by rejecting mismatches more easily. However, 

for a more accurate comparison, I-E Cascade mutated target binding should be 

assessed under similar in vivo conditions. In our interference efficiency test, these 

aspects are not studied. Therefore, we suggest testing interference efficiencies of 

these systems within a population of mutating phages that will then provide an 

estimate of the escape rate, the number of phages that, by acquiring a mutationm can 

escape CRISPR interference, and could further provide more insight into the 

preferred use of one CRISPR-Cas system compared to another given a certain 

invader.  

In this study we have outlined ways in which the target search processes of CRISPR 

systems can be compared in native settings. So far, we have studied two of the most 

closely related CRISPR systems, namely the I-E and the I-F system. Expanding this 

research to more distantly related systems could help researchers to decide which 

CRISPR systems are most suitable given a certain application, e.g. precise vs 
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promiscuous editing, large vs small genomes, and to explain the wide diversity of 

CRISPR-Cas effector complexes and their co-occurring usage in many prokaryotes. 

Overall, our study demonstrates the many trade-offs that have to be considered for 

CRISPR-Cas systems such as search efficiency, accuracy, robustness and speed and 

the diversity of ways to balance them.  
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Supplementary figure 1. cas8f (E. coli Ed1a), cas1 (E. coli K12) promoter elements and 

the truncated leuo gene (E. coli Ed1a). The highlighted (yellow) nucleotides indicate binding 

mismatches with previously determined binding sites in other strains. (A) Promoter region of the 

cas8f gene (green). Potential CRP-cAMP, H-NS, and LeuO binding sites (purple) are present 

downstream of the promoter -10 and -35 regions (grey). (b) Promoter region of the cas1 gene 

(green). A potential CRP-cAMP binding site (purple) is present downstream of the promoter -10 

and -35 regions (grey) while a potential LeuO binding site (purple) is present between them. (c) The 

nonfunctional leuo pseudogene (green) truncated by transposon elements (green). 
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Abstract 

Single-particle tracking is an important technique in the life sciences to understand 

the kinetics of biomolecules. The analysis of apparent diffusion coefficients in vivo, 

for example, enables researchers to determine whether biomolecules are moving 

alone, as part of a larger complex or are bound to large cellular components such as 

the membrane or chromosomal DNA. A remaining challenge has been to retrieve 

quantitative kinetic models especially for molecules that rapidly switch between 

different diffusional states. Here, we present analytic diffusion distribution analysis 

(anaDDA), a framework that allows extracting transition rates from distributions of 

apparent diffusion coefficients calculated from short trajectories that feature less 

than 10 localisations per track. Under the assumption that the system is Markovian 

and diffusion is purely Brownian, we show that theoretically predicted distributions 

accurately match simulated distributions and that anaDDA outperforms existing 

methods to retrieve kinetics especially in the fast regime of 0.1-10 transitions per 

imaging frame. AnaDDA does account for the effects of confinement and tracking 

window boundaries. Furthermore, we added the option to perform global fitting of 

data acquired at different frame times, to allow complex models with multiple states 

to be fitted confidently. Previously, we have started to develop anaDDA to 

investigate the target search of CRISPR-Cas complexes. In this work, we have 

optimized the algorithms and reanalysed experimental data of DNA polymerase I 

diffusing in live E. coli. We found that long-lived DNA interaction by DNA 

polymerase are more abundant upon DNA damage, suggesting roles in DNA repair. 

We further revealed and quantified fast DNA probing interactions that last shorter 

than 10 ms. AnaDDA pushes the boundaries of the timescale of interactions that can 

be probed with single-particle tracking and is a mathematically rigorous framework 

that can be further expanded to extract detailed information about the behaviour of 

biomolecules in living cells. 
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Statement of significance  

Fluorescence-based single-particle tracking is an important tool to study the 

dynamics of biological systems. The rate at which biomolecules move and interact 

is ideally inferred from their positional trajectories. Currently, however, extraction 

of these kinetic parameters remains challenging, especially with short trajectories. 

We have developed an analytical framework (anaDDA) that extracts transition rates 

directly from the distribution of apparent diffusion coefficients. AnaDDA 

outperforms existing tools, especially in regimes in which transition rates approach 

the data acquisition rate. We demonstrate its general applicability by re-analysing 

previously published data on DNA polymerase diffusion and find fast DNA 

interactions previously unobserved. AnaDDA is computationally fast, easy to use 

and allows researchers to reveal detailed information about the behaviour of 

biomolecules in living cells. 
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Introduction 

Single-molecule studies have greatly expanded our knowledge of the mode of action 

and kinetics of DNA-protein interactions at the nanoscale (Miller et al., 2018). 

Single-molecule Förster resonance energy transfer (smFRET) and optical/magnetic 

tweezers, for example, are well suited techniques to study forces, conformational 

changes and displacements of DNA-binding proteins such as DNA and RNA 

polymerases(Hodges et al., 2009; Hohlbein et al., 2013), helicases (Craig et al., 

2017; Rothenberg and Ha, 2010) and CRISPR-Cas proteins (Blosser et al., 2015; 

Rutkauskas et al., 2017) in vitro with high spatiotemporal resolution (Blouin et al., 

2015; Heller et al., 2014; Hohlbein et al., 2014; Lerner et al., 2018). In vivo, however, 

single-particle tracking (SPT) remains the most convenient choice to study dynamic 

interactions (Kapanidis et al., 2018). For performing SPT, a gene of interest is fused 

to a gene expressing either a fluorescent protein or a protein tag (HaloTag/SnapTag) 

that can be later labelled with an organic fluorophore (Banaz et al., 2018; Jradi and 

Lavis, 2019). To avoid the temporal overlapping of emitters moving in the confined 

volume of (bacterial) cells, two strategies can be pursued. Either the expression level 

of the protein of interest is kept sufficiently low, or the emission signal from different 

proteins has to be separated in time which can be achieved using photoswitchable or 

photoactivatable fluorescent proteins or equivalent organic fluorophores enabling 

single-particle tracking photoactivation light microscopy (sptPALM) (English et al., 

2011; Garza de Leon et al., 2017; Manley et al., 2008; Uphoff et al., 2013). After 

linking subsequent localizations of tagged proteins into tracks, the apparent diffusion 

coefficient Dj
* for each track j is calculated from the average of n squared 

displacements (Dj
* = ∑ ri

2n
i=1
4nt

), where n represents a given step number. Summing over 

all tracks j will lead to a distribution of D* values, even if the motion of each particle 

is governed by a single diffusive state with diffusion coefficient D (Rocha et al., 

2019).  

The different mobilities of proteins switching between a DNA-bound state, in which 

proteins diffuse very slowly, and a DNA-free state, in which proteins diffuse through 

the cytoplasm, can provide kinetic information on the frequency and longevity of 

DNA-protein interactions. 
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For tracking applications in which the number of localisations per track is large (>50 

localisations), previous studies have demonstrated the reliable extraction of 

diffusion and transition kinetics (Akimoto and Yamamoto, 2017; Lanoiselée and 

Grebenkov, 2017). For sptPALM with fluorescent proteins, however, the ability to 

extract this information is severely compromised by pre-mature photo bleaching 

often limiting the length of each track to a few localisations (Van Beljouw et al., 

2019). Furthermore, the limited localization precision increases the apparent 

diffusion of immobile states. Therefore, measured displacements cannot be 

unambiguously assigned to either a bound or a diffusing state. As a consequence, 

histograms of D* values are often rather broad making a clear distinction between 

two diffusional states of a single species impossible. For the special case of non-

interconverting D* distributions, the shape of distributions can be calculated for a 

fixed number of analysed steps (Qian et al., 1991; Saxton, 1997) and, via fitting of 

the experimental data, used to extract the fractions of mobile and immobile proteins.  

Another factor that can increase the overlap between two states in D* distributions 

are state transitions occurring within single tracks. Using a typical frame time of 10 

ms and a typical track length of 40 ms, any transition occurring within that track 

length will average out (Figure 1A). The framework described in references (Qian 

et al., 1991; Saxton, 1997) does not account for the possibility of transitions within 

a track. Consequently, the overlap can lead to overfitting, as an increase of 

intermediate values would necessitate the addition of more states, which are not 

necessarily biologically relevant. In vitro smFRET measurements have encountered 

a similar challenge, in which the interchanging of conformational states within 

single bursts or within single frames resulted in the averaging of FRET values. By 

implementing probability distribution analysis (PDA) (Kalinin et al., 2008; Palo et 

al., 2006) previous studies were able to extract kinetic information and fit the entire 

FRET distribution (Farooq and Hohlbein, 2015; Nir et al., 2006; Santoso et al., 

2010). 

In this study, we aim to incorporate the statistical framework of PDA into D* fitting 

based on averaging single-frame displacements in individual sptPALM tracks, 

which will allow us to directly extract biologically relevant parameters such as on- 
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and off-rate next to the free diffusion coefficient and the total DNA-bound fraction. 

This method, which we call analytical diffusion distribution analysis (anaDDA), 

finds the kinetic parameters by implementing maximum likelihood estimation 

(MLE) and uses the probability to find D* for all tracks between 1-8 steps long 

(where step number is the number of localizations-1), present in the data set (Figure 

1B). We benchmark this analysis method, with simulation of transitioning particles 

and implement modifications that account for specific experimental challenges, such 

as varying tracking windows and confinement effects within the cell. Furthermore, 

we compare anaDDA to a different kinetic analysis tools that use Bayesian statistics 

or unsupervised Gibbs sampling to infer state transitions from the data (Karslake et 

al., 2020; Persson et al., 2013). We study the effects of confinement and tracking 

parameters on the fitting of the distribution coefficient distribution and although 

anaDDA was not designed to automatically determine the number of states, we 

discuss ways to manually assess the number of states required to fit the data. We 

furthermore re-analyse previously published sptPALM data of DNA interacting 

proteins, obtain their kinetic parameters, and reveal that fast DNA probing 

interactions were hidden in the published data. Using anaDDA on short trajectories, 

we demonstrate the fast and accurate analysis of transient DNA-protein interactions 

in the millisecond time range, a range that was previously only accessible in 

slimfield microscopy (Plank et al., 2009). In addition, anaDDA allows users to 

quickly check whether any tracking data that would imply the existence of either 

many static states or non-Brownian diffusion can be reduced to a simple Brownian 

diffusion model with dynamic state transitions.   

 

Methods 

D* fitting with transitioning states 

Distributions of D* have been fitted in numerous studies of DNA binding proteins 

(Stracy et al., 2015; Vrljic et al., 2002) using an formalism derived by Qian et 

al.(Qian et al., 1991) from repeated convolution of the exponential distribution of 



E x t r a c t i n g  t r a n s i t i o n  r a t e s  i n  p a r t i c l e  
t r a c k i n g  | 195 

 

 

displacement, resulting in a gamma function for each state. The formalism was later 

expanded by Michalet to account for localization errors (Michalet, 2010) leading to 

 

fD(x; D, n) =
� n

D + σ2/t�
n

xn-1e
- nx
D + σ2/t

(n-1)!
, (35) 

where x is the measured displacement, D is the diffusion coefficient, n is the number 

of steps per track, t is the frame time, σ is the localization error and fD(x; D, n) is the 

probability to find a measured displacement given D and n. For multi-state (or multi-

species) systems, terms can be added with different values of Di and normalised by 

probability coefficients Ai. The goal is to find the distribution of apparent D* values 

(x), for a certain number of underlying states that each have a probability Ai and a 

diffusion coefficient Di. These distributions assume, however, that there is no 

dynamic transitioning occurring between diffusional states of one species.  

 

In order to account for dynamics of state transitions in a two state system, we 

incorporated a statistical framework derived for probability distribution analysis 

(PDA) that is used to analyse single-molecule FRET distributions (Antonik et al., 

2006; Kalinin et al., 2008; Palo et al., 2006). This method describes the distribution 

of time spent in each state given a certain kon* , koff and the integrated time tint.  

 

The probability of staying in an initially occupied state S1 for an occupation time 

tS1 without transition is  

 WcontS1(tS1 = tint|koff, tint) =  e-kofftint . (36) 

The probability density functions describing tS1 for an odd or an even number of 

transitions starting from state S1 are given by(Palo et al., 2006) 

 WoddS1(tS1| koff, kon* , tint) = koffe-kofftS1-kon* tS2I0(2�koffkon* tS1tS2), (37) 

 WevenS1(tS1|koff, kon* , tint) =

 �koffkon* tS1
tS2

e-kofftS1-kon* tS2I1 �2�koffkon* tS1tS2�.  
(38) 

Here, tS1 and tS2 are times spent in state S1 and state S2 and I0 and I1 are Bessel 

functions of order zero and one, respectively. Note that tS1 + tS2 = tint. Equations 



196 | C h a p t e r  5  
 

 

for starting in state S2 (WcontS2, WoddS2 and WevenS2), can be found by exchanging koff 

for kon*  and tS1 for tS2 and vice versa in equations 2-4. 

To correctly describe the distribution over a certain number of frames, we first 

calculated the distribution over a single time frame tf. Within a single frame, a 

particle started in that state can either end in the same state or in a different state. 

Therefore, in a two-state system the probability functions for four scenarios have to 

be calculated 

 W(tSi|koff, kon* , tf)S1S1  =  WevenS1(tSi) +  WcontS1, (39) 

 W(tSi|koff, kon* , tf)S1S2  =  WoddS1(tSi), (40) 

 W(tSi|koff, kon* , tf)S2S1  =  WoddS2(tSi), (41) 

 W(tSi|koff, kon* , tf)S2S2  =  WevenS2(tSi)  +  WcontS2 (42) 

                                            for i = 1,2.  

To link the distribution of times spent in a state to the distribution of measured 

displacements (x), we can convert the time spent in each state and its diffusion 

coefficient to the average diffusion coefficient by the following equation  

 D = DS2
tS2
tint

+ DS1
tS1
tint

. (43) 

In case of the transition between an immobile bound state S1 (DS1= 0) and a mobile 

state with diffusion coefficient DS2 = Dfreewe can modify the above equation to   

D = Dfree
tS2
tint

. (44) 

AnaDDA is able to fit systems with two mobile states, but for the rest of the 

manuscript (except Figure S3) we analyse systems with an immobile state and use 

equation 10.  

Using equation 10, the probability distribution function (equation 1) can be modified 

according to 

 

fD(x; tS2, Dfree, n) =

� n
Dfree

tS2
tint

+ σ2/tint
�

n

xn-1e
- nx
Dfree

tS2
tint

 + σ2/tint

(n-1)!
. 

(45) 

Subsequently, the probability to find a certain diffusion coefficient (x) for a single 

time step given the time spent in the mobile state is given by fD(x|tS2, 1). We can 
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then find the distribution of measured diffusion coefficients for a single frame by 

integrating over all possible times spent in the mobile state 

 W�x�koff, kon* , Dfree, tf�SiSj

=  � fD(x|tS2, 1) W�tS2�koff, kon* , tf�dtS2
tf

0 SiSj
 

                 i = j = 1,2. 

(46) 

Now that we have the distribution for a single time step, we need to find the 

distribution for the average of multiple frames. For this we use the same method as 

Qian et al.(Qian et al., 1991), namely repeated convolution of the distribution for a 

single frame, while keeping track of the start and end state. The probability 

distributions are therefore 

 
W(x|2tf)S1S1  =  � (W(x|tf)S1Si*W(x|tf)SiS1),

 

i=1,2  

 (47) 

 
W(x|2tf)S1S2  =  � (W(x|tf)S1Si*W(x|tf)SiS2),

 

i=1,2  

  (48) 

 
W(x|2tf)S2S1  =  � (W(x|tf)S2Si*W(x|tf)SiS1),

 

i=1,2  

 (49) 

 
W(x|2tf)S2S2  =  � (W(x|tf)S2Si*W(x|tf)SiS2)

 

i=1,2

.   (50) 

For a track consisting of 4 frames, the distributions found for 2 frames can be 

convoluted again. The full distribution is then found by summing up each of the 

partial distributions multiplied by the chance they start in S1 or S2: 

 Wtot  =  pS1(W(x|4tf)S1S2 + W(x|4tf)S1S1) 

            + pS2(W(x|4tf)S2S1 + W(x|4tf)S2S2), 
(51) 

with pS1 and pS2 defined in equations 18 and 19, respectively: 

 
pS1 =

kon*

kon* + koff
, (52) 

 
pS2 =

koff
kon* + koff

. (53) 
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Localization error 

As two consecutive steps share at least one localisation, the localisation error of this 

localisation leads to a correlation between the measured displacements (Michalet, 

2010). Only in the special case of the localisation error being zero, the measured 

displacements are uncorrelated. The distribution of the sum of displacements for a 

certain number of steps is therefore not described by a gamma distribution, which is 

the sum of independent variables. However, as each step separately is a gamma 

random variable, we calculate the summation of correlated gamma random variables 

to describe the distribution of localization error analytically for different number of 

steps. For derivations, see supplemental section Derivation of D* distributions of 

localization error. 

 

Tracking window 

In order to the prevent the accidental linking of different diffusing particles, many 

tracking algorithms use a certain cut-off, in which steps longer than a certain distance 

are not allowed (Hansen et al., 2018; Lee and Park, 2018; Uphoff et al., 2014). 

However, this tracking window can influence the distribution of D values recovered. 

In analytical DDA, we correct for this by setting fD(x > maxD|Di, 1) = 0, where 

maxD is the maximum D* value that can be obtained given the tracking window.  

 

Confinement 

To take the effects of geometrical confinement within the cell into account, we 

implemented an analytical way to calculate the effective diffusion coefficient given 

the geometry and the real diffusion coefficient. Most boundary geometries 

encountered in in vivo settings are either spherical or rod-shaped. For a spherical 

geometry, the effective measured MSD given a diffusion coefficient D and a 

timestep ∆t have been previously derived for multiple dimensions (Bickel, 2007). 

We have used these equations to find  Dobs =  fboundary(r, t, D), which is the 

observed diffusion coefficient given a certain boundary condition (spherical/rod-
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shaped), the boundary radius r, the frametime t and the real diffusion coefficient D. 

For derivations, see supplemental section Derivation of confinement corrections.  

 

Maximum likelihood estimation (MLE) 

To find the underlying parameters of experimental data and simulations, we use 

MLE which maximizes the joint probability of observing by iteration through the 

parameter space. Generally, MLE requires a probability density function to calculate 

and sum up all probabilities of each observed data point. The benefit of the method 

is that it does not require any binning, compared to other optimization methods. 

