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Decoding of Concatenated Codes for Noisy

Channels With Unknown Offset

Renfei Bu Jos Weber
Delft University of Technology

Applied Mathematics Dept., Optimization Group
R.Bu@tudelft.nl J.H.Weber@tudelft.nl

In communication and storage systems, noise and interference are not the only
disturbances during the data transmission, sometimes the error performance is also
seriously degraded by offset mismatch. We consider a simple channel such that the re-
ceived signal is distorted by noise and offset mismatch, that is, r = x+v+b1, where x =
(x1, x2, . . . , xn) is the transmitted codeword from a codebook, v = (v1, v2, . . . , vn) ∈ Rn

is the noise vector, where the vi are independently normally distributed with mean 0
and standard deviation σ, b is a real number representing the channel offset, 1 is the
real all-one vector (1, . . . , 1) of length n, and r ∈ Rn is the received vector. Minimum
modified Pearson distance (MMPD) detection has been proposed [1] as an alterna-
tive to minimum Euclidean distance (MED) detection to counter the effects of offset
mismatch. A major concern, however, is the fact that the evaluation of MMPD is
an exhaustive search over all candidate codewords which is infeasible for large codes.
Various block codes have been proposed [2] to get good performance for channels with
both noise and offset if the MMPD detection is used.
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(b) Block diagram of the decoding algorithm

Figure 1: Block diagram of concatenated scheme.

In this work, a concatenated coding scheme is proposed for noisy channels with
unknown offset mismatch. The concatenation is between a Reed-Solomon (RS) code
and a certain coset of a binary block code proposed in [2]. The two codes are chosen
according to a rule that the inner code is of a short length such that an exhaustive
search of MMPD is for relatively small codes. The encoder block diagram of RS-Coset
codes is shown in Figure 1(a). A message vector u is encoded to a RS codeword c.
Then it will be converted into a binary sequence and mapped to a codeword x in a
coset of a block code. A novel soft decoding algorithm shown in Figure 1(b) for the
concatenated scheme is proposed. The MMPD detection is used to decode the inner
code that guarantees immunity to channel offset mismatch. Its output will be given
to a two-stage hybrid decoding algorithm for the outer RS code. The first stage of
decoding carries out an algebraic hard-decision decoding (HDD) algorithm, such as
the Berlekamp-Massey algorithm (BMA), to the outer RS code. If the HDD declares a
successful decoding, then the algorithm outputs the decoded codeword and terminates
the decoding process. Otherwise, the decoding is continued with the second stage of
decoding, using the reduced test-pattern Chase algorithm. The reliability information
y used in Chase algorithm is obtained from a subtraction between the received vector
and an estimated offset, where a dynamic threshold estimation [3] is explored.

As an example, the performance of the proposed concatenation scheme that imple-
ments (7, 3, 5) RS code as the outer code and the coset of binary (6, 3, 3) code as the
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Figure 2: BER performances of (7,3,5) RS code concatenated with shortened (6,3,3) Ham-
ming code or its coset, with the inner soft decision decoder based on two criteria – MED
and MMPD – over channels with Gaussian noise and offset, where standard deviations of the
offset are β = 0.5 (blue) and 0.3 (red).

inner code is evaluated. Binary (6, 3, 3) code is a shortened version of (7, 4, 3) Hamming
code and a coset vector a = (1, 0, 0, 0, 0, 0) is considered. In Figure 2, we show bit error
rate (BER) performances of RS-Coset codes versus signal to noise ratio (SNR (dB))
over channels with Gaussian noise and offset mismatch. We also assume that standard
deviations of the offset are β = 0.3 (red curves) and β = 0.5 (blue curves). Let us
first compare the performance of the inner soft-decision decoders based on two criteria,
specifically, MED and MMPD. The MED detection has worse performance when the
offset is larger, while the scheme using MMPD remains the same for any offset as we
expected. We conclude that the MMPD detection is immune to the offset mismatch
and achieves considerable performance improvements, particularly when the offset is
large compared to the noise. We also observe that with the Hamming coset code as
inner code instead of Hamming code itself, the simulated results of the concatenated
scheme have been improved. The MMPD of the shortened Hamming code (6, 3, 3) and
its coset code is the same, however, the average number of neighbors with the minimum
distance has decreased after introducing the coset of code. In addition, the introduction
of the coset increases the MED detection’s resistance of the offset mismatch. Thus, the
performances of both MED and MMPD detection have improved by using the coset of
block codes as proved in [2].

Figure 3(a) compares the proposed concatenated scheme with the Hamming coset
code and uncoded scheme. Simulation is carried out over channels with β = 0.5.
The Hamming coset code is decoded using the MMPD scheme. By referring to the
channel raw BER illustrated by Curve Uncoded, the proposed concatenated scheme
achieves a significant gain in BER over a wide range of SNR. Furthermore, compared
with the Hamming coset code, it can be observed that at BER = 10−4, the gain
of the concatenated scheme corresponds to the decrease of the system required SNR
from around 9 dB (corresponding to the HM(6,3)) to 5 dB (corresponding to the
HM(6,3)+RS(7,3)). Thus, we achieve more than 4 dB SNR improvement of achieving
a BER = 10−4 with the proposed RS-Coset codes.

Our example code has a code rate of 0.21, which is lower than the non-concatenated
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(a) BER performances of (7, 3, 5) RS code
concatenated with coset shortened Hamming
(6,3,3), only coset Hamming (6,3,3), and un-
coded case.
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(b) BER performances of different coding
schemes.

Figure 3: Performance evaluation over channels with Gaussian noise and offset, where the
standard deviation of the offset is β = 0.5.

scheme. Here, we have other two concatenation schemes with higher code rates: coset
shortened Hamming (12,8) concatenated with (255,191) RS with a code rate of 0.499;
coset shortened Hamming (12,8) concatenated with (255,239) RS with a code rate of
0.62. Observe from Figure 3(b), the concatenation codes with a higher rate are shown
to have worse BER performance. However, the concatenated scheme with a code rate
of 0.62 still performs better than the Hamming coset code, which has a code rate of
0.5. What’s more, (255,127) RS code is simulated under the same channel condition,
whose code rate is 0.5. We can see that its performance is seriously distorted by the
offset mismatch without the help of the inner MMPD decoder. The simulation results
show the considerable coding gain compared with the non-concatenated codes with an
even higher code rate over noisy channels with offset mismatch. Thus we conclude that
the RS-Coset codes with the proposed decoding scheme can achieve great coding gain
and also maintain the immunity to offset mismatch.
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