However, MLE does require the exact probability for each data point to be 

calculable. Because we use numerical convolution (for increasing the performance 

of the algorithm, we implemented a FFT convolution (Smith, 2003)), we will only 

get the probability at discrete points within the probability density function. 

Therefore, to calculate the probabilities for the points of our data set, we use spline 

interpolation. 

Because MLE is known to be affected by local minima (Myung, 2003), we use a 

number of cycles (generally four) in which we generate random starting parameters 

and run the algorithm several times after which we select the end parameter set with 

the maximal likelihood. Those parameters are then used as starting parameters for 

bootstrapping in which we run the analysis through a number of subsets of the data 

to get an estimate of the standard deviations of our parameter estimates.  

 

Plotting of diffusion distribution histograms 

With the parameter sets used in our simulations, the diffusion histograms are visually 

more distinguishable when log(D*) is plotted compared to D*. We therefore 

integrated the linear density function with widths specified by the bin size of the 

logarithmic scale to calculate the probability density function for log(D*) instead of 

D*.  
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Results 

AnaDDA generates D* distributions equal to the ground 
truth of simulated distributions 

AnaDDA allows calculating the shape of the D* distribution, depending on the free 

diffusion coefficient (the diffusion coefficient in absence of binding interactions) 

and the transition rates. As this shape depends on the number of localizations per 

track, we separate the tracks according to their respective length and fit each data 

point to the distribution that matches their step length. To benchmark our new 

analysis method, we first compared our theoretical predictions of the D* distribution 

to data in which we simulated the diffusional characteristics of a particle that 

dynamically switches between a (DNA-) bound state and a freely diffusing state 

without including any boundary conditions for diffusion (see section below for 

confinement within cells). With increasing number of tracks, the predicted D* 

distribution increasingly resembles the predicted theoretical distribution (Figure 

1C). To test whether our theoretical distributions differed from the simulated ground 

truth, we performed Kolmogorov-Smirnov tests. We found that the test statistic DKS 

converged to zero for larger number of tracks analysed and was on average smaller 

than the critical value required to reject the null-hypothesis (DKS = 0.004 for p < 

0.05), indicating that the ground-truth simulations and our theoretical predictions 

come from the same distribution (Figure 1D). 

We varied the range of transition timescales (Figure 1E) ranging from 0.01 to 10 

transitions per frame (at 0.01 s frame time) at all different step numbers per track 

included in this analysis (1-8; Figure S1A) and compared a range of frame times 

(20-100 Hz) and experimentally realistic localization errors (20-50 nm) (Figure 

S1B). Under all these conditions, the ground truth simulations (N = 100.000 tracks) 

and the anaDDA generated distributions showed very close agreement (DKS < 0.004). 

As this analysis involved a direct comparison between the predicted and simulated 

distribution without fitting the data or any optimization of parameters, it can be 

concluded that our theoretically predicted distributions are similar to the ground 

truth distributions.  
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Figure 1. Analytical DDA (A) 

The effect of transition rates on 

D* distributions is depicted with 

simulated tracks of four steps 

and different transition rates. 

With increasing transition rates 

relative to the frame rate, the 

bound and unbound distributions 

start merging towards an 

intermediate apparent diffusion 

speed diffusivity (right). The 

distribution of apparent diffusion 

coefficients D*, calculated from 

the mean jump distances of a 

track, originates from the finite 

number of steps (n) that are 

measured for each particle and 

allows the extraction of the 

underlying diffusion coefficient 

and transition kinetics of the 

states. (B) Procedure of 

analytical DDA: The D* values 

from tracked single particles are 

run into an MLE optimization program which refines a set of start parameters based on the 

likelihood to find a certain value given the number of steps (all tracks longer than 8 are reduced to 

the first 8 steps). (C) Comparison of simulated (grey bars) and theoretically predicted (black line) 

distribution with different amount of tracks and the following starting parameters: kon*  = 0.2 frame-

1, kon*  = 0.2 frame-1, Dfree = 4 µm2/s and σ = 30 nm (localisation precision), step number = 4 steps. 

Tracks are simulated without any confinement boundaries. The Kolmogorov-Smirnov test statistic 

(DKS) is indicated at each histogram. (D) The Kolmogorov-Smirnov test statistic compared to the 

threshold for statistically distinguishable distributions. Values above the threshold line indicate that 

two distributions significantly differ from each other. Error bars indicate S.E.M. of three independent 

simulations. (E) Comparison of simulated D* distributions (grey) and the distributions calculated 

with analytical DDA for different transition rates (black). The shape of the distributions depends on 

both the ratio between kon*  and koff and the absolute values of these parameters. In this example 

Dfree = 4 µm2/s and σ = 30 nm. For more tested parameters see Figure S1. 
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AnaDDA can extract transition rates from tracks with more 
than one transition per frame 

With data from experimental measurements, the ground truth is unknown, and 

parameters have to be inferred by fitting. First, we tested via simulations how 

reliably parameters can be extracted over a large dynamic range of transitions. We 

compared the input parameters to the extracted ones with Maximum Likelihood 

Estimation (MLE). To benchmark the performance of extraction we calculate the 

accuracy through the geometric mean and the precision through the geometric 

standard deviation of 10 independent simulations. For all tested data sizes (5000-

100.000 tracks) and transition rates (0.001-10 transitions per frame), the analysis 

method is accurate (< ± 5% of input parameters). The precision decreased slightly 

with decreasing data size and for small/large transition rates (Figure 2). Furthermore, 

the precision at high transition rates (>1 transition per frame) is lower for kon*  than 

koff (Figure 2A-B). In general, the highest precision is found for tracks between 0.1 

and 1 transition per frame. With 50.000 tracks per simulation, the transition rates 

over three orders of magnitude (0.002-2 transitions per frame) were determined with 

an error smaller than 20% of the actual value (Figure 2A-C).  

We compared our method with a previously published framework that used 

Bayesian statistics to infer transition and diffusion dynamics (vbSPT) (Persson et 

al., 2013) and a framework that used unsupervised Gibbs sampling for similar 

purposes (SMAUG) (Karslake et al., 2020). As vbSPT and SMAUG deduce the 

number of states from the data, we limited the amount of states in this analysis 

software to two to achieve a fair comparison. For slow transitions (<0.01 transition 

per frame) both anaDDA and vbSPT were able to extract the correct kinetic 

parameters for data sets containing 50.000 tracks (<20% error; Figure 2D-F), 

whereas SMAUG overestimated the transition rates. At faster transitions (> 0.02 

transitions per frame), however, we observed a decrease in the extracted free 

diffusion coefficient and a decrease in the extracted on and off-rates for both vbSPT 

and SMAUG. A similar trend was observed for data sets containing only 1000 tracks 

(Figure S2A). 
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Figure 2. MLE extraction of parameters. The accuracy is calculated through the value of the 

geometric mean (dashed black line) and the precision is calculated through the geometric standard 

deviation of 10 independent simulations. The step number per track was exponentially distributed 

with a mean of three steps and a cut off at 8 steps (Dfree = 4 µm2/s, σ = 30 nm). (A-C) Effect of 

data size on accuracy and precision of extraction of (A) koff, (B) kon*  and (C) Dfree for N = 5.000 

tracks (red), 10.000 tracks (orange) and 50.000 tracks (yellow). (D-F) Comparison of anaDDA 

versus vbSPT and SMAUG on accuracy and precision of extraction of (D) koff, (E) kon*  and (F) Dfree. 

50.000 tracks were used for both methods.  

 

We furthermore compared the different analysis methods in the presence of tracking 

errors, arising from high density measurements, where tracks from different particles 

are erroneously linked. We simulated tracks occurring simultaneously in increasing 

densities (0.01 to 0.25 particles per µm2). Subsequently, we linked the localisations 

using a previously described tracking algorithm that uses minimization of the total 
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squared displacement of all possible trajectories within a given tracking window 

(Crocker and Grier, 1996). For most timescales, anaDDA can still extract the correct 

parameters, but for low and high transition rates, the extraction is sensitive to the 

tracking errors occurring at high densities (0.1 to 0.25 particles per µm2; Figure 

S2B). At low transition rates (0.001-0.05 transitions per frame), the transition rates 

were overestimated and at high transition rates (2 – 10 transitions per frame) the on-

rate and free diffusion coefficient were overestimated. When vbSPT and SMAUG 

were tested with simulations at the highest densities (0.25 particles per µm2), the 

extracted kinetic parameters were even further away from the ground truth. Our 

simulation shows that in order to robustly extract kinetic parameters, localization 

densities should be kept low (<0.1 per µm2).  

When we removed the restriction of a two-state model, vbSPT started introducing 

multiple false states (Figure S3A). Already at low transition rates (0.01 transitions 

per frame), vbSPT suggests the presence of a false third state. At this transition rate, 

two states (0.06 and 0.11 µm2/s) were close to the expected average diffusion 

coefficient of the simulated immobile state (σ2/t = 0.09 µm2/s). The highest number 

of predicted states (4 states) was found for transition rates between 0.05 and 0.5 

transitions per frame. To see whether anaDDA also would fit more false states, we 

tried to force a second dynamic species (Figure S3B). In this case, the second species 

fraction was found to have zero amplitude, indicating that under the tested conditions 

anaDDA would not introduce a false state.  

So far, we have limited the analysis to systems for which one of the states is 

immobile, but anaDDA can also be applied to systems with two mobile states. We 

expected that the extraction of parameters would be less accurate for these systems, 

firstly because a new parameter needs to be extracted from the data and secondly 

because the overlap of D* distributions from two mobile distributions tend to 

overlap more than distributions of a mobile and an immobile state (Figure S3C). We 

found that under these conditions anaDDA still performs well in the range 0.01 to 2 

transitions per frame (less than 20% error with 50.000 tracks) but that parameters 

extracted from lower or higher transition rate simulations are less accurate compared 

to systems with an immobile state (Figure S3D-G). Under the same simulation 

conditions, vbSPT and SMAUG overestimate the transition rates at low transition 
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rates (>4x at 0.001 transitions per frame) and underestimate at high transition rates 

(>20 x at 10 transitions per frame).  

Our findings suggest that vbSPT and SMAUG fail to account for the increasing 

occurrence of multiple transitions within a single frame at fast transition rates. Our 

analysis software is distinctive in its ability to extract kinetic parameters when 

multiple transitions are likely to occur within a single track. In fact, anaDDA can 

validate whether a simple two-state model with fast transitions is sufficient to 

explain the data, whereas vbSPT and SMAUG would introduce virtual static or 

slowly interconverting states. To further improve the applicability of anaDDA to 

real experimental sptPALM data, we wanted to correct for artefacts that can 

influence diffusion distribution analysis, namely confined diffusion within cells and 

application of tracking windows.  

AnaDDA corrects for confinement within cells and restricted 
tracking windows 

To study the effect of geometrical confinement, we simulated diffusive particles 

within the confined boundaries of different cell shapes. We previously showed that 

confinement only has a very small effect on observed transition rates in bacterial 

cells (Vink et al., 2020). However, as the measured diffusion coefficient can be 

greatly affected by confinement, we implemented an algorithm based on previously 

developed derivations (Bickel, 2007) (for details see Materials and Methods) to 

account for confinement in both rod-shaped (e.g. E. coli cells) and spherical-shaped 

boundaries (e.g. eukaryotic nuclei) (Figure 3A).  

For both spherical and rod-shaped cells (cell length : radius = 8:1) we found that our 

theoretical predictions for varying cell sizes (r2 = (2, 5, or 20)Dfreet) match well 

with simulated data (Figure 3B-C; DKS < 0.006) in contrast to uncorrected 

distributions for which the predicted distributions are statistically different from the 

simulated distributions (DKS > 0.04). In an E. coli cell (r = 0.5 μm) and under 

standard measurement frame times (0.01 s), these confinement regimes 

(Dfreet) would be reached with Dfree values of 12.5 μm2/s respectively, which 

matches the values found for small single fluorescent proteins  
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Figure 3. Effects of geometrical confinement and the length of the tracking window. 

(A) Typical confinement shapes within cells. The boundary shape of spherical cells is defined by a 

single parameter (radius; rconf.), whereas rod-shaped cells are defined by two parameters (radius and 

length; rconf. and lconf.). (B-C) Influence of spherical and rod-shaped boundaries on the distribution of 

simulated (grey box) and uncorrected DDA (grey line) and corrected DDA (black line) distributions. 

(koff = 0.2 frame-1, kon*  = 0.2 frame-1, step number = 4 steps) (D-E) Influence of spherical and rod-

shaped cells on the estimation of parameters of DDA on unconfined simulated trajectories (yellow), 

uncorrected DDA on confined simulated trajectories (orange) and corrected DDA on confined 

trajectories (red). (F-G) Same as B-E except for simulated trajectories with a maximum step size. 

Simulation parameters: Dfree = 4 µm2/s and σ = 30 nm (localisation precision), N = 50.000 tracks. 

The Kolmogorov-Smirnov test statistic (DKS) is indicated in each histogram. 
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(Woodside et al., 2006). In a eukaryotic nucleus (r = 5 μm), these regimes would 

correspond to Dfree values up to 750 μm2/s which is generally much faster than any 

reported literature values. This finding indicates that geometrical confinement by 

cell boundaries is mostly limiting in prokaryotic studies. However, at longer frame 

times (0.1 s) confinement effects will play a role when studying diffusion within 

eukaryotic nuclei. 

As not every cell in a population is the same size, the distribution might be further 

affected by a variation of cell sizes. We therefore analysed a mixture of three 

different simulated cell sizes and found that the distributions remained statistically 

indistinguishable from a uniform population of the same cell size (Fig. S4; DKS < 

0.006). This shows that the correction method remains valid as long as the average 

dimensions of the cell boundaries are known.  

To further test our ability to infer parameters from the data in a system where 

diffusion is geometrically confined, we performed MLE with and without 

corrections for confinement. We observe that the incorporation of our confinement 

corrections increases the accuracy and precision of the estimation of Dfree (Fig. 3D-

E). Compared to unconfined diffusion, there is a bias in recovered transition rates at 

very small and large transition rates, as these regimes are most sensitive to small 

deviations of the predicted distribution to the ground truth. These minor deviations 

are most likely caused by a correlation which occurs for diffusing particles within 

boundaries, where particles that are close to the boundary in one frame, are again 

likely to encounter the boundary in the next frame. That effect is not taken into 

account in our current implementation. However, for most transition regimes (0.01-

2 transitions per frame), the error of the estimated parameters falls within 20%.  

Another type of analysis artefact comes from the settings for tracking windows. 

When the density of labelled fluorophores is higher than 1 per cell, different 

molecules can be falsely assigned to the same track. To prevent this effect, multiple 

tracking software algorithms set a limit to the maximum step length that individual 

tracks are allowed to have. Although this is sometimes unavoidable, the absence of 

the largest steps can severely affect the MLE fitting parameters. AnaDDA is able to 

correct for this, by integrating this max displacement in the probability distribution 
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(see Materials and Methods). The effect of this correction was tested for a range of 

radii of tracking windows (r2 = (5, 10, or 20)Dfreet) and in all cases the DKS of the 

corrected distributions were below the threshold for significantly different 

distributions (DKS = 0.006), whereas for small and intermediate tracking windows 

(r2 = (5 and 10)Dfreet) uncorrected distributions were significantly different (DKS 

= 0.34 and DKS = 0.11; Figure 3F-G). The tracking window also had a large effect 

on both the predicted transition rates and free diffusion coefficients from MLE, 

where in the absence of corrections all parameters were significantly underestimated 

(>1.5x). With the correction, the estimations were again unbiased and very similar 

to the accuracy and precision of estimations in the absence of tracking windows. 

Taken together, anaDDA can correct the distributions for measurements that are 

affected by confinement within spherical and rod-shaped boundaries and by the 

application of a maximum step size within tracking algorithms. Because these 

artefacts cause a non-linear relationship between the MSD and the timestep in a 

similar fashion as anomalous diffusion (Robson et al., 2013), it allows the user to 

validate whether a simple Brownian model with confinement is able to explain the 

data before assuming more complex modes of diffusion.  

AnaDDA can be expanded for multiple states and can integrate multiple frame times 

So far, we have discussed the presence of one diffusing species converting between 

two diffusional states. In the following, we will expand the DDA-fitting to account 

for more species and states. 

Many DNA binding proteins contain both non- and target-specific interactions with 

DNA. Therefore, it is likely that the kinetics of these two interactions are different, 

which would require the model to be expanded beyond a two-state model. PDA 

statistical analysis currently does not incorporate more than two dynamic states. 

However, it is possible to incorporate more states by assuming that their dynamics 

are much slower than the non-specific DNA interactions, which would result in a 

negligible amount of transitions in the timeframe studied. Then these states can be 

approximated by separate static (non-interchanging) species (Figure 4A). Generally 

the specific interactions are much longer lasting than the non-specific interactions 

(Slutsky and Mirny, 2004), so in many cases this assumption would be valid.  
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To test how well this approximation works and how well the method can distinguish 

this model from a simple two-state model, we simulated a linear (A ⇄ B ⇆ C) three-

state model containing one slow transitioning bound state (kon,1
*  = 0.005 frame-1, 

koff,1 = 0.01 frame-1) and one fast transitioning bound state (kon,2
*  = 0.2 frame-1, 

koff,2 = 0.2 frame-1). We compared this simulation to our theoretically predicted 

distribution where we approximated the slower transitioning state as a separate 

immobile species and the faster transitioning state as a separate species (Figure 4B). 

The fraction of the approximated immobile species (20 %) and transitioning species 

(80 %) can be calculated from the ratio of the on- and off-rates (Figure 4B). We 

found very good agreement between the theoretical prediction and the simulation 

(DKS < 0.006) indicating that this approximation can be applied in this case.  

We then tried to find whether a single species two-state model could also fit the 

distribution of the three-state model (Figure 4C). We found that although for smaller 

tracks there are parameters that can fit the distribution quite well (DKS = 0.0078 for 

step number of 4 steps), the distribution for larger tracks significantly deviated from 

the ground truth (DKS = 0.0149 for step number of 8 steps). Therefore, with a 

sufficient number of longer tracks two-state and three-state models are clearly 

distinguishable.  

We then tested under which conditions the parameters can be reliably extracted from 

the data. To this end, we varied the transition rates of the fast-bound state (kon,2
*  and 

koff,2) while keeping the slower bound state fixed. We observed that under all 

transition rates tested (0.1-10 transitions per frame), the error of the estimated 

parameters falls within 25% and that with increasing rates of the fast-bound state, 

the extraction of the fraction parameter became more reliable (Figure 4D). This 

finding indicates that as long as the transition rates associated with the different 

bound states are different enough (>10 fold), with one of them being significantly 

slower than the frame time used in the measurements, parameters for three state 

models can be reliably extracted with anaDDA.  

More complex models with larger number of species, each having up to three states 

and meeting the requirements described above can also be fitted using anaDDA but 

are prone to increased uncertainty and under-/overfitting as many parameters in 
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these models could give rise to similar distributions. We therefore advise users to fit 

models with a maximum of four free parameters, when the data was recorded using 

a single frame time. To overcome this limitation, we implemented the ability to use 

data acquired at different frame times into a single global fit. By fitting data from 

multiple frame times simultaneously, the number of potential parameters that can fit 

all the data decreases, leading to more accurate and precise fitting for more complex 

models.  

 

Figure 4 Three-state models and multiple frame times (A) Three-state models cannot be 

directly described with PDA statistics. If some interactions are slower than the typical frame time, 

however, the approximation can be made that they belong to a non-transitioning separate species. 

The expected fraction of each of this species can be calculated from the on- and off-rates of all 

states (right). (B) Comparison of a simulated three-state model (koff,1 = 0.01 frame-1, kon,1
*  = 0.005 

frame-1, koff,2 = 0.2 frame-1, kon,2
*  = 0.2 frame-1) with a predicted theoretical approximated two-

species model, where the slower transitioning state is approximated as a separate immobile species 
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(red) and the other species (blue) still contains two states with koff,2 and kon,2
*  as transition rates. 

Upper panel step number of 4 steps, lower panel step number of 8 steps. (C) Best fit of the simulated 

three-state model from (B) with a single-species two-state model. (D) MLE extraction of the 

expected fraction of the first approximated species for different values of koff,2 (E) Heat map of the 

log(DKS) between a simulated distribution (Dfree= 1, fraction immobile = 0.1; ground truth (red dot)) 

and a theoretical predicted distributions with varying parameters around the parameters used for 

the simulation, where the simulation consisted either of 100.000 tracks at 10 ms frame time (left), 

100.000 tracks at 50 ms frame time (middle) or 50.000 tracks at 10 ms frame time and 50.000 tracks 

at 50 ms frame time respectively (right). The discrete Laplacian Δlog(DKS) calculated from the ground 

truth coordinate, is the sum of the second derivatives in both dimensions and indicates how quickly 

log(DKS) increases with parameter values slightly different than the ground truth. The Kolmogorov-

Smirnov test statistic (DKS) is indicated in each histogram. 

 

As an example, we simulated a two-species (one immobile, one transitioning) model 

and calculated the Kolmogorov-Smirnov test statistic (DKS) for a range of parameters 

around the input parameters for a simulated dataset consisting of tracks either 

measured at a single frame time (10 or 50 ms) or a combined set where halve of the 

dataset contained simulated tracks from each frame time (Figure 4E). If there are 

other closely related parameters with similar DKS values to the ground truth, the fit 

can converge to these values as well. Therefore, the uncertainty is linked to the 

parameter space with DKS similar to the DKS of the ground truth. We observed that 

different frame times perform better on different parameters. In particular, short 

frame times led to more uncertainty in the determination of the fraction of each 

species, whereas long frame times gave more uncertainty in the determination of the 

free diffusion coefficient. When data recorded at different frame times is combined, 

there is only a single set of parameters that give rise to a similar DKS as the ground 

truth. To quantify the benefit of the combination of frame times, we calculated the 

discrete Laplacian score (Δlog(DKS)) from the ground truth coordinate. The score is 

the sum of the second derivatives in both dimensions and indicates how quickly 

log(DKS) increases when moving away from the ground truth. We found that the 

combined frame times of 10 and 50 ms data had a higher score (0.64), compared to 

datasets from either frametime alone (0.57 for 50 ms and 0.43 for 10 ms datasets), 

indicating that datasets with more than one frame time outperform datasets recorded 
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at a single frame time. In conclusion, the benefit of gathering data with different 

frame times is that it reduces the parameter space that can simultaneously fit multiple 

distributions and therefore offers better performance with the same number of data 

points.  

E. coli DNA polymerase I undergoes rapid DNA interactions 

To test the applicability of our analysis method to experimental data, we re-analysed 

previously published data on the diffusion of DNA polymerase I in E. coli (Uphoff 

et al., 2013). In this study, the diffusion distribution of PAmCherry-Pol1 was 

grouped into immobile and mobile diffusing particles by simple thresholding 

without determination of any transition kinetics. The authors found that under 

normal conditions only 4-5% of the proteins were immobile. However, they found 

that even the mobile tracks were mostly located within the nucleoid, which may 

suggest that these tracks represent transient DNA binding, probably probing the 

DNA for repair sites. We therefore hypothesized that the previously assigned mobile 

fraction is also undergoing rapid transitions between DNA bound and freely 

diffusing states.  

We decided to fit the data with two species, one belonging to proteins involved in 

repair (a species with a single bound state) and one to probing (a species with a 

bound and a freely diffusing state). When we fitted this model (two species and three 

states; Figure 5A) we found a similar percentage of proteins involved in repair as 

described in the previous study (4%; Figure 5B). Furthermore, we found that the 

probing species had a free diffusion speed of 2.8 (± 0.2) μm2/s in the cytoplasm and 

that it is involved in vary rapid DNA probing events (koff 137 ± 7 s-1; kon*  155 ± 25 

s-1). Based on the on and off-rates we calculated that the probing species spends 

more than half the time (~ 55%) bound to DNA. Altogether, DNA polymerase 

spends approximately ~ 60% bound to DNA either in repair (4%) or probing for 

mismatch sites (55%). 
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Figure 5. Extracting kinetic information of DNA polymerase I diffusing in live E. coli 

cells. (A) Approximated model of the kinetic model of DNA polymerase diffusion containing a 

DNA repair and DNA probing state (left). These states were separated into a single-state repair 

species (species 1; middle) and a probing species with two states (species 2; middle) The fraction of 

the two species are caused by the underlying ratios of the on- and off rates (right; Fig. 4A) (B) Fit 

of DNA polymerase I in untreated cells (n = 179.511 tracks). The D* was fit with two species, one 

species involved in repair (red line) with a single state (immobile) and one species involved in 

scanning DNA with two states (mobile and immobile; blue line). The transition between the latter 

two states and the free diffusion coefficient of the mobile state are depicted. Fit was performed on 

all different step numbers (1-8 steps) and histograms are only shown for a single step number (4 

steps). Tracks with 8 or more steps were truncated to 8 steps for the entire fit. For the histogram, 

D* calculated from tracks truncated to 4 steps are shown. (C) Same as B but performed on data of 

DNA polymerase in cells treated with MMS. (D) Same as C except that the free diffusion coefficient 

of the mobile state was fixed to the same value as was found for polymerase in untreated cells (B). 

The Kolmogorov-Smirnov test statistic (DKS) is indicated in each histogram and uncertainty in 

parameters were estimated with bootstrapping (±SD). Experimental data was taken from a previous 

study (Uphoff et al., 2013). 
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The study also measured the diffusivity of DNA polymerase in presence of the DNA 

damaging agent MMS. Using anaDDA, we found that the immobile species 

increased to 13% which matches the findings in the publication (13 ± 0.2%; Figure 

5C). The transition rates and diffusion coefficients under this condition could not be 

assigned with confidence based on the bootstrap values (koff 137 ± 7 s-1; kon*  348 ± 

25 s-1). values. We hypothesized that this is caused by the lower number of available 

tracks (41.415 tracks) compared to the untreated dataset (142.178 tracks). 

To quantitatively assess the transition kinetics in presence of DNA damage, we made 

the assumption that DNA damage would not alter the free diffusion behaviour of 

DNA polymerase in the cytoplasm but only the kinetics of the interactions with 

DNA. We therefore fixed Dfree to the value found for DNA polymerase in untreated 

cells (2.8 μm2/s; Figure 5D) which caused the fitting to converge to a narrow range 

of transition rates. We observed that although the koff remained the same (126 ± 3 

s-1), the on-rate increased in the presence of damaged DNA (185 ± 6 s-1) indicating 

that more DNA polymerases were bound to DNA in long-term repair events (from 

4 to 13%) and that also the polymerases engaged in probing spent more time bound 

to DNA. Altogether, these numbers would indicate that DNA polymerase in the 

presence of MMS spent ~ 75% of its time to DNA either at a repair site (13%) or 

while probing the DNA (60%). 

We further found that the maximum step size of 5 pixels used in the original analysis 

significantly affected the distribution of observed D* values (Figure S5). AnaDDA 

was able to correctly predict and take this effect into account. Overall, the transition 

rates between bound and unbound polymerase found under both conditions are high 

compared to the frame rate (>1 transition per frame), which demonstrates the 

applicability of anaDDA to quantify very fast transition kinetics in vivo. 
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Discussion 

Analytical diffusion distribution analysis (anaDDA) is able to accurately extract 

kinetics occurring within 4 orders of magnitude with around 10 to 0.01 transitions 

per frame. With conventional camera frame rates of 100 Hz, this range translates to 

interaction kinetics of 1 ms to 1 s even if the mean track length is as short as 3-4 

frames. Furthermore, anaDDA is able to account for confinement and tracking 

window effects and has the possibility to fit data acquired at multiple frame times 

into a single global model. The re-analysis of previously published data on DNA 

polymerase I in E. coli suggests that this protein complex uses rapid probing of DNA 

and therefore spends more than 50% of its time bound to DNA, a value previously 

hypothesized based on its preferred localization in the nucleoid but not quantified 

up to now. These new insights into the biology of DNA polymerase in vivo, can 

experimentally be further tested. The predicted times spent on DNA in the absence 

(60%) and presence of MMS (75%) can be independently quantified by measuring 

the ratio of polymerases in DNA-containing and DNA-free segments of cells 

elongated by cephalexin as was done previously for CRISPR-Cas complexes in E. 

coli (Vink et al., 2020).  

Compared to other simulation-based frameworks for estimating transition rates 

(Martens et al., 2019; Rocha et al., 2019; Wieser et al., 2008), anaDDA holds several 

advantages. First, the distributions of simulations are not exact as they are generated 

from a limited number of particles and therefore do not allow for using an MLE 

approach, which requires convergence based on exact probability even for small 

changes in the parameter space. Secondly, since analysis methods can only be 

verified by knowing the ground truth, these algorithms can only be tested with and 

against simulations itself. Consequently, the analysis and verification data are not 

independent, which could lead to unobservable errors. Furthermore, our analysis 

method is computationally significantly faster. MLE takes just around 15 s to find 

the optimal parameter set for a global fit to a 50.000 tracks dataset with a step number 

range of 1-8 steps (Intel Core i7), whereas a simulation estimating three parameters 

with a global fit of all step numbers, required around 10 hours to find an optimal set 

of parameters.  
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Despite the new possibilities that anaDDA offers to analyse complex sptPALM data, 

a number of challenges remain. Firstly, our transition rate analysis is limited to 

Markovian processes, which assume that the transition rates are independent of past 

events. This assumption seems to be valid for protein binding kinetics in vivo (Ho et 

al., 2019; Persson et al., 2013; Slutsky and Mirny, 2004), but might not be 

generalizable for all biological systems (Morimatsu et al., 2007; Talaga, 2007). 

Secondly, macromolecules such as DNA binding proteins, potentially have many 

different binding sites and therefore would have many different kon and koff values. 

The transition rates extracted with anaDDA do not fully capture this complex 

biological behaviour and therefore should be interpreted as an average timescale at 

which these transitions take place. Thirdly, the number of states cannot, unlike 

Bayesian methods, be automatically extracted from the dataset. However, given the 

complexity of sptPALM data, Bayesian algorithms are prone to overfit the data 

(Figure S3A). A more robust way for model selection can be achieved by 

incorporating experimental controls (e.g. mutants or subunits which reduce 

complexity) and measurements at multiple frame times (Figure 4B). Fourthly, 

potential effects of finite exposure times (Berglund, 2010; Goulian and Simon, 2000) 

on the measured displacements have not been yet incorporated in anaDDA. These 

effects, however, can be minimized by using stroboscopic illumination (Elf et al., 

2007; Hansen et al., 2018). Fifthly, anaDDA assumes Brownian motion and does 

not incorporate anomalous diffusion, which has been observed in some in vivo 

systems (Bohrer and Xiao, 2020; Höfling and Franosch, 2013). Our method can be 

adapted to incorporate anomalous diffusion, once it is clear which of the many 

potential models (Metzler et al., 2014) is suited best for the observed anomalous 

diffusion (Barkai et al., 2012). Again, care should be taken as these more complex 

models are more easily overfitted. Lastly, for performance reasons the tracks that we 

analyse in anaDDA are currently limited to a maximum step number of 8 steps, 

which under most experimental conditions represent more than 90% of the tracks 

and longer tracks are truncated to the maximum step number of 8.  

In our current implementation it is possible to include two transitioning state into the 

direct fitting. We have shown, however, that when transition rates are slow 

compared to the frame time of the measurement, states can be treated as separate 
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species. Further development of the underlying master equations of PDA statistics 

could allow direct implementation of multistate models.  

With the increasing use of brighter and more stable organic fluorophore (Banaz et 

al., 2018; Los et al., 2008) or low photon flux measurements (Balzarotti et al., 2017) 

for single-particle tracking, the resulting increase of the step number per track and 

the decrease of the localization error will enable further improvements in the 

precision of extracted kinetic parameters. Currently, we have implemented the 

software for tracking in two dimensions, but the algorithms can be further modified 

towards tracking in three dimensions. Using the estimated error for each individual 

localization can further improve the robustness of the analysis as has been 

demonstrated previously (Lindén and Elf, 2018). Another improvement which can 

be incorporated in our framework and has already been developed is to take the 

effect of particles moving out-of-focus, and the recovery of localizations depending 

on diffusion coefficients into account (Hansen et al., 2018; Rocha et al., 2019). 

Our analysis method allows the quantification of fast kinetic transitions inside living 

cells with state lifetimes in the 1 ms to 1 s range opening a temporal range at which 

many DNA screening interactions are expected to take place (Elf et al., 2007). So 

far however, quantifying these interactions has been limited due to a lack of 

appropriate analytic and experimental methods. We are convinced that anaDDA will 

offer the means to determining fast kinetics in vivo which will be key to uncover and 

understand the behaviour of biomolecular complexes in cells. 
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Figure S1. The effect of track length, localization error and frame rate on the shape of 

D* distributions. (A) D* distributions for different number of steps within a single trajectory, 

simulated (grey boxes) and DDA predicted distributions (black line) for 1-8 number of steps. 

Simulation parameters: kon*  = 0.2 frame-1, kon*  = 0.2 frame-1, Dfree = 4 µm2/s, σ = 30 nm (localisation 

precision) and n = 50.000. (B) D* distributions for different localization errors and frame rates. 

Increasing the framerate shifts the peak of the bound population left to lower D* values and 

increased localization errors shift this peak right to higher D* values. At low frame rates, due to 

time averaging, the combined distribution of two states merge towards a single peak.  Simulation 

parameters: kon*  = 0.02 frame-1, kon*  = 0.02 frame-1, Dfree = 2 µm2/s and n = 50.000. The Kolmogorov-

Smirnov test statistic (DKS) is indicated at each histogram. 
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Figure S2. The effect of small data size and tracking errors on the extraction of 

parameters (A-C) Same as Figures 2D-F but with 1.000 tracks instead of 50.000 tracks. (D-F) 

Same as Figures 2D-F but with increasing particle densities. The simulations were modified in order 

that multiple particles were present in the same area at the same time point and therefore had a 

probability of being erroneously linked. The extraction accuracy was also compared to SMAUG and 

vbSPT for the highest tested density (0.25 localizations/µm2). The reference (yellow) indicates the 

standard simulation (without tracking errors) run elsewhere in the manuscript. Tracking was done 

with algorithms described previously (Crocker and Grier, 1996) and a tracking window of 0.8 µm. 

Other parameters included in all figures were: kon*  = koff, Dfree = 4 µm2/s and σ = 30 nm.  
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Figure S3. Model selection for multiple states and parameter extraction of systems 

with more than one mobile state. (A) The number of states extracted from vbSPT in a 

simulated two-state system. After removing restrictions on the maximum amount of states in vbSPT, 

the number of states fitted under some conditions differed from the amount of states modelled (2 

states). Indicated are which simulated replicates contained which number of states (dark red: 2 

states, light red: 3 states and yellow 4 states. (B) Result of fit with two species on a simulation 

containing only a single species kon*  = koff = 0.2 frame-1, DFree = 4 µm2/s, σ = 30 nm and step number 

4. (C) D* distribution for a system with two mobile states, simulated (grey boxes) and DDA 

predicted distributions (black line). Parameters used were: kon*  = koff = 0.2 frame-1, D1 = 1 µm2/s,  

D2 = 4 µm2/s, σ = 30 nm and step number 4. (D-G) Same as Figures 2D-F but with two mobile 

states (which both are estimated from the data). Parameters used were kon*  = koff, D1 = 1 µm2/s,  

D2 = 4 µm2/s and σ = 30 nm. 
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Figure S4. Distributions of a population of cells with uniform and variable cell size. The 

cell shapes were either spherical (left) or rod-shaped (right; radius to length ratio is 1:8). The average 

radius for uniform (upper row) and variable (lower row) cell sizes was the same: rconfined  =

 �5Dfreet. For the variable cell size, 60% of the cells were simulated with the same size as the 

average, whereas for 20% of the cells were simulated 25% smaller and for 20% of the cells were 

simulated with 25% larger cells. Further parameters used were: kon* = 0.02 frame-1, kon*  = 0.02 frame-

1, Dfree = 4 µm2/s, σ = 30 nm and dt = 0.01 s. The Kolmogorov-Smirnov test statistic (DKS) is 

indicated at each histogram.  
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Figure S5. DNA polymerase histogram for tracks with a step number of 2 steps. The 

same condition and fitting parameters as for Figure 5A were used except that a two-step tracks are 

shown here. The maximum step size 5 pixels (0.6 μm) that was initially applied to this dataset results 

in a discontinuous distribution, which is correctly captured by the ana-DDA fit. Data from previous 

study (Uphoff et al., 2013). 
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Derivation of D* distributions of localization error 

As mentioned in the methods section, the D* distribution of localization error can 

be described by a summation of correlated gamma random variables. The extend by 

which the localization error affects the correlation of sequential steps can be 

quantified by calculating the correlation coefficient ρij = 〈x, y〉/σxσy and the 

covariance of sequential steps as derived by Berglund(Berglund, 2010)  

〈∆xi,∆xj〉 = 2DR∆t- σ2 (54) 

for |i-j| = 1, 

where R is the motion blur coefficient caused by movement of the particle during 

the illumination time and D is the diffusion coefficient. We assume further that 

measurements were taken with very short illumination pulses leading to R 0. We 

further convert equation 20 to MSD notation 

〈∆xi2,∆xj2〉 = 〈∆xi∆xj〉2 = σ4. (55) 

After converting to two dimensions and assuming that ∆x and ∆y are independent, 

we get 

〈∆xi2+∆yi2,∆xj2+∆yj2〉 = 4〈∆xi∆xj〉2 = 4σ4. (56) 

To calculate the correlation coefficient ρij, we use the following expression for the 

standard deviation of the MSD in two dimensions(Michalet, 2010) 

σMSD = 4DΔt + 4σ2, (57) 

leading to 

ρij =
〈∆xi2+∆yi2,∆xj2+∆yj2〉

σMSD,i σMSD,j
=

4σ4

(4DΔt + 4σ2)2. (58) 

 

For most applications DΔt > σ2 and ρ can be neglected. However, for immobile 

particles DΔt = 0, and ρ = 4σ4

(4σ2)2 = 1/4. For a number of n measured steps with 

localization error of an immobile particle, the correlation matrix ρ is therefore given 

by  

ρ =  

⎣
⎢
⎢
⎢
⎡

1 1/4 0 0 …
1/4 1 1/4 0 …

0 1/4 1 1/4 …
0 0 1/4 1 …
… … … … …⎦

⎥
⎥
⎥
⎤
.  (59) 
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The summation of gamma random variables given a certain correlation matrix has 

been previously derived in terms of confluent Lauricella series(Paris, 2011). Using 

the definitions above, this equation can be written as 

fD(x|0, n) = Φ2(1, . . , . . ,1; n; - y
λ1

, . . , . . , - y
λn

) x-1+n/det (A)Γ(n), (60) 

where Φ2 is the confluent Lauricella function, λ1-λn are the eigenvalues of the 

matrix A = B ⋅ B, where B is an n x n matrix with diagonal values σ2, and C is an n 

x n matrix with values Cij = �ρij. 

This summation, for each number of measured steps n is the modified distribution 

for immobile particles taking into account the correlation between sequential 

measured displacements. To implement this distribution in the calculation of our 

total D distributions, we subtract the fraction of immobile particles after n time steps 

(WcontS1(tS1 = 4tf), Eq.5 ) multiplied with the distribution of expected D* for n 

time steps fD(x|0, n) (Eq. 1) and replace it with the same fraction of immobilized 

particles multiplied with the distribution calculated based on the Lauricella series. 

The calculation of confluent Lauricella series was implemented from MATLAB 

code described in Martos-Naya et al. (2016)(Martos-Naya et al.).  

 

The equation above can be further refined to experimental data, if there is a large 

difference in localization error between particles. In that case, there is another 

correlation factor due to the difference in brightness/focus of particles. As some 

particles might show a dynamic brightness, e.g. by diffusing in and out the 

excitation/detection focus, localizations of this track will have a higher precision the 

brighter the emission of the particle is, altering the correlation matrix to  

ρij = 1  for i = j, 

ρij =
1
4

+
3
4

r  for |i-j| = 1, 

ρij = r  for |i-j| > 1, 

where r is the correlation coefficient between two steps within the same track not 

sharing any localizations (|i-j| > 1). We found that this correlation coefficient can 
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be experimentally determined by measuring correlation of displacement of 

immobilized particles, or by measuring the correlation of estimated localization 

errors within tracks. This can be done by making a matrix in MATLAB where the 

rows are the different tracks and the columns are either the different step size of 

immobilized particles or the estimated localization errors. The built-in function 

coerrcoef then automatically calculates the correlation coefficient of this dataset.  
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Derivation of confinement corrections  

The effective measured MSD given a diffusion coefficient D and a timestep ∆t have 

been previously derived for a spherical geometry in multiple dimensions(Bickel, 

2007), from which we derived the effective diffusion coefficient given the geometry 

and the real diffusion coefficient for spherical or rod-shaped geometries. First, the 

authors defined the zeros αm at which j1' (αm) =  0, with j1'  being the derivative of 

the spherical Bessel function of the first kind. This can be rewritten as 

(αm
2-2)sin (αm) + 2αmcos (αm) =  0. (61) 

Subsequently the effective measured MSD within a spherical confined space of 

radius r is equal to 

MSD = r2 � 
6
5

-12 � e-αm
2tD
r2

1
αm2(αm2-2)

∞

m=1

�. (62) 

This infinite series converges to zero. We therefore used the first 10.000 terms for 

calculation as a reasonable approximation. Because the previous equation refers to 

the three-dimensional MSD we use the following relation to calculate the observed 

diffusion coefficient we divide by 6t, 

Dobs =
MSD

6t
=

r2

6t
� 

6
5

-12 � e-αm
2tD
r2

1
αm2(αm2-2)

∞

m=1

�. (63) 

We can define the above equation as a function to calculate the observed diffusion 

given a certain radius, frame time and diffusion coefficient in the presence of 

spherical confinement 

Dobs = fspherical(r, t, D). (64) 

We then substitute fD(x|D, 1) for fD(x|Dobs, 1) and use equation 12 to calculate the 

distribution under any number of steps and given a koff and kon* .  

 

For rod geometries, there is no analytically derived solution available. However, we 

can combine the spherical derivation with a derivation in the same study for circular 

2D geometries. In this geometry, the authors defined zeros βm of the function 

J1' (βm) =  0, where J1'  is the derivative of the Bessel function of the first kind. 
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Subsequently, the effective measured MSD within a circular confined space of 

radius r is equal to 

MSD = r2 �1-8 � e-αm
2tD
r2

1
αm2(αm2-1)

∞

m=1

�, (65) 

which we can again convert to a function to calculate the observed diffusion 

coefficient, but now as the MSD is two-dimensional, we divide by 4t 

Dobs =
MSD

4t
=

r2

4t
�1-8 � e-αm

2tD
r2

1
αm2(αm2-1)

∞

m=1

 � = fcircular(r, t, D). (66) 

To calculate the effective measured MSD in a rod-shaped geometry, we split the cell 

in two parts: the hemispherical (consisting of two hemi-spheres) and the cylindrical 

part. If the cell is much longer than it is wide the cylindrical part dominates. For 

diffusion within a cylinder, movement along the cell length is not restricted, whereas 

movement along the width of the cell is constrained as given by equation 31. If the 

cell is as long as wide, we have a spherical cell for which the diffusion is described 

by equation 28. For cells featuring intermediate aspect ratios, we can calculate the 

ratio of these two domains via the ratio of their volumes 

Vtotal = Vcylindrical + Vhemi-sphere = πlr2 +
4
3
πr3, (67) 

where r is the radius of the cell width and l the length of the cylindrical part of the 

rod-shaped cell. The observed diffusion coefficient along the cell length, Dobs,x is 

not being restricted in the cylindrical part. The observed diffusion coefficient along 

the cell width Dobs,y on the contrary is restricted within the cylindrical part. 

Therefore, we separately calculate these two observed diffusion coefficients  

Dobs,x(r, t, D) =
Vspherical

Vtotal
fspherical(r, t, D) +

Vcylindrical
Vtotal

D, (68) 

Dobs,y(r, t, D) =
Vspherical

Vtotal
fspherical(r, t, D) +

Vcylindrical
Vtotal

fcircular(r, t, D). (69) 

 

For the last step, we require a probability distribution function of the sum of the two 

distributions Dobs,x and Dobs,y and go back to the distribution of x 

x ~ N�0,�2Dobs,xt�, (70) 
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representing a normal distribution with mean of zero and σ = �2Dobs,xt. The 

distribution of the squared displacement is therefore a chi-square distribution  

X2
2Dobs,xt� = X2

σ2� ~ χ12. (71) 

The same holds for y with 

Y2
2Dobs,yt� ~ χ12. (72) 

To get to the distribution of Dobs we calculate 

Dobs = Dobs,x
2� �X2

2Dobs, xt� � +
Dobs,y

2� �Y2
2Dobs, yt� � =

X2 + Y2

4t
. (73) 

Consequently, the distribution of Dobs is a summation of two chi-square variables 

weighted by the different diffusion coefficients. The formula for this summation was 

given in a previous study(Bausch, 2013) for the following case: Let X, Y~χk2 two 

independent and identically distributed chi-square random variables with k degrees 

of freedom. Let Z ≔ aX + bY, then the density function fz is given by: 

fz = θ(z)
1

(4ab)
k
2
�

a-b
8ab

�
1
2-k2 Γ �

1
2 + k

2�
Γ(k) e-a+b4abzx

k
2-12Ik

2-12
�

b-a
4ab

z� (74) 

In our case, where k = 1, this equation is simplified to 

fz =
1

(4ab)
1
2

exp �-
a + b
4ab

z� I0 �
b-a
4ab

z�, (75) 

where I0 is the zeroth order modified Bessel function of the first kind. When we 

substitute Dobs,x
2�  and 

Dobs,y
2�  for a and b respectively (combine equation 39 and 

41), we obtain the following equation for the summation of two diffusion 

coefficients in two dimensions 

fD =
1

�Dobs,xDobs,y�
1
2

exp �-
1
2

(Dobs,y-Dobs,x)x� I0 �
1
2

(Dobs,y-Dobs,x)x� (76) 

where x is the measured displacement as in equation 1. This distribution can then be 

used as substitution for fD(x|D, 1) and we can use equation 12 to solve the 

distribution under any number of steps and given a koff and kon* .. 
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Abstract 

Background 

The adaptive CRISPR-Cas immune system stores sequences from past invaders as 

spacers in CRISPR arrays and thereby provides direct evidence that links invaders 

to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas 

biology, including target requirements such as the protospacer adjacent motif 

(PAM). However, studies have so far been limited by a low number of mapped 

spacers in the database. 

Results 

By using vast metagenomic sequence databases, we map approximately one-third of 

more than 200,000 unique CRISPR spacers from a variety of microbes and derive a 

catalog of more than two hundred unique PAM sequences associated with specific 

CRISPR-Cas subtypes. These PAMs are further used to correctly assign the 

orientation of CRISPR arrays, revealing conserved patterns between the last 

nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas 

subtype-specific preferences for targeting either template or coding strand of open 

reading frames. While some DNA-targeting systems (Type I-E and Type II systems) 

prefer the template strand and avoid mRNA, other DNA- and RNA-targeting 

systems (Type I-A, I-B and Type III systems) prefer the coding strand and mRNA. 

In addition, we find large-scale evidence that both CRISPR-Cas adaptation 

machinery and CRISPR arrays are shared between different CRISPR-Cas systems. 

This could lead to simultaneous DNA- and RNA targeting of 

invaders, which may be effective at combating mobile genetic invaders.  

Conclusions 

This has broad implications for our understanding of how CRISPR-Cas systems 

work in a wide range of organisms that have never previously been studied. 
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Background 

The adaptive CRISPR-Cas immune system provides heritable defence in the form 

of spacers, which are short nucleic acid sequences (28-36 bp) obtained from previous 

encounters with mobile genetic elements (MGE). These are stored in the bacterial 

or archaeal chromosome in CRISPR arrays (Jackson et al. 2017). CRISPR arrays 

contain spacers flanked on both sides by repeat sequences (~30 bp) and are 

transcribed as a single RNA, and subsequently processed into multiple crRNAs. 

crRNAs can be loaded into effector complexes formed by Cas proteins, that 

subsequently scan the cell for nucleic acid targets. Base pairing between the spacer 

and target nucleic acids (protospacer) allows the specific binding of effector 

complexes to targets, which are then destroyed (Brouns et al. 2008; Marraffini 2015). 

CRISPR-Cas systems are widespread in bacteria and archaea, with 42% of bacterial 

and 85% of archaeal genomes containing a CRISPR-Cas system (Makarova et al. 

2020). 

Both acquisition of new spacers (CRISPR adaptation) and target inactivation 

(CRISPR interference) are carried out by specialized sets of Cas proteins. Cas genes 

likely have originated from Casposons (Krupovic et al. 2014), a family of self-

replicating transposons, and have since evolved many new genes and gene variants 

(Makarova et al. 2020). Based on the evolutionary classification of their cas genes, 

there are two classes of CRISPR-Cas systems. Class I systems contain crRNA-

effector complexes made up of multiple subunits, while effector complexes of Class 

II systems are encoded by a single cas gene (Makarova et al. 2020). The two classes 

are further divided into six types, where each type is further divided into subtypes. 

The different types and subtypes do not occur homogeneously in nature, with Class 

II systems being nearly exclusive to bacteria (Makarova et al. 2020). More than 95% 

of CRISPR-Cas systems found in complete genomes are one of the first three types: 

Type I, II or III (Pourcel et al. 2020).  

CRISPR-Cas systems can be studied on a mechanistic or on a functional level. 

Mechanistic features describe how CRISPR-Cas systems are able to fulfil their role. 

The mechanisms through which CRISPR-Cas systems operate are diverse. For 

example, some CRISPR-Cas systems defend the cell by targeting DNA (e.g. Type 
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I, II, IV and V), whereas other CRISPR-Cas types target invader RNA (e.g. Type III 

and VI) (Makarova et al. 2020). Another important mechanistic feature is the 

presence of a protospacer adjacent motif (PAM), which DNA-targeting systems 

require to differentiate self from non-self (Gleditzsch et al. 2019; Hale et al. 2009; 

Mojica et al. 2009). Furthermore, the PAM is an important feature in the target 

search process of DNA-targeting systems within the cell (Vink et al. 2020; Xue et 

al. 2017). This motif sequence flanking the crRNA-pairing site, between one and 

five nucleotides long, not only differs between subtypes, but can also differ between 

cas gene orthologs within the same subtype, for example Cas9 variants (Gasiunas et 

al. 2020).  

An important aspect of the PAM is the moment of selection. While a more stringent 

PAM selection is achieved during the adaptation stage by Cas1-Cas2 and sometimes 

Cas4 (Kieper et al. 2018; Lee et al. 2018; Shiimori et al. 2018), , PAM selection 

during the CRISPR interference phase by the crRNA-effector complex will also 

occur (Cooper, Stringer, and Wade 2018; Hayes et al. 2016; Musharova et al. 2019). 

This led to the distinction of PAM into SAM (Spacer acquisition motif) and TIM 

(target interference motif) (Shah et al. 2013). In the above case where acquisition 

modules are more stringent, the PAMs that are observed are usually mostly 

determined by the acquisition machinery (SAM). However, in other situations the 

observed patterns might have been the result of selection for a working TIM. For 

example most of the spacers selected for in RNA targeting systems were found to be 

acquired at random(Artamonova et al. 2020), even though spacers present in natural 

CRISPR arrays often show a bias towards the coding strand (Cao et al. 2016; 

Goldberg et al. 2014), suggesting that the bias emerged from effective interference 

spacers through natural selection. On the other hand, there are systems that contain 

a reverse transcriptase fused to Cas1 (RT-Cas1) (Silas et al. 2016a) which can 

already select spacers from the correct strand. In experimental settings, these effects 

can be separated, but in bio-informatic analyses of natural spacers, the resulting 

effect is a combination of acquisition selection and interference selection.  

Functional features describe what purposes CRISPR-Cas systems fulfil within the 

cell. There is evidence for some CRISPR-Cas functioning beyond adaptive 

immunity (Westra, Buckling, and Fineran 2014; Wimmer and Beisel 2020), however 
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even within the context of an adaptive immune system, CRISPR-Cas systems can 

serve different roles (e.g. as a first line of defence, or as an activator of other immune 

system pathways). This can be a reason why 23% of genomes with CRISPR-Cas 

systems contain more than one subtype (Bernheim et al. 2020), despite their costs 

(Nobrega et al. 2020; Vale et al. 2015). There are preferred combinations of certain 

subtypes, suggesting that there is an added benefit of having a specific combination 

of different subtypes present in the cell. The added benefit might consist of 

cooperativity between systems by formation of different lines of defence, avoidance 

of type-specific CRISPR inhibition by MGE or coupling of abortive infections 

mechanisms (Bernheim et al. 2020; Hoikkala et al. 2021; Pawluk, Davidson, and 

Maxwell 2017; Silas et al. 2017). On the other hand, some CRISPR-Cas systems are 

specialized to protect from certain invaders, which may require multiple co-

occurring systems to be present in a single genome to protect from different types of 

invaders. Type IV systems that co-occur together with Type I systems primarily 

target plasmids (Pinilla-Redondo et al. 2020) and Type III systems target a class of 

phages that other Type I and V systems cannot (Malone et al. 2020; S. D. Mendoza 

et al. 2020), indicating that specialization in targets is a potential reason for co-

occurrence of different subtypes. Through cooperation and specialization, co-

occurring subtypes can function complementarily.  

The functional and mechanistic features described above have been demonstrated 

experimentally for several microbial model systems, and these are often of specific 

interest to applications such as genome-editing. High-throughput assays to identify 

the PAM of CRISPR-Cas systems have been developed, but remain limited 

compared to the total range of CRISPR-Cas systems accessible bio-informatically 

(Gasiunas et al. 2020; Marshall et al. 2018; Walton et al. 2021). The full diversity of 

PAM and other mechanistic and functional features of CRISPR-Cas systems in 

nature remain understudied. To improve our knowledge on mechanistic and 

functional features of single and co-occurring CRISPR-Cas systems beyond the 

model organisms, we relied on vast metagenomic sequence databases to 

computationally find targets for spacers from diverse bacteria and archaea. This 

approach was recently taken to study phage-host interactions (Camarillo-Guerrero 
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et al. 2021; Dion et al. 2021; Soto-Perez et al. 2019). We mapped a third of the 

unique spacers to a target in publicly available metagenome sequence databases. We 

used the flanking regions of found spacer targets to build an initial PAM catalog of 

more than two hundred unique PAMs, and for more than half of the spacers in 

CRISPRCasdb (Pourcel et al. 2020). This was then employed to assign the correct 

orientation of transcription of CRISPR arrays, giving access to target strand 

information of invaders, and uncovering conserved links between repeat ends and 

PAM. Through the quantification of the spacers targeting template or coding strands 

we found that the preference for one of these strands is subtype-specific and 

indicates that some DNA-targeting systems (Type I-E, Type II-A and Type II-C) 

avoid RNA while other DNA- and RNA-targeting systems preferentially target RNA 

(Type I-A, Type I-B and Type III systems). We found spacers in co-occurring 

CRISPR-Cas systems to be compatible with both PAM and strand requirements, 

indicating that they may be shared between systems and will lead to both DNA and 

RNA targeting.  Lastly, we identified three categories of multi-effector compatible 

spacers, which meet the PAM and strand requirements of co-occurring DNA and 

RNA-targeting systems.  

Results 

Blast analysis finds matches for 32% of spacers from 

CRISPRCasdb 

The first step in our analysis was to select a set of CRISPR spacers and find potential 

matches to these sequences in DNA sequence databases. To this end, we selected 

the previously described CRISPRCasdb, which contained all spacers from 4266 

complete bacterial and archaeal genomes (Pourcel et al. 2020). The spacers from 

CRISPRCasdb were then mapped to sequences from the NCBI nucleotide database 

as well as metagenomic databases with a high number of prokaryotic and virus 

sequences. Matches between spacers and sequences from the databases were found 

using BLASTn (Altschul et al. 1990). The matches were then filtered using an 

optimized approach which increased the number of matches while keeping the false 
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positives to a minimum (Methods, Additional file 1: Fig. S1A). As an indication of 

the false positive rate, we determined that for the matches found in the NCBI 

nucleotide database, 1% were eukaryotic or eukaryotic viral sequences,  10% were 

prokaryotic viral sequences and the majority (88%) corresponded to prokaryotic 

genome sequences (Additional file 1: Fig. S1A). This specificity towards 

prokaryotic sequences in a database that contains predominantly (83%) eukaryotic 

sequences shows that even though false positive hits cannot be excluded, the false 

positive rate is low. 

From the 221,850 total unique spacers analysed, this optimized filtering approach 

resulted in 72,099 spacers (32% of total) with at least one match (Figure 1A), of 

which 31,327 spacers (15% of total) had a match in the NCBI nucleotide database 

(Figure 1B). For more than 25,000 of these, the best hit was completely identical to 

the spacer and for the vast majority (60,294) the total number of mismatched 

nucleotides was three or less (Figure 1C). Also in most cases more than one hit was 

found per spacer (Figure 1D).  

The fraction of spacers with matches differed greatly between different genera, with 

Streptococcus, Pseudomonas and Staphylococcus among the genera with the highest 

fraction of matches (77%, 69% and 64% respectively) and Calothrix, Nostoc and 

Thermosipho among the lowest (4%, 4% and 3% respectively) (Figure 1E). Genera 

with high spacer matches typically occurred in well-sampled environments (human-

associated), whereas the genera with lower matches occurred in what appear to be 

poorly sampled environments (soil, oceanic). A previous study (Shmakov et al. 

2017) which looked for spacer matches in the NCBI nucleotide database found 

matches for 7% of spacers, using a more stringent 95% sequence identity and 95% 

coverage cut off as filtering thresholds. This difference in the fraction of spacers 

with matches in the NCBI nucleotide database indicates the added benefit and 

importance of our more sensitive filtering process. Additionally, the number of 

sequences in the database has increased in recent years from ~230 billion to ~700 

billion bases. The most important factor for the increase in the number of spacers 

with matches however was the use of metagenomic databases, as the majority of 
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unique spacer matches derived from these databases (Figure 1B, Additional file 1: 

Fig. S1B).   
Figure 1. Spacer targets 

found with BLAST. (A) 

Computational pipeline for 

finding spacer targets. Targets of 

72 099 spacers were found using 

blastn and filtered based on the 

fraction of spacer nucleotides 

matching a target sequence (See 

methods). (B) Venn diagram of 

spacers with matches in the NCBI 

nucleotide database versus 

metagenomic databases. (C) 

Plotted is the number of unique 

spacers (total 72,099) for which a 

match was found. Generally 

spacers < 4 mismatches fall within 

>90% identity threshold and are 

selected directly, and spacers 

with 4 or more mismatches 

generally within the >80% and 

<90% threshold and were 

selected in case another spacer 

from the same genus targeted the 

same sequence.  (D) Number of 

sequences targeted by each 

spacer. Due to redundancy in the 

datasets, some of these 

sequences can be identical.  (E) 

Fraction of spacers with hits for 

the ten genera with the highest 

and ten genera with the lowest 

fraction of hits. Only genera with 

at least 500 spacers are shown. (F) Number of spacers per subtype. The subtype of a spacer was 

predicted based on similarity of the repeat sequence to repeats with a known subtype (See 

methods). (G) Fraction of spacers with hits per subtype.  
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To find the subtypes of the spacers, we aligned the CRISPR repeat sequences to 

repeat sequences with known subtypes, based on the method described by Bernheim 

et al., 2020. Except for subtype II-B for which we extracted 453 spacers, all analysed 

subtypes from Type I, II and III systems contained more than a thousand spacers 

(Figure 1F). An exceptionally high fraction of spacers with matches was found for 

subtypes II-A (63%) and II-C (53%), while subtype I-A, subtype I-D, and Type III 

subtypes had notably lower fractions of spacer matches than average (15%, 11% and 

20% respectively; (Figure 1G). The differences in fractions of matches found 

between subtypes may be due to their phylogenetic distributions, where well-

sampled genera have different subtypes than poorly sampled genera (see above). 

However, even within well-sampled genera the fraction of spacers with matches 

differs between subtypes, with Type III subtypes having fewer hits on average (22%) 

than other subtypes (38%). The biases that we observed for both the fraction of hits 

in certain genera and subtypes remained true when we only used perfectly matching 

spacers (Additional file 1: Fig. S2). Overall, the large number of spacers with 

matches revealed sets of sequences that were targeted by each CRISPR-Cas subtype, 

which were then used to study mechanistic and functional aspects of CRISPR-Cas 

defence. 

Alignment of protospacer flanks reveals 220 unique subtype-

specific PAMs covering 55% of spacers 

One of the important mechanistic features of CRISPR-Cas defence for DNA 

targeting systems (type I, II, IV and VI) is PAM recognition (Deveau et al. 2008; 

Horvath et al. 2008; Mojica et al. 2009; Shah et al. 2013). The first PAM was 

discovered in the alignment of bacteriophage sequences that were targeted by 

Streptococcus spacers (Bolotin et al. 2005). Later studies revealed more PAMs or 

the effect of mutant versions of the PAM (Anders et al. 2014; Fischer et al. 2012; 

Leenay et al. 2016; Musharova et al. 2019). We expand on these known PAMs that 

are limited to well-studied organisms by predicting new PAMs based on the 

alignment of the flanks of spacer matches (protospacers). The potential of this 
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method for large-scale PAM predictions was shown in a previous bioinformatics 

study (Mendoza & Trinh, 2018), with a key limiting factor being the number of 

spacers with matching targets. It was also previously shown that PAMs, acquisition 

machinery and repeat clusters co-evolve (Shah et al. 2013). We therefore increased 

the number of spacers with matches within one group by clustering spacers based 

on repeat similarity (>90% nucleotide identity and same repeat length). The 

sensitivity of PAM detection depends on the information content of the nucleotide 

positions of the PAM (signal) compared to the information content of the other 

flanking positions (noise). We found that clustering based on repeat similarity 

increased signal to noise ratio for PAM detection compared to clustering based on 

species-subtype (e.g. Escherichia coli I-E) or genus-subtype (e.g. Pseudomonas I-

F). We furthermore found that spacers originating from organisms with very high or 

low GC-contents, displayed increased noise. We thus further increased the signal-

to-noise ratio by adjusting the expected frequency of flanking nucleotides based on 

the average GC-content of the spacers within the cluster (Additional file 1: Fig. 

S3A). The flanks of unique hits within each cluster can subsequently be aligned, and 

with enough spacer hits, the information content reliably reveals the PAM sequence 

and position relative to the protospacer (Figure 2).We further checked whether our 

filtering approach leads to optimal PAM prediction and found that with stricter hit 

requirements (95-100% identity), the signal-noise ratio of PAM prediction 

decreased (Additional file 1: Fig. S3B). This was caused by a lower number of 

spacers per cluster and the number of hits per spacer.  

 

This clustering approach together with our large number of hits led to a PAM 

prediction for 123,144 spacers (55% of all spacers; Additional file 2 and 3). For Type 

I and Type IV the PAM is known to occur in the 5' (upstream) flank of the 

protospacer, while Type II systems have their PAM in the 3' (downstream) flank of 

the protospacer (Jackson et al. 2017) (Figure 2A). This well-characterized feature of 

the PAM therefore allows the unique possibility to correctly orient CRISPR arrays 

given the rules described above. The orientation of arrays is an important feature to 

properly identify the chronology of acquisition events, the CRISPR leader sequence 

and potential RNA targeting. Tools have been developed to predict these bio-
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informatically (Alkhnbashi et al. 2016; Biswas, Fineran, and Brown 2014; Milicevic 

et al. 2019). However, these tools in some cases contradict each other, implying that 

this prediction is not straightforward and fully accurate (Houenoussi et al. 2020; 

Milicevic et al. 2019).  

 

To measure the accuracy of CRISPR array orientation predictions, we compared 

predictions to experimentally determined orientations from a recent study using 

transcriptome sequencing (TOP) to determine the direction of transcription of arrays 

(Houenoussi et al., 2020). The 7968 experimentally inferred spacer orientations were 

the same as our predictions in 85% of cases, while only 33% of TOP predicted spacer 

orientations were the same as the CRISPRCasdb prediction (Additional file 2) which 

is a combination of CRISPRdirection and a GC-content based leader prediction tool 

(Biswas, Fineran, and Brown 2014; Couvin et al. 2018). For the 15% where TOP 

did not match our predictions, both CRISPRCasdb and our PAM based orientations 

predicted the same orientation, indicating that some of the TOP orientation 

prediction based on transcription data might not have been correct. When we 

compared the predictions of CRISPRCasdb with our PAM-based orientations 

directly, we found a 88% match between all spacers. We furthermore found that 

many Type I and Type III repeats for which we predicted the orientation based on 

the PAM, contained the 3'-end motif ATTGAAAC of their repeat (Additional file 1: 

Fig. S4) described previously (Lange et al. 2013). This conserved motif is 

transcribed and forms the 5' handle of the crRNA and is held by crRNA-effector 

complexes. Altogether, these findings indicate that the position of the PAM is a 

reliable indicator for the orientation of the CRISPR array, and can be used to 

annotate CRISPR array information, giving access to features such as spacer 

acquisition chronology and strandedness. 
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Type I PAMs are conserved within repeats, Type II PAMs are 

genome specific 

Sequence logos of alignments of Type I (Figure 2A) recover previously known 

PAMs including the subtype I-E AWG PAM found in Escherichia and subtype I-F 

CC PAM found in Pseudomonas (Leenay and Beisel 2017), but also previously 

undescribed PAMs. Out of the 43 unique PAM-subtype combinations, 25 were not 

found in previous publications (Table 1). Interesting examples of novel PAMs 

include a CTT PAM in I-C systems (compared to the more canonical TTC) and a 

CCA PAM in I-F systems (compared to the more canonical CC). They are generally 

short (2-3 nt) and are well-defined (high information content/bit score). Diversity is 

highest in I-B systems (11 unique PAMs) and lowest in I-F systems (3 unique 

PAMs).  

 

For Type II PAMs, we found both short, well defined PAM motifs (such as 

Streptococcus II-A) as well as longer PAMs with less conserved PAM motifs 

(Figure 2B). Poorly conserved PAM motifs could be caused by a variation of PAMs 

used within the same repeat cluster or by the promiscuity of PAM recognition in 

Type II systems (Crawley et al. 2018). In previous work, it was shown that in some 

cases Cas9 proteins that use the same repeat can have different PAMs (Gasiunas et 

al. 2020; Magadán et al. 2012). We questioned whether our clustering of spacer hits 

based on repeat sequence would result in the low conservation scores in some PAM 

motifs. When we based our PAM motif predictions on spacers coming from a single 

genome, we recovered different PAMs for Type II systems that use the same repeat 

(Additional file 1: Fig. S5), whereas for Type I systems we always recovered the 

same PAM for each genome within a repeat cluster. We conclude that repeat 

sequence clustering is not an option and therefore only determined PAMs from 

spacers from individual genomes in Type II systems. From this genome-based 

clustering of spacers, unique PAM sequences were recovered from 302 genomes in 

Type II systems. For the few examples where the genomes from our database were 

characterized, the PAM prediction matched previous reported PAMs.  
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Figure 2. PAM determination of repeat clusters.  (A) Sequence logos of upstream flank of 

hits to spacers from Type I repeat clusters. Sequence logos of protospacer flanking regions per 

repeat cluster. Y-axes show information content per nucleotide position. Label includes subtype of 

the repeat cluster and a representative genus in which this repeat cluster is found. To (B) Same as 

(A) but for downstream flanks of spacers from Type II repeat clusters. (C) Same as (A) but for 

upstream flanks from Type III repeat clusters. (D) Frequency of PAM determined repeat clusters 

with more than 25 hits. Nucleotide positions were considered part of PAM with a bitscore of at 

least 0.4 and 10 times above the median bitscore of the 23 nucleotides surrounding the hits. PAM 

size was at least 2 nucleotides. (E) Frequency of PAM determined repeat clusters for Type III systems 

that contain Cas1-2 vs Type III systems that lack Cas1-2. Additional file 5 contains the PAM for each 

strain-subtype combination.  

 

Overall, the diversity in PAM motifs in Type II systems is higher than in Type I 

systems. For Type I, we found hits for 56.026 spacers, from 588 different genera in 

34 different phyla. For Type II systems we found hits for 9883 spacers from 149 

different genera in 14 different phyla. Based on these numbers you would expect the 
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number of unique Type I PAMs we recovered to be higher than Type II PAMs. 

However, in total we find 43 unique PAM-subtype combinations for Type I 

compared to 134 unique PAM-subtype combinations for Type II systems.   

43% of Type III repeat clusters contain a PAM 

When investigating Type III repeat clusters, we found many devoid of a PAM. This 

is expected, as RNA-targeting systems do not require a PAM to find a target  (Figure 

2C), and rely on the Protospacer Flanking Sequence (PFS) to avoid self targeting 

(Deng et al. 2013; Elmore et al. 2016). Interestingly, other repeat clusters contained 

PAMs that appeared to be the same as Type I PAMs, which raised the question, why 

these clusters contained a PAM. We compared the PAM detection frequency for 

clusters with at least 25 unique spacer hits (Figure 2D). For Type I subtypes whereas 

for Type III systems the number of PAM-containing repeat clusters was lower, with 

Type III-A having the lowest (16%) and III-B the highest (56%) fraction of PAM-

containing repeat clusters in Type III systems. As it was previously shown that Type 

III systems often lack their own acquisition machinery (Makarova et al. 2015), we 

hypothesized that the PAM found in Type III repeat clusters originates from the 

spacer acquisition machinery that Type I systems share with Type III systems. We 

observed that the PAM frequency in Type III clusters that lack their own acquisition 

machinery is high (95%; Figure 2E), whereas the PAM frequency is low in Type III 

clusters that contain their own cas1-cas2 genes (8%). This supports the hypothesis 

that the PAM in Type III arrays originates from Type I spacer acquisition modules 

functioning in trans. Genomes with PAM-containing Type III systems can be found 

in Additional File 5.  

Conserved patterns between PAM and repeats 

PAMs usually differ from the ends of CRISPR repeats, which allows for self-nonself 

discrimination (Leenay et al. 2016; Mojica et al. 2009; Westra et al. 2013). Type III 

and other RNA-targeting CRISPR-Cas systems do not require a PAM, but many do 

require mismatching between the repeat end and the protospacer flanking sequence 

(PFS) (Johnson et al. 2019; Marraffini and Sontheimer 2010). Given these previous 
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observations, we wanted to investigate if there are conserved links between repeat 

ends and PAM of individual systems (Figure 3A), and whether Type III PAMs that 

originate from Type I spacer acquisition modules are also compatible with Type III 

PFS requirements.  

We collected all unique repeat-PAM sequence combinations in our dataset and 

compared the repeat nucleotide with the corresponding PAM nucleotide in each 

position. For Type I systems (Figure 3B) we found that the -3 and -2 nucleotide of 

the repeat can be a strong predictor of the corresponding PAM nucleotide, where a 

-3C in the repeat would lead to a -3A in the PAM, -3G to -3T, -3T to -3A. At the 

middle position, a -2C would lead to a -2A in the PAM. (Figure 3B). The most 

common -2 and -3 repeat nucleotide is an A, in which case the PAM nucleotide 

mostly is either a T or a C. For the -1 position, the nucleotide identity of the PAM 

sequence cannot be predicted directly from the repeat sequence.   
 

 
Figure 3. Relationship between repeat and PAM sequence. (A) Schematic of the analysis of 

PAM and repeat sequence. The nucleotide identity of the PAM in each position is compared to the 

nucleotide of the repeat. (B). PAM nucleotide frequency for Type I repeats. For each given repeat 

nucleotide position (indicated with coloured boxes) the PAM nucleotide (pie chart) for each unique 

PAM-repeat combination of our database. Number of occurrences is indicated above the pie chart 
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(n). (C). The frequency of matches (red) and mismatches (grey) between the PAM and the 

corresponding repeat nucleotide for each position in relation to the spacer. For Type II, the 

positions are compared on the other side of the spacer.  

For Type II systems, most nucleotide positions can accommodate two or three PAM 

nucleotides (Additional file 1: Fig. S6A). In +2 and +3 positions, the most common 

repeat nucleotide (T), accommodates either an A or G PAM nucleotide, which is 

analogous to the most common nucleotide in Type I systems (-3 and -2 adenine), 

which tends to co-occur with a C or T PAM nucleotide. For Type III systems, the 

variation of repeat nucleotides is smaller, but generally similar combinations are 

found as in Type I systems (Additional file 1: Fig. S6B). Overall, the most conserved 

repeat-PAM co-occurrence patterns are found in the -2 and -3 positions of the Type 

I and Type III arrays.  

These co-occurrence patterns suggest that in most cases the PAM that is used and 

selected for differs from the repeat. This holds true for most of the experimentally 

determined and previously predicted PAM sequences (Almendros et al. 2019; 

Garcia-Heredia et al. 2012; Kieper et al. 2018; Lillestøl et al. 2009; Lopatina et al. 

2019; Manica et al. 2011; Mojica et al. 2009). However previous studies have shown 

that in some cases, part of the repeat sequence is PAM-derived (Swarts et al. 2012). 

We then asked in what CRISPR-Cas subtypes the PAM matches the corresponding 

repeat nucleotide for each of the spacer flanking positions. When we counted the 

occurrence of a matching PAM, we found that this only occurred frequently in the -

1 position of Type I-C (35%) and Type I-E (48%; Figure 3C). We found that these 

matches are associated with repeats that have TTC PAMs in Type I-C and AAG 

PAMs in Type I-E, which could indicate that the C of Type I-C repeat sequences is 

PAM-derived, as was similarly demonstrated for the G of AAG PAMs in Type I-E 

(Swarts et al. 2012). 

In other positions and CRISPR-Cas types, >98% of the repeat-PAM combinations 

did not match each other, which shows that the general patterns between repeats and 

PAMs, and perhaps mechanism of self- vs non-self discrimination is conserved in 

all subtypes. In Type III systems all cases demonstrate mismatches between PAM 

and repeat, which is a requirement of functional Type III spacers (Johnson et al. 

2019; Marraffini and Sontheimer 2010). This finding demonstrates that the PAMs 
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of Type III array spacers acquired with Type I acquisition modules are compatible 

with PFS requirements of Type III systems.  

 

Strand bias for the template or coding strand is subtype-

specific 

Our method has revealed a large number of newly identified PAMs and has shown 

that Type III systems which lack their own acquisition machinery and co-occur with 

Type I systems, almost always contain a PAM. The presence of a PAM in these 

systems could enable Type I systems to use the spacers stored in Type III arrays as 

they are compatible with the PAM requirements of Type I effector complexes. 

Furthermore, Type III effector complexes could benefit from a PAM-selecting 

acquisition module, as it excludes spacers with repeat-PAM matches (Figure 3C).  

Besides the PFS, another requirement for type III spacers is that the spacer comes 

from the correct strand, as these complexes can only bind to the RNA transcripts. 

We wondered whether some species indeed use Type I and III dual functionality 

CRISPR arrays, as PAM-dependent DNA targeting and PAM-independent mRNA 

targeting are not mutually exclusive. We therefore asked whether spacers of DNA-

targeting systems are also compatible with Type III surveillance complexes, if they 

happened to be picked from the correct strand.  

To determine the potential ability of crRNA to target RNA, we measured the strand 

bias by counting the spacers that targeted the coding or template strand of predicted 

open reading frames (ORFs) (Figure 4A). As spacers targeting the template strand 

are unable to base pair the transcribed RNA, the fraction of spacers targeting the 

coding strand serves as an estimate of the RNA targeting ability of the crRNA. For 

example, in Moraxella IIIB arrays, a significant bias for the coding strand was found 

(88%, p<e-11) (Figure 4B). This bias allows Type III effectors carrying crRNA from 

those spacers to bind to their target RNA. However, also I-C spacers in Moraxella, 

for whose effectors this is not strictly required, show significant bias for the coding 

strand (p<e-3), indicating a selection for RNA-targeting spacers.   
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Figure 4. Template and coding strand targeting of spacers. (A) Schematic representation 

of a spacer targeting the template strand and a spacer targeting the coding strand inside an ORF. 

Spacers targeting the coding strand are also able to base pair with and target transcribed RNA. (B) 

Fraction of Escherichia spacers targeting template (blue) and coding (orange) strand by subtype. (C) 

Fraction of Moraxella spacers targeting template and coding strand by subtype. (D) Fraction of 

spacers targeting template and coding strand for Type I and Type IV subtypes. (E) Fraction of spacers 

targeting template and coding strand for Type II and Type III subtypes. (F) Fraction of spacers 

targeting template and coding strand for Type I. Spacers are grouped based on which other type of 

Cas effector genes are present in the genome. (G) Same as (F) but for Type II spacers. Significance 

of strand bias is calculated with a binomial test and a p-value<0.01 is indicated with an asterisk. 

Additional file 2 contains the strand targeted of each spacer and allows to extract the strand bias 

for each taxon.  

 

For Escherichia subtype I-E, 977 spacer matches inside ORFs were found, of which 

611 (63%) targeted the template strand (Figure 4C), showing a significant bias for 

targeting the template strand (p<e-14) potentially avoiding RNA. No significant 
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strand bias was found for Escherichia subtype I-F (43% template strand, p=0.11), 

suggesting that strand bias is CRISPR-Cas subtype-specific. 

Analysis of our complete dataset revealed general trends in the strand preferences 

for each subtype (Figure 4D, E). The strongest strand bias was found in Type III 

systems with an average of 65% of the spacers matching the coding strand (coding 

strand : template strand ~ 2:1). This result demonstrates that there is selection in 

Type III systems for spacers to target the transcribed RNA. This selection can 

originate at the adaptation stage by dedicated adaptation machinery selecting from 

RNA/coding strands such as RT-Cas1 (Silas et al. 2016b) or at the interference stage, 

where only functional RNA-targeting spacers are retained in the population 

(Artamonova et al. 2020).  

The strand biases we found are consistent with our curated CRISPR array orientation 

predictions, because an incorrect CRISPR array orientation prediction would 

obscure strand-specific targeting. Type I-A and Type I-B also displayed significant 

strand bias for the coding strand although at lower levels (60% and 55%; p<e-9 and 

p<e-14 respectively).  

Contrary to the Type III, Type I-A and I-B systems, we found a significant strand 

bias towards the template strand in in subtype I-E, Type IV and Type II systems, 

with the strongest bias found in subtype II-A (59%) and subtype I-E (57%). Given 

the high number of spacers in these groups the chance of observing this bias by 

chance is small (p <e-23 and p <e-69 respectively), again suggesting avoidance of 

RNA. 

Co-occurrence of Type I and Type III systems lead to PAM 

and strand targeting compatibility 

As we noticed that Type III spacers were compatible with Type I PAMs in multiple 

cases, we next asked whether Type I spacers are compatible with RNA targeting in 

microbes with co-occurring Type I and III systems. We measured the strand bias of 

Type I spacers in genomes containing either combination of Type I, Type II and 

Type III surveillance complexes (Figure 4F). No significant strand bias was found 
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for Type I spacers in the presence of Type I and/or Type II surveillance complexes. 

However, in the presence of Type I and Type III surveillance complexes, Type I 

spacers had a slight but significant coding strand bias (55%, p<e-14). This might be 

caused by increased selection pressure to keep RNA targeting spacers in the presence 

of RNA targeting surveillance complexes. This would suggest that spacers are 

selected to be compatible for both Type I and Type III effector complexes in such 

situations. For Type II spacers, the presence of Type III did not significantly change 

the strand bias (Figure 4G). Given the natural tendency of Type II spacers to bias 

towards the template strand (Figure 4E), these findings suggest that Type II spacers 

are less compatible with co-occurring Type III effector complexes than Type I 

spacers.  

Three distinct categories of co-occurring multi-effector 

compatible arrays exist 

The findings above indicate that subtype-specific preferences exist for either the 

template or coding strand of the DNA. These preferences might enable or preclude 

compatibility between the spacers of co-occurring subtypes. The subtype-specific 

preference of template targeting (e.g. in Type I-E and Type II) will reduce the 

number of effective spacers that can be used by co-occurring RNA-targeting 

systems, whereas subtypes with a preference for the coding strand (Type I-A, Type 

I-B) might make their spacers more compatible for RNA-targeting systems. We 

categorised all multi-effector compatible arrays that can be used by effector 

complexes from different subtypes. This means for co-occurring DNA-targeting 

systems these arrays need to have a PAM that can be used in both systems, whereas 

for co-occurrence of a DNA- target CRISPR-Cas system with an RNA targeting 

system, the arrays present in the genome need to both have the correct PAM and 

have a bias for the coding strand.  
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Figure 5. Different organisations of subtypes containing compatible spacer sequences. 

(A) Pie chart of frequency of genomes each category of organisation, based on the subtype 

combination involved. Total number of genomes for which this category was found (n) is noted in 

each chart (n). (B-D) Genome representations of examples for the different organisation categories, 

(b) Type I-Type I compatibility, (c) Type I- Type III compatibility (different repeat sequences), (d) 

Type I- Type III compatibility (same repeat sequences). Genes involved in interference (blue) and 

adaptation (red) are shown for the different subtypes within the genome. PAM logo and strand bias 

of each associated repeat cluster is depicted below the genomic representations.  

 

Overall, we can distinguish three main categories of co-occurring CRISPR-Cas 

systems in which spacers are compatible for multiple effectors (Figure 5A, 

Additional file 4). Firstly, two co-occurring DNA-targeting systems which have 

their own adaptation machinery and their own repeat sequences (Figure 5B; n=7; 
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Type I-A-Type I-B: 5, Type I-B-Type I-C: 2). Secondly a co-occurring DNA-

targeting and RNA-targeting system, with distinct repeat sequences but a commonly 

shared acquisition machinery (Figure 5C; n=17; Type I-B-Type III: 15, Type I-E-

Type III: 3). Thirdly, a co-occurring DNA-targeting and RNA-targeting system, with 

shared repeat sequences and shared acquisition machinery (Figure 5D; n=85; Type 

I-B-Type III 71; Type I-A-Type III 11; Type I-C-Type III 3). 

Taken together, our data indicate that multi-effector compatible arrays are most 

prevalent between Type I and Type III systems. Within the Type I systems, the most 

common subtype to use multi-effector compatible arrays is Type I-B, but also Type 

I-A, Type I-C and Type I-E use these arrays. The Type III systems that use 

compatible arrays lack their own adaptation machinery, however repeat clusters in 

these co-occurring systems display a strand bias that suggests selection for RNA-

targeting spacers. The information content is similarly strong for PAMs in Type III 

arrays as in Type I arrays, which demonstrates that the PAM is selected to the same 

extent for Type I as shared Type III arrays.  

Discussion 

In this study we have matched CRISPR spacers of complete genomes of bacteria 

and archaea with their targets in (meta)genome databases and subsequently analysed 

the genomic flanks of the protospacers. We computationally found targets for 32% 

of CRISPR spacers from thousands of bacterial and archaeal genomes. This is a 

major increase in spacer targets compared to previous studies and is due to our 

sensitive filtering process and use of metagenomic databases (Shmakov et al. 2017). 

We found that Type III spacers had the highest fraction of unknown targets of any 

CRISPR-Cas type. This was not solely caused by the phylogenetic or environmental 

occurrence of Type III systems, because the fraction of Type III spacers with 

unknown targets within a genus was typically higher than that of other types. This 

means that the targets of Type III systems are either under-sampled, or that Type III 

spacers contain more mismatches to their targets, making them harder to find 

computationally. Recently, a single new study doubled the number of known RNA 

viruses including phages (Wolf et al. 2020), while another study greatly increased 

the number of known single-stranded RNA phages (Callanan et al. 2020), indicating 
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that RNA phages have been poorly sampled. We predict the fraction of spacers with 

matches to increase with increasing numbers of available metagenomic data, 

especially including more RNA viruses and more data from poorly sampled 

environments.  

By analysing the flanks of the spacer hits in great depth, we have generated a catalog 

of PAM sequences for each CRISPR repeat cluster. The repeat sequence is a good 

predictor of parts of the PAM sequence in Type I, and outperformed clustering based 

on genus-subtype classifications. This finding is corroborated by the position-wise 

comparison of PAM and repeat nucleotides, which shows certain repeat nucleotides 

predict PAM nucleotides. This may be helpful to either predict the PAM from 

scratch, or to further experimentally determine the PAM while reducing the 

degeneracy at certain positions, limiting the predicted PAM sequence space. 

However, for Type II systems, this repeat based PAM prediction does not work, 

because PAM motifs are not conserved within each repeat sequence. Instead, PAMs 

in type II systems seem to be conserved within a CRISPR-Cas system combined 

with a certain repeat in individual strains (Additional file 1: Fig. S5C-D). Strain 

specific PAM analysis in Type II systems uncovered a large diversity of PAM 

sequences, much larger than the PAM diversity in Type I systems. Further analysis 

could perhaps base clustering on the PAM-interacting domains of Cas9 protein 

sequences, which might serve as a better predictor for PAM sequence conservation 

than the repeat sequence (Gasiunas et al. 2020; Qiuyan Wang et al. 2021).  

The mismatch between repeat and PAM nucleotides generally holds, except for the 

Type I-E and Type I-C, where for some repeat clusters the repeat nucleotide matches 

the PAM at the -1 position. The most common PAMs of these systems (TTC for I-

C; AAG for I-E) are also complementary to each other. These findings indicate Type 

I-C systems could have a similar mechanism of spacer acquisition with a PAM-

derived last repeat nucleotide as in Type I-E (Swarts et al. 2012), even though these 

systems do not share related Cas1 proteins (Makarova et al. 2011) or repeat 

structures (Lange et al. 2013).  The crystal structures of the Cas1-Cas2 adaptation 

machinery from both systems (Lee, Dhingra, and Sashital 2019; Wang et al. 2015) 

indicate that the same strand is probed for the PAM (5’GAA3’ in I-C and 5’CTT3’ 
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in I-E), which demonstrates that this phenomenon has not arisen from 

complementary strand selection.  

The PAM catalog can be used to predict the PAM for arrays in newly sequenced 

genomes and metagenomic contigs in Type I and Type III systems if they contain 

repeats that are closely related to the repeats in our database. We furthermore have 

uncovered novel PAMs in Type II systems and together these developments give 

access to unexplored mechanistic and biotechnological potential. For repeats that are 

not in our database, the nucleotide identities of the repeat in the spacer flanking 

positions can be used to predict, with lesser certainty, which PAM it could have and 

select certain CRISPR-Cas systems of interest for further study.  

Furthermore, the position of the PAM in the target is a reliable indicator for the 

orientation of transcription of CRISPR arrays. Correct prediction of transcription of 

CRISPR arrays gives access to measuring chronology of invader encounters and 

strand-specific targeting of CRISPR-Cas systems, which is especially relevant for 

RNA targeting CRISPR-Cas. The spacers of Type III systems, which target RNA, 

have a bias towards targeting coding strands, making them capable of base pairing 

and thereby targeting RNA. Unexpectedly we also found several subtypes with a 

preference for the template strand (I-E and Type II). The reason for this type of 

strand bias is not yet clear, but we pose that this could be caused by a selection for 

spacers that do not target RNA (RNA avoidance), as DNA-targeting with these 

spacers might be impacted by inactivating complementary RNA (Jore et al. 2011). 

In addition, there might be a difference in binding or dislodging of crRNA effector 

complexes from the template strand vs coding strand by RNA polymerase (Clarke 

et al. 2018; Vink et al. 2020). Lastly, we cannot exclude the possibility that DNA 

replication might cause the observed strand bias for some subtypes, as transcription 

and replication are often co-oriented in prokaryotes, plasmids and phages (Brewer 

1988; Srivatsan et al. 2010).  

We have categorized multi-effector compatible CRISPR arrays whether they share 

the same repeats and/or acquisition machinery and whether only DNA, or both DNA 

and RNA are targeted. DNA-targeting systems that use multi-effector compatible 

arrays generally have their own acquisition machinery and the low frequency of this 

co-occurrence in nature might indicate that this is not actively selected for. It needs 
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to be experimentally verified whether the spacers in these compatible arrays are 

actually shared between complexes. However, some crRNA sharing between DNA 

systems has already been observed experimentally, so it’s therefore likely to be 

found for more systems (Majumdar et al. 2015). 

Multi-effector compatible arrays are much more common in co-occurring DNA- and 

RNA-targeting systems. The strand bias that occurs in Type I arrays indicates that 

Type III effector complexes are using these spacers and thereby creating selection 

pressure on the RNA binding potential of the transcribed crRNA. It also seems that 

the most commonly co-occurring Type I systems (I-A, I-B and I-C) that use 

compatible arrays, also have the largest coding strand bias. Whether this strand bias 

is induced by the presence of Type III or whether these subtypes by their nature have 

a strand preference and therefore became more commonly compatible with Type III 

systems is not yet clear. Interestingly, many of the subtype combinations that share 

PAMs also co-occur more often than expected by chance, suggesting they have 

positive epistatic interactions (Bernheim et al. 2020). Furthermore, repeat sequences 

of type I-A and I-B are in the same repeat families as Type III repeats, providing 

further indications of their compatibility (Lange et al. 2013). 

The experimentally determined spacer sharing in Marinomonas mediterranea (Silas 

et al. 2017) described previously does not fall within the categories in this study as 

the Type III system has its own adaptation machinery. In this case, the systems are 

not mutually compatible because the Type I systems cannot use the Type III spacers 

due to a lack of PAM, which we have not further investigated in this study. Also the 

other previously experimentally described spacer sharing systems in Pyrococcus 

(Majumdar et al. 2015) and Flavobacterium (Hoikkala et al. 2021) were not found 

due to a lack of sufficient hits, which demonstrates that this bio-informatic analysis 

likely underestimates the number of systems that can cooperate.  

The discovery of multi-effector spacer compatibility in a large number of genomes 

in this study together with previous experimental evidence of spacer sharing of RNA 

and DNA-targeting systems (Deng et al. 2013; Majumdar et al. 2015; Silas et al. 

2017) shows that there is selection pressure to share spacers cooperatively within 

arrays. The evolutionary benefits of such cooperativity could be profound. Firstly, 
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as two subtypes generally have different mismatch tolerance (Anderson et al. 2015; 

Fineran et al. 2014; Manica et al. 2013), targeting the same sequence with two 

subtypes can reduce the probability of escape mutation. Secondly, a combination of 

RNA and DNA targeting systems can provide multiple layers of defence, where 

RNA-targeting might give more time for DNA-targeting systems to destroy the 

invader before the cell is taken over (Vink et al. 2020). Thirdly the length of arrays 

in a genome has recently been shown to be limited by auto-immunity (H. Chen, 

Mayer, and Balasubramanian 2021). By sharing spacers, each subtype is supplied 

with a maximum diversity of spacers while self-targeting costs are minimized. 

Lastly, the different mechanisms these systems use allows for complementary and 

distinct benefits. The priming mechanism (Datsenko et al. 2012; Nicholson et al. 

2019), unique to DNA targeting systems can accelerate spacer acquisition for both 

systems, whereas cOA signaling pathways (Kazlauskiene et al. 2017; Niewoehner 

et al. 2017), unique to Type III, could activate defence systems that benefit both 

systems.  

Conclusion 

Altogether this study highlights the wealth of information that can be retrieved by 

analysing the targets of CRISPR spacers on a large scale. It furthermore 

demonstrates under what conditions CRISPR-Cas systems can cooperate and 

provides a catalog of PAM predictions and targeted MGEs awaiting further study. 
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Methods 

CRISPR spacers and sequence data 

221 089 spacers along with information on cas gene presence, genome and repeat 

sequence were obtained from CRISPRCasdb (Pourcel et al. 2020) in February 2020 

and the taxonomy of the genomes was obtained from NCBI Taxonomy database 

(Federhen 2012). We created our own sequence database by combining all 

sequences from the NCBI nucleotide database (Benson et al. 2018; Pruitt, Tatusova, 

and Maglott 2005), environmental nucleotide database (Sayers et al. 2009), 

PHASTER (Arndt et al. 2016), Mgnify (Mitchell et al. 2020), IMG/M (I. M. A. Chen 

et al. 2017), IMG/Vr (Paez-Espino et al. 2019), HuVirDb (Soto-Perez et al. 2019), 

HMP database (Peterson et al. 2009), and data from Pasolli et al., 2019. All databases 

were accessed in February 2020. 

Subtypes were predicted based on the repeat sequences using the subtype predictions 

and method described by Bernheim et al., 2020, where the subtype of a spacer was 

inferred by the similarity of its repeat sequence to repeat sequences with known 

subtype (74% identity threshold to infer subtype). 

Blast hits and filtering 

Hits between spacers and sequences from the aforementioned databases were 

obtained using the command line blastn program (Altschul et al. 1990) version 

2.10.0, which was run with parameters word_size 10, gapopen 10, penalty 1 and an 

e-value cutoff of 1, to find as many potential targets as possible. These blast hits 

were then filtered to remove hits of spacers inside CRISPR arrays and false positive 

hits found by chance. Hits inside CRISPR arrays were detected by aligning the repeat 

sequence of the spacer to the flanking regions of the spacer hit (23 nucleotides on 

both sides). This alignment was done using the globalxs function from the Biopython 

pairwise2 package (Cock et al. 2009) with -3 gap open and -3 gap extend parameters. 

If more than 13 nucleotides were identical in the alignment of at least one flank, the 

hit was suspected to fall inside a CRISPR array and was filtered out.  
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To minimize the number of hits found by chance, we filtered hits based on the 

fraction of spacer nucleotides that hit the target sequence, as this metric considers 

both the sequence identity and the coverage of the spacer by the blast hit. In a first 

step, only hits with this fraction higher than 90% were kept. To find targets for even 

more spacers while keeping the number of false positives low, we included a second 

step where hits with a fraction higher than 80% were kept if another spacer from the 

same genus hit the same contig or genome in the first step. This second step did not 

introduce hits on any new contigs or genomes and was based on the assumption that 

multiple spacers from the same genus hitting the same contig or genome is unlikely 

to be caused by chance. Finally, we removed spacers that were shorter than 27 

nucleotides (54 spacers) and removed 7 spacers that were hitting aspecifically, such 

as inside ribosomal RNAs or tRNAs. This left 72,099 unique spacers with target hits 

for downstream analysis. 

Protospacer flank alignment for orientation and PAM 

predictions 

The PAM is known to occur on the 5' end of the protospacer for Type I, Type IV 

and V CRISPR-Cas systems, and on the 3' end for Type II systems (Collias and 

Beisel 2021; Jackson et al. 2017). We used this property to predict the orientation of 

transcription of CRISPR arrays and sequence of crRNA. The PAM sides were 

compared to the nucleotide conservation in the flanking regions of the spacer hits 

and the spacer orientations were predicted such that the flank with the greater 

conservation matched the known PAM side. 

To measure the nucleotide conservation in the flanking regions, data from multiple 

spacers was combined based on the subtype and repeat sequences of the spacers. 

Highly similar repeat sequences from the same subtype were clustered using CD-

HIT (Fu et al. 2012) with a 90% identity threshold. We hypothesized that similar 

repeat sequences would be used in a similar orientation and would utilize the same 

PAM sequences, as coevolution of PAM, repeat and Cas1 and Cas2 sequences has 

been shown previously (Alkhnbashi et al. 2014; Lange et al. 2013). For each repeat 

cluster the flanking regions of the spacer hits were aligned. To equally weigh each 
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spacer within the repeat cluster, irrespective of the number of blast hits, consensus 

flanks were obtained per spacer. These consensus flanks contained the most frequent 

nucleotide per position of the flanking regions. From the alignment of consensus 

flanks the nucleotide conservation, or information content, in each flank was 

calculated in bitscore (Schneider and Stephens 1990) using the Sequence logo 

python package. We corrected for GC-content of the targeted sequences by 

calculating the expected occurrences of each nucleotide based on the GC-content of 

the spacer sequences. To minimize the number of orientation predictions based on 

little or noisy data, we only predicted the orientation for repeat clusters when the 

alignment of consensus flanks consisted of at least 10 unique protospacers. 

Furthermore, the information content of at least two positions was higher than 0.3 

bitscore and higher than 5 times the median bitscore calculated from 23-nt flanks on 

both sides. These parameters were chosen as strictly as possible, while still yielding 

orientation predictions for the highest number of spacers.  

Using the orientation predictions described above, we predicted the PAMs for each 

repeat cluster by checking which nucleotide positions were conserved. To minimize 

PAM predictions based on noise, we only predicted the PAM for repeat clusters 

where the alignment of consensus flanks consisted of at least 10 unique protospacers. 

A nucleotide position was predicted to be part of the PAM when higher than 0.5 

bitscore and higher than 10 times the median bitscore. These parameters were chosen 

as strictly as possible, while maximizing the number of repeat clusters with PAM 

predictions and minimizing the number of unique PAMs predicted. 

We subsequently categorized and counted multi-effector compatible spacers in the 

following ways. Firstly by an occurrence of multiple repeat clusters with different 

subtype classification that both contained the same PAM, either two DNA targeting 

clusters (category I) or a DNA and an RNA targeting cluster (category II). Secondly, 

if multiple cas gene clusters from different subtypes were in the vicinity of a single 

repeat cluster and their genomes did not further contain other arrays linked to these 

cas gene clusters they were counted as a third category multi-effector compatible 

array.   

Coding versus template strand targeting analysis 
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For each spacer target inside an open reading frame (ORF), we determined if the 

spacer targets the coding (DNA and RNA) or template strand (DNA-only) during 

transcription. The ORFs and their orientation were predicted using Prodigal (Hyatt 

et al. 2010) for one target sequence per spacer. The target sequence of each spacer 

was selected as the longest hit sequence in the NCBI nucleotide database, excluding 

‘other sequences’, or, if no such sequence was hit, the longest hit sequence in 

metagenomics database. Using our spacer orientation predictions for Type I, II and 

IV spacers, and the orientation predictions from CRISPRCasdb for the other spacers, 

we checked if the spacer target (blast hit orientation) was on the coding or template 

strand of the predicted ORF. To test for significant bias towards either the temperate 

or the coding strand, a two-sided tailed binomial test was performed with an 

expected probability of 0.5. 
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multiple genomes contain same spacer); Accessionnrs: accession number of 

host(s); Subtype: subtype of array; cas_genes: Cas_genes present in host(s); hit: if 

match found in (meta)genomic database equals 1 (else 0); consensus_flanks: 

consensus sequence of left and right flank from flanks of all the hits in databases to 

this spacer; repeat_cluster: id of repeat cluster generated with CD-hit; strandbias: 

Orientation of hit in reference to ORF (1 coding strand 0 template strand, -1 

undetermined); type: Type of CRISPR array; orientation_CRISPRCasdb: 

Orientation of spacer determined in CRISPRCasDB (Pourcel et al., 2020); 

orientation_PAMbased: Orientation of spacer determined in this study based on 

PAM; orientation_TOPbased: Orientation of spacer determined with TOP 
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(Houenoussi et al., 2020); PAM: PAM sequence of repeat cluster (if predicted); 

Genus, Family, Order ….: Taxonomy of host; Type I, TypeII, Type III…: 

Whether host genomes contain genes related to specific Type (1 yes, 0 no); 

Subtypesingenomes: Which subtypes are in genomes; Subtypesinproximity: 

Which subtypes are in proximity (<25000 bp from spacer); Proximity_subtypes: 

Distance of spacer to gene cluster of specific subtype; subtypesCas1: Which 

subtypes are in genomes that contain a Cas1 protein 

Additional file 3: 

CSV containing PAM catalog (each unique repeat for which PAM was determined) 

with following columns: repeat, PAM and subtype  

Additional file 4: 

CSV containing genomes for which compatible arrays were found with following 

columns: accession number genome, compatible subtypes of array, PAM, category   

Additional file 5: 

CSV containing genomes for which PAM was predicted with following columns: 

PAM, accession number, subtype.  
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Typ
e 

PA
M Genus Re

f 
Typ
e PAM Genus Re

f 
Typ
e PAM Genus Re

f 

I-A ATG Leptospira 1 I-B TTTA Petrimonas  I-E AAG Geobacter 
12 

  CCN Acidianus 2 
 

TTG Thermobacillus    AAN Klebsiella 
 

  TTA Thermodesulf-
obacterium  I-C CTN Anaerobutyricum    AAT Lactobacillus 

 

  TCN Sulfurisphaera 
3 

 
CCN 

Porphyromonas 
 

 
AAA Kosakonia 13 

  ATN 
Aminobacteriu
m 

   CTT Ruminococcus    AC Corynebacterium 
 

I-B CCA Moorella 4   TTC Geobacillus 8 
 

AG Xenorhabdus 
 

  CCN Clostridium 4 
 

TTN Acidovorax    AW
G Escherichia 

 

  
CCT Ureibacillus 

4 
 

TTT Lachnoclostridiu
m 

 I-F ACC Aeromonas 
 

  TAC Halorubrum  I-D GCN Haloquadratum    CC Pseudomonas 
14 

  TCA Campylobacter  
 

GGT
G Halorubrum  

 
CCA Pseudomonas 

 

  TCN Campylobacter  
 

GTN Methanotrix 9 I-G TAC Rothia 
 

  TTA Methanosarcin
a 5   GTT Microcystis    TAN Propionibacterium 

11 

  
TTC Halobacterium 6   GTG Methanospirillum 10   TTN Pseudopropionibacteriu

m 15 

  
TTN Novibacillus 7 I-E AAC Bifidobacterium 11 

 
AAN Acidipropionibacterium 

 

      
 

     
TTC Rhodothermus 

 
Table 1. Unique Type I PAM sequences. Table of all unique Type I PAMs found for the different 

subtypes and representative genera that contain the repeat cluster for which each PAM was 

determined. For previously described PAMs a reference ID has been added which correspond to 

the following: 1: (Xiao et al. 2019); 2: (Lillestøl et al. 2009), 3: (Manica et al. 2011), 4: (Boudry et al. 

2015), 5: (Fischer et al. 2012), 6: (Li et al. 2014), 7: (Walker et al. 2020), 8: (Leenay et al. 2016), 9: 

(Kieper et al. 2018), 10: (Lin et al. 2020), 11: (Pan et al. 2020), 12: (Swarts et al. 2012), 13: (Pujato 

et al. 2021), 14: (Almendros et al. 2012), 15: (Almendros et al. 2019).  
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Supplementary figure 1. Taxonomy of spacer targets and number of found targets per 

database. (A) The taxonomy of targeted sequences of the NCBI nucleotide database was obtained 

from the NCBI taxonomy database. For hits in viral sequences, the taxonomy of known hosts was 

used to label the virus as a eukaryotic or prokaryotic virus. (B) The contribution of each database 

to the total number of hits after filtering. All databases were accessed in February 2020. 
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Supplementary figure 2. Perfect match statistics. (A) Distribution of fraction of hits per 

subtype as in Figure 1G but only for perfect matching (100% identity) spacers. (B) Distribution of 

fraction of hits for the ten highest scoring genera as in Figure 1E (with at least  500 spacers) but 

only for perfect matching spacers.  
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Supplementary figure 3. Average number and signal-to-noise ratio of clustered hits. 

Different clustering methods were compared for their average number of unique hits (blue) and 

average signal-to-noise ratio (orange). The signal-to-noise ratio was calculated by dividing the 

average information content of the two top positions in the flank (potential PAM nucleotides) by 

the median information content in sequence logos generated from flanks of hits. (B) The clustering 

categories are based on whether spacers come from same species and subtype (species-subtype), 

from same genus and subtype (genus-subtype), from clusters of repeat sequences with 90% identity 

(repeat-cluster) or clusters of repeat sequences with 90% identity and additionally compensation 

for GC-content of spacers within the cluster (see Materials and Methods, repeat-clusterGC). (B) 

The average number of hits and signal-to-noise ratio in case of using increasing levels of nucleotide 

identity to filter hits. The >80%* indicates hits that have >80% identity but they are only accepted 

in case a different spacer within the same genus targets the same sequence.  

  



P A M - r e p e a t  a s s o c i a t i o n s  a n d  s p a c e r  
s e l e c t i o n  p r e f e r e n c e s  | 283 

 

  

 
 

Supplementary figure 4. Sequence logo Type III repeats. ClustalW alignment of Type III 

repeats for which orientation was determined based on presence of PAM (n = 21 unique repeats). 

The 3'end of the repeat, which is the 5' handle of the transcribed crRNA, has a conserved motif 

(ATTGAAAC).   
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Supplementary figure 5. Sequence logo of protospacer flanking regions of Type I and 

Type II systems based on clustering approach. For each subtype ((A) Type I-B; (B) Type III-

D; (C) Type II-A and (D) Type II-C) a representative cluster was chosen and a sequence logo was 

made as in Figure 2 for either all spacers within that cluster (top), or two representative genomes 

within that cluster (middle, bottom). For Type I and Type III system, the PAM is conserved within a 

repeat cluster (A) and (B) whereas for Type II systems, the PAM can differ within a cluster (C,D).  
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Supplementary Figure 6. Relationship between repeat and PAM sequence of Type II 

and Type III systems. Same as Figure 3B except for Type II (A) and Type III (B) systems 
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Summary 

Viruses are, as we have seen over the past year, very proficient at invading a host 

and subsequently reproducing rapidly. Our adaptive immune system, after a first 

encounter with a virus, can store information about the outside protein shell and use 

this information to destroy the virus in later encounters. Bacteria have an adaptive 

immune system that works on the nucleic acid level (DNA/RNA). The right 

functioning of the system demands that a fragment of a virus is incorporated into the 

bacterial genome correctly (adaptation). Subsequently, proteins carrying copies of 

this fragment have to find and destroy the virus quickly enough after it enters the 

cell (interference). An obstacle in the interference process is that the cell is filled 

with host DNA, which has to be scanned to differentiate it from viral DNA. How 

bacteria are still able to find these viruses fast enough is the subject of my thesis.  

 

In chapter 1 I introduce three important fields of research that are needed to follow 

the rest of my thesis: CRISPR-Cas, single-particle tracking and bioinformatics. In 

chapter 2 we follow Cascade, a CRISPR-Cas complex of proteins and RNA that 

naturally occurs in E. coli, searching for invasive DNA molecules. We have 

determined the efficiency of the immune system, by quantifying the number of 

Cascade complexes needed for a certain level of protection and we found that 

roughly 20 Cascade complexes are required to have a 50% of clearing the invader. 

We subsequently investigated the scanning speed and time and found that Cascade 

spends half its time on DNA and the other half moving to the next site on the DNA. 

The transition between these two states occurs 30 times a second. We furthermore 

observed that complexes remained bound to bona fide targets for a long time, but 

when bound to bacterial CRISPR arrays, some of the complexes disintegrated. This 

study showed what kinetic challenges the CRISPR immunity faces in the context of 

a native immune system.  

In chapter 3 we follow Cas9, a protein with a similar function as the Cascade 

complex, but made up of only a single protein. We have engineered a strain of 
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Lactoccocus lactis, an important model organism in the food industry. We find that 

the scanning speed also occurs roughly 30 times a second in this system, which 

indicates a shared biophysical characteristic of CRISPR systems. In this chapter we 

have also looked into the influence of Cas9 copy number on target binding and find 

that at high copies there is a relatively lower fraction of Cas9 bound, which suggests 

saturation of potential binding sites.  

In chapter 4 we follow a different Cascade variant that occurs naturally in E. coli, 

namely the I-F system. As these two different systems occur in the same species, 

and in some cases the same individual, we were curious what the similarities and 

differences between this system (I-F Cascade) and the previously studied I-E 

Cascade are. We found a similar protective efficiency (25 complexes provided a 

50% chance of invader clearance), and similar binding rates, even though the 

kinetics of diffusion in the cell were very different. We furthermore investigated the 

influence of mutations on the binding of I-F Cascade to its target sequence. This 

study brought forward what similarities and differences occur between different 

native CRISPR-Cas systems.  

In chapter 5 I discuss a mathematical framework we used to study the interaction 

kinetics of CRISPR-Cas proteins with DNA. Our model enabled us to study much 

faster interactions that other models could not detect. To demonstrate the 

applicability of this analysis method, we re-analyzed published data on DNA 

polymerase, the DNA replication and repair protein, and find that it undergoes 

extremely fast DNA interactions (on the order of 100 times per  second) in its search 

for replication and repair sites.  

In chapter 6 we explore the functioning of CRISPR-Cas proteins outside of the 

model organisms discussed in preceding chapters. We have done this by searching 

for DNA sequences that matched a large database of spacers, fragments of past 

invaders that were incorporated in the CRISPR array. By studying these matching 

DNA sequences we could predict on a large scale what requirements CRISPR 

spacers have for each subtype of CRISPR. The requirements we investigated were 

the presence or absence of a sequence motif adjacent to the viral DNA matching the 

spacer (PAM) and the presence or absence of a strand preference in reference to the 

orientation of transcription. When we tested these requirements for co-occurring 
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systems, multiple CRISPR-Cas systems occurring in a single genome, we found that 

many spacers are able to fit the requirement for both DNA and RNA-targeting 

systems, which enables these systems to cooperate by sharing their spacers.  
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Samenvatting 

Virussen zijn, zoals we de afgelopen tijd gemerkt hebben, erg goed in staat een 

gastheer binnen te dringen en zich vervolgens snel te vermenigvuldigen. Ons 

adaptief immuun systeem, na een eerste kennismaking met een virus, kan informatie 

over de buitenkant van dat virus, een capside van eiwitten, opslaan en vervolgens 

die informatie gebruiken om een virus onschadelijk te maken. Bacteriën hebben een 

adaptief immuun systeem, dat werkt op het niveau van het nucleïnezuur (DNA en 

RNA). De juiste werking van het systeem vereist dat een fragment van een virus als 

informatie wordt ingebouwd in het genoom van de bacterie (adaptatie). Vervolgens 

moeten andere eiwitten met kopieën van die fragmenten snel genoeg het virus vinden 

en vernietigen (interferentie). Een obstakel in het interferentieproces is dat de cel 

gevuld is met DNA van de gastheer, wat gescand moet worden om onderscheid met 

virus DNA te kunnen maken. Hoe bacteriën toch in staat zijn om snel genoeg deze 

virussen te herkennen is het onderwerp van mijn proefschrift. 

 

In hoofdstuk 1 introduceer ik drie belangrijke onderzoeksvelden die nodig zijn om 

de rest van mijn proefschrift te kunnen volgen: CRISPR-Cas, single-particle tracking 

en bioinformatica. In hoofdstuk 2 volgen we de zoektocht van Cascade, een 

CRISPR-Cas complex van eiwitten en RNA die van nature voorkomt in E. coli in 

de cel, op zoek naar indringende DNA moleculen. We hebben de efficiëntie van het 

immuunsysteem bepaald, door te kwantificeren hoeveel Cascade complexen nodig 

zijn voor een bepaalde bescherming en vonden dat ongeveer 20 Cascade complexen 

nodig zijn voor een 50% kans om de indringer uit te schakelen. Vervolgens hebben 

we gekeken naar de scansnelheid en vonden dat Cascade de helft van de tijd 

doorbrengt op DNA en de andere helft onderweg is naar een volgende locatie op het 

DNA. De omschakeling tussen deze twee toestanden vindt 30 x per seconde plaats. 

Verder zagen we dat complexen lang gebonden bleven aan doelwitsequenties, maar 

complexen gebonden aan de bacteriële sequentie uit elkaar vielen. Deze studie liet 
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zijn welke kinetische uitdagingen het CRISPR immuunsysteem moet overwinnen in 

de context van een natief immuun systeem.  

In hoofdstuk 3 volgen we Cas9, een eiwit dat dezelfde functie heeft als Cascade, 

maar alleen maar bestaat uit een enkel eiwit. Wij hebben dit eiwit tot expressie 

gebracht in Lactococcus lactis, een belangrijk modelorganisme in de 

voedingsindustrie. Wij vinden dat ook hier de scanningssnelheid grofweg 30 x per 

seconde plaatsvindt, wat duidt op een gedeelde biofysische eigenschap van CRISPR 

systemen. In dit hoofdstuk hebben we ook afzonderlijk nog gekeken naar de invloed 

van de hoeveelheid kopieën van Cas9 in de cel op de binding aan het doelwit en 

vinden bij hoge kopieën een relatief lager aandeel aan gebonden Cas9, wat duidt op 

saturatie van de mogelijke bindingsplekken.  

In hoofdstuk 4 volgen we een andere Cascade die in E. coli van nature voorkomt, 

namelijk het I-F systeem. Sinds deze twee verschillende systemen beiden 

voorkomen in dezelfde soort, en in sommigen gevallen hetzelfde individu, vroegen 

we ons af wat de overeenkomsten en verschillen zijn tussen het eerder bestuurde I-

E Cascade en het hier bestudeerde I-F Cascade. Wij hebben gevonden dat dit 

systeem een soortgelijke efficiëntie van bescherming kent (met 25 complexen is er 

50% kans om een indringer uit te schakelen) en soortgelijke bindingssnelheid aan 

DNA, maar dat de kinetiek van de diffusie in de cel anders verloopt. Verder hebben 

we hier ook nog onderzocht wat de invloed van mutaties is op de binding van I-F 

Cascade aan zijn doelsequentie. Deze studie bracht naar voren welke 

overeenkomsten en verschillen er bestaan tussen genetisch verschillende CRISPR-

Cas systemen. 

In hoofdstuk 5 behandel ik een wiskundig model die we gebruikt hebben om de 

interactiekinetiek van CRISPR-eiwitten met DNA. Ons model is in staat om veel 

kortere interacties te herkennen dan eerdere modellen. Om de algemenere 

toepasbaarheid van dit model te laten zien hebben we eerder gepubliceerd werk over 

DNA polymerase opnieuw geanalyseerd. Daar vonden we dat DNA polymerase, het 

eiwit verantwoordelijk voor de replicatie en reparatie van DNA, erg snelle DNA 

interacties gebruikt om de plek voor replicatie en reparatie te vinden (100x per 

seconde). 
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In hoofdstuk 6 verkennen we de werking van CRISPR-Cas systemen buiten de 

modelorganismen beschreven in de eerdere hoofdstukken. Dit hebben we gedaan 

door voor een groot aantal spacers, de fragmenten van virussen die ingebouwd 

worden door CRISPR systemen, een overeenkomende DNA sequenties te vinden in 

grote databases van DNA (meta)genomen. Deze overeenkomende sequenties komen 

van virussen en ander DNA dat de cel heeft geprobeerd binnen te dringen. Door deze 

overeenkomende sequenties verder te bestuderen konden we op grote schaal 

voorspellen aan welke eisen de fragmenten moesten voldoen die geselecteerd 

werden in elk systeem. De eisen zijn het al dan niet aanwezig zijn van een bepaald 

aangrenzend motief in het viraal DNA en het al dan niet aanwezig zijn van een 

voorkeur voor een bepaalde streng van het DNA, afhankelijk van de richting van 

transcriptie. Toen we deze eisen onderzochten voor gelijktijdig voorkomende 

systemen, meerdere CRISPR-Cas systemen in een enkel genoom, vonden we dat 

veel spacers aan zowel de eisen van een RNA en een DNA bindend systeem voldoen, 

wat het mogelijk maakt dat deze spacers gedeeld worden door samenwerkende 

CRISPR-Cas systemen. 
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yet to achieve this myself). Lola has taught me that bearded men with red hair can be 

quite scary. But also that things that seem scary at first, can turn out fine later.  

The newcomers Sam, you taught me discussions about fundamental science are more 

fun with someone that doesn't agree with you and that there is a fantastic spoonbill 

colony in Delft, Lucia taught me how to sell a house and how awful it is when Argentina 

loses a soccer match, Marina taught me that the Swiss are not as peaceful as they 

sometimes may seem and that it is important to check the timeslots when you book 

tickets for Keukenhof ;). Hope to see you soon in NZ! Jelger taught me that it is always 



298 | A c k n o w l e d g e m e n t s  

 

good to bring extra beer and chocolate to the lab. It’s nice to finally see the lab growing 

again and a new atmosphere emerging. Good luck on continuing the Brouns group!  

Then to my students, Daan, Fiona, Alexander and Jan, you guys taught me how to 

work in a team and trust the work other people do. Thank you for all the hard work you 

put into this, I would have needed 6 more years to finish if it wasn’t for you! I wish you 

guys all the best in your future careers! 

Boris, I still like to think of you as my student, even though you have outgrown the 

master very soon after that. Thanks for teaching me my soccer skills suck and I need to 

go back and train harder!  

Seb, you taught me that Hannover is not at all the most boring city in Germany and also 

that some jobs in industry can actually be fun (jealous)! Also all the best for Matilda 

and Viktorija (who taught me the magic of Lithuanian potato dishes) and thanks for the 

journey we started together in the Dreijen basement. Tobal and Patri, you taught me 

how to make excellent sangria, paint Delft blue pottery and how to countdown in the 

right way at New Years. Great that we are still in touch. Teunke, you taught me how to 

bake the most amazing cakes (or at least how to eat them). Anna, I learnt how it is to 

work in a well-organized environment because of you, thanks for all the support with 

the daily issues of ordering, shipping etc and sorry for all the mess I made! Rita, you 

taught me that a PostDoc is able to manage twenty projects at the same time and I learnt 

how to treat everyone equally and fairly. Franklin, you taught me how to pay more 

attention to the people around you and how to escape from the scariest escape room 

ever! I am ready to receive my 100 bucks you owe me over our bet. Benjamin, you 

taught me how to make great wiener schnitzel and Knodel, and how to get super 

muscular only by pushing against a side wall, fascinating! It was great to have you 

around for a while, I hope you move back in with us one day! Cristian, you taught me 

how to be way better at bouldering than myself. And you taught me some great dance 

moves (although I think I need a refresher soon!). I’m sorry I won’t be here for your 

defense, but I will party and drink on your behalf from the other side of the world.  

Dan de mensen van de Brusselreis, de VSL of de house of the rising sun. Hoewel de 

naamgeving continu verandert is deze harde kern nog steeds hetzelfde. Als groep heb ik 

van jullie geleerd dat Belgisch bier beter voor mij is dan shisha en de vele 

politieke/economische/wetenschappelijke discussies tot laat bij Samson of waar dan ook 

zal ik nooit vergeten. Roelant, van jou heb ik geleerd hoe ik Nederlandse muziek moet 
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herwaarderen en waarom de Ooij toch echt de beste plek is om Oud en Nieuw te vieren. 

Ik hoop de komende weken nog wat te leren over groenten en huizen verbouwen in 

Wageningen Hoog!  Bram, van jou heb ik vele Vercammen regels geleerd, over 

wanneer te plassen bij bierdrinken enzovoorts. Daarnaast ook welke 90 hits op welk 

moment in te zetten op dansfeestjes. Nog bedankt voor de fantastische avonturen die we 

in Berkeley en Yellowstone beleefd hebben. Maarten, jij leerde mij hoe ver het 

wandelen is als je op de midzomerdag de Veluwe probeert over te steken en dat 

saucijzenbroodjes goed moeten worden opgewarmd voordat je ze kan eten. Manu, van 

jou leerde ik hoe ik mijn data beter moet encrypten op mijn computer en hoe het is om 

zonder enig geheugen plotseling te ontwaken in het ziekenhuis (sorry moest het toch 

even vermelden). Leuk dat we nog even langskomen in der Schweiz! Wouter van jou 

heb ik geleerd dat de jongen die op de eerste dag op school eten op je hoofd smijt later 

alsnog een van je beste vrienden kan worden en hoe je je voorbereidt op de triatlon. Ik 

ga jullie missen guys. 

Dan de twee dames die al sinds 1F, 18 jaar geleden, een belangrijk onderdeel in mijn 

leven zijn. Lotna, van jou heb ik geleerd hoe je geobsedeerd kan raken door bitterballen, 

hoe je de beste slaapfeestjes organiseert, hoe om te gaan met diarree op reis, hoe ik 

minder dik moet zijn ( 
����). Ben benieuwd waar onze volgend avontuur ons naartoe 

brengt. En natuurlijk heel veel succes (en een fijne tijd met Luuk) zodra je weer terug 

naar de Limbo’s gaat! Anna, van jou heb ik geleerd dat slapen in de auto soms de betere 

optie is, hoe het is om iemand te hebben die er echt altijd voor mij zal zijn, hoe ik me 

beter moet kleden, wat de beste hits van il Divo zijn, hoe je heel bewust jezelf nieuwe 

dingen kan leren. Ik herinner me nog de vele gesprekken die we elke week hadden met 

de loempia (half pikant of zoetzuur) in de hand. Bedankt voor het opzetten van onze 

weekendtrips, oorspronkelijk om ons 10 jarig jubileum te vieren, een mooie jaarlijke 

traditie. Ik heb ook geleerd dat Belgen gewoon mensen zijn. Bart, vanaf dag 1 dat we 

elkaar ontmoetten klikte het gelijk. Van jou heb ik geleerd dat er veel gelegenheden zijn 

om augurken te eten. Het gaat lastig zijn zo ver van jullie te zijn, maar we zagen elkaar 

eerder wel eens voor een hele tijd niet en onze sterke vriendschap heeft dat altijd weten 

op te vangen. 

Dan naar de belangrijkste twee steunpilaren van vandaag. Niet voor niks zijn jullie 

allebei de beste pubquizzers die ik ooit heb gezien, zodat als ik het antwoord niet weet, 

ik er vertrouwen in heb dat jullie dat wel weten. Patrick, wij hebben samen dit PhD pad 
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bewandeld. En hoewel jij de uitgang eerder had weten te vinden dan ik, heb ik nu toch 

het gevoel dat we dat pad nu samen uitgelopen hebben. Van jou heb ik geleerd hoe je 

hetzelfde verhaal honderd keer opnieuw kan vertellen en het nooit verveelt, hoe de 

Haïtiaanse geschiedenis nou ook alweer precies in elkaar zat, hoe ver je kan komen 

vanuit een MBO opleiding, hoe je zo integer mogelijk met je collega's om moet gaan. 

De momenten dat er overal gedoe was in het lab en we daarvan even ontsnapten met 

een kop koffie zijn ontzettend belangrijk geweest. Het gevoel dat ik een rots was voor 

jou, is dus wederzijds. En natuurlijk waren de paastripjes onvergetelijk. Lucy, who 

taught me all about how to get rich and about very complex , and you are a great match, 

I am so happy to be at your wedding. And then of course we hope to also be there for 

the Indonesian edition 
����! 

Steef, het is moeilijk na te gaan wat ik niet van jou heb geleerd. Onze levens zijn zo 

vervlochten geraakt, dat ik soms niet meer weet wat nou mijn eigen ontwikkeling is 

geweest of wat ik stiekem van jou heb afgekeken. Ik kan in ieder geval de volgende 

leermomenten met zekerheid aan jou toeschrijven: hoe houd ik mijn adem zo lang 

mogelijk onder water, hoe versier ik een meisje die ik leuk vind, hoe versier ik meisjes 

die ik niet leuk vind, hoe maak ik een kampvuur, hoe win ik een onderzoeksprijs op 

school, hoe kom ik op voor wat ik belangrijk vind, hoe word ik een goede begeleider, 

hoe zorg ik dat mijn spullen langer meegaan, hoe kan ik mijn angsten in de ogen 

aankijken. Bedankt voor al die wijsheden, die we in de late uurtjes in bushokjes, 

onderweg in Engeland of gewoon al doende vergaarden en uitwisselden. Natuurlijk ook 

bedankt voor al die keren dat je er voor me was. Ik zal mijn hele leven van jou blijven 

leren. En ook veel geluk met Ceci, die mij leerde dat het niet per se een verloren zaak 

is, mocht ik ooit een van mijn ledematen verliezen en hoe het is om succesvol een 

enorme grote overstap te maken binnen de wetenschap.  

Dan pap, dertig jaar hard werken om mij in leven te houden. Elke ochtend nog even 

zwaaien, als ik op de fiets zat naar school. Elke keer meedenken hoe we probleem X of 

Y moeten oplossen. Dan zijn deze 300 pagina’s daarvan het eindresultaat. Ik hoop dat 

ik je hiermee niet teleurgesteld heb. Maar daar ben ik niet zo bang voor, want jij hebt 

mij altijd het gevoel gegeven dat wat ik ook doe, jij mij daarin steunt en er voor me bent. 

Van jou heb ik geleerd dat de snelste manier van aardappelschillen is, als je rond de 

aardappel draait in een spiraal. Ik heb geleerd dat hoe slecht de situatie ook is, er altijd 

een lichtpuntje is, waar je dan ook flink de nadruk op kan leggen (dit vinden andere 
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mensen soms vervelend, maar ik blijf het toch maar doen). Ik heb geleerd hoe ik om 

moet gaan met het afscheid nemen van mam, en hoe een nieuwe liefde weer kan 

opbloeien na het verlies van een ander. Corrie, ook jij hebt bijgedragen aan dit 

proefschrift, want ik weet niet wat ik had moeten doen als pap nog steeds alleen zou zijn 

geweest. Jij hebt mij geleerd dat Utrecht toch wel de op-een-na leukste stad van 

Nederland genoemd kan worden. Bedankt voor jullie warme ontvangst deze weken! 

Dan mijn grote broer, Marnix, je bent altijd mijn grote voorbeeld geweest. Hoe (ver-

)koop ik een huis, hoe trim (vroeger het liefst scheer) ik mijn baard, hoe strik ik mijn 

stropdas, hoe rijd ik auto (daar valt nog verbetering te boeken), maar ook hoe drink je 

Bacardi breezers, hoe speel je het beste vals tijdens bordspelletjes, hoe creëer je 

spanning en sensatie in de James Bond club. Het is nog steeds een mysterie dat je nooit 

boos werd op je kleine broertje en je er altijd voor hem was (ondanks dat je een keer 

probeerde van me af te komen door me te laten verdwalen op die camping van Texel 

;)). Je bent een lucky man dat je Nicole zo gek hebt weten te krijgen een Vink te trouwen. 

Van haar heb ik geleerd dat kerstmis zeker niet ongevierd moet blijven en hoe handig 

het is een dokter in de familie te hebben. Jullie hebben een zeer enerverende tijd voor 

de boeg samen, geniet ervan! 

Then on to the last two, most important women in my life. First of all Becca. I still don’t 

understand how it can be, that all these years felt so natural with you, every day biking 

to work together, sitting next to each other in the office, biking back home and spending 

an insane amount of time together. But it did and it still does. And I could not have spent 

so much time with anyone else (no offense to everyone above). I am learning every day 

from you, how to put the cutlery in the dishwasher, how to be honest with people, how 

to replace a flat tyre in the car, how to keep in touch with people. I wonder if it wasn’t 

for you, whether I would have turned into a hermit, hiding in a dark corner of the lab. 

You helped me get through the hardest of times, I am forever grateful for that. And I am 

ready for some new adventures in our life! E kore e ea i te kupu taku aroha mōu.  

En als laatste, mam, want aan jou draag ik dit proefschrift op. Niet alleen omdat ik je 

zo erg mis, of omdat ik zoveel van je houd, maar omdat je echt daadwerkelijk deze 

scriptie samen met mij hebt geschreven. Ten eerste omdat je mijn hele leven lang de 

weg hiernaartoe geplaveid hebt, door mij het plezier van het lezen te leren, de precisie 

van het schrijven, dat ik de tijd kreeg om alles over de wereld te leren terwijl jij ons 

huishouden organiseerde. En sinds je er niet meer bent, wijs je me nog steeds de weg. 
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Als ik vastzat in mijn project en ik niet meer wist hoe ik verder moest, dacht ik, hoe zou 

mam dit oplossen. Als ik er helemaal doorheen zat of doodmoe was, dacht ik, zou mam 

nu moe zijn? En omdat jij altijd zo sterk was, kreeg ik daar vanzelf weer energie van 

om door te gaan. Nu gaan we door naar een volgende stap en ik draag je weer met me 

mee. Ik ben je nog elke dag dankbaar dat ik dankzij jou weet hoe ik verder moet gaan.  
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