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Utilizing Design of Experiments Approach to Assess Kinetic
Parameters for a Mn Homogeneous Hydrogenation
Catalyst
Robin K. A. van Schendel+,[a] Wenjun Yang+,[a] Evgeny A. Uslamin,*[a] and Evgeny A. Pidko*[a]

Homogeneous hydrogenation catalysts based on metal com-
plexes provide a diverse and highly tunable tool for the fine
chemical industry. To fully unleash their potential, fast and
effective methods for the evaluation of catalytic properties are
needed. In turn, this requires changes in the experimental
approaches to test and evaluate the performance of the
catalytic processes. Design of experiment combined with
statistical analysis can enable time- and resource-efficient
experimentation. In this work, we employ a set of different
statistical models to obtain the detailed kinetic description of a
highly active homogeneous Mn (I) ketone hydrogenation

catalyst as a representative model system. The reaction kinetics
were analyzed using a full second order polynomial regression
model, two models with eliminated parameters and finally a
model which implements “chemical logic”. The coefficients
obtained are compared with the corresponding high-quality
kinetic parameters acquired using conventional kinetic experi-
ments. We demonstrate that various kinetic effects can be well
captured using different statistical models, providing important
insights into the reaction kinetics and mechanism of a complex
catalytic reaction.

Introduction

Rapidly increasing demand in chemicals and fuels puts forward
new challenges for chemical industry and chemistry in general.
The fast implementation of novel catalytic processes is there-
fore becoming crucial as it enables more sustainable and
effective chemical transformations.[1] The transition from labo-
ratory-scale catalytic research to industrial application is often a
limiting step. This requires deep understanding of the behavior
of the system on both molecular and reactor scale. Implement-
ing data-driven approaches can help solve this complex
problem by providing descriptive non-biased models.[2] Design
of experiment and statistical analysis of the experimental data
are key ingredients within this approach.[3]

Reduction of carbonyl compounds is an important process
widely applied in the fine and bulk chemical industry. In
contrast to conventional stoichiometric reactions yielding vast
amounts of inorganic waste, catalytic hydrogenation utilizing
molecular hydrogen represents an environmentally-friendly and

atom-efficient alternative.[4] This becomes especially attractive
as the hydrogen market has been rapidly expanding over the
last few years. Hydrogenation reactions require the use of a
catalyst. Over the last decades, a number of highly active
homogeneous carbonyl hydrogenation catalysts based on
defined transition metal complexes, e.g. ruthenium, iridium,
and rhodium, were developed. Many of these catalysts enable
highly selective homogeneous hydrogenation under mild
conditions.[4b,5] However, the possibility to use cheaper earth-
abundant 3d metal complexes as an alternative to their noble
metal based counterparts has drawn considerable attention
recently.[6,7] Figure 1 presents selected representative examples
of such highly-active catalysts. Fe-A,[8] Co-B,[9] and Mn-C[10]

containing lutidine- and diamino triazine-derived pincer ligands
were found to be highly active in the hydrogenation of ketones
and aldehydes and can operate at 0.05–0.25 mol. % catalyst
loading. Amino ligand-based complexes (E,[11] F,[12] and G[13])
represent the most potent 3d metal catalysts for ester hydro-
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Figure 1. Selected examples of 3d metal complexes active in hydrogenation
reactions.[8–15]
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genations requiring 0.2–2 mol. % catalyst loading. Mn-based
complexes (e.g. D[14], H[15]) have emerged as highly efficient
transfer hydrogenation catalysts enabling excellent perform-
ance at catalyst concentrations as low as 75 ppm.

Modern synthetic protocols allow obtaining well-defined
catalytic complexes with nearly any given ligand environment.
In contrast, the testing procedures used to evaluate the catalyst
performance are less defined. The limited scope of conditions
used during the initial catalyst screening phase often result in a
situation when important effects including the catalyst activa-
tion, its stability under reaction conditions and different
deactivation pathways are overlooked. This may lead to a
limited understanding of the intrinsic catalyst activity and
therefore hamper the establishment of solid predictive struc-
ture-performance relationships. The availability of kinetic data
and its accurate modelling would provide a comprehensive
insight in the behavior and mechanisms of catalytic reactions
and therefore facilitate further development and optimization
of highly efficient hydrogenation catalyst systems.[16]

The modelling of homogeneous catalytic reactions can be
based on different approaches ranging from a purely empirical
description to formal kinetics to theory-assisted micro kinetic
modelling.[17] The resulting rate equations can therefore take
various forms ranging from simple power laws to highly
complex polynomial forms. Due to the complexity of the
catalytic networks, these models may not fully describe the
system in many cases. In the specific case of hydrogenation
catalysis, the situation is further complicated by the experimen-
tal challenges related to the use of high-pressure equipment.
Thus, the development of precise and rapid kinetic modelling
approaches based on minimum experimental runs become
indispensable. Herein we apply the response surface Box-Wilson
statistical methodology[18] to the kinetic analysis of ketone
hydrogenation reaction catalyzed by a Mn (I) pincer complex
(Figure 2) recently reported by us as a highly active ketone
hydrogenation catalyst.[19] Containing N-heterocyclic carbene,
phosphine and nitrogen donor centers, we will refer to it as
Mn-CNP. Response Surface Design (RSD) is shown to be efficient
as a tool to provide a rapid access to the “classic” kinetic

parameters with less experimentation. Furthermore, we demon-
strate that this approach can also indicate hidden parameters
which are not observed during the conventional kinetic experi-
ments.

Results and Discussion

Design of Experiment

The experimental setup was designed according to the Box-
Wilson methodology[18], specifically a response surface design
using the central composite face-centered type. Four continu-
ous regressors in three levels were chosen (temperature, H2

pressure, concentration of the catalyst and concentration of the
base) and kept un-coded. Due to uncertainty in measuring
initial reaction rates, the chosen regress and was the average
reaction rate (measured as product*t� 1). The average rate was
calculated as the concentration of produced alcohol divided by
the reaction time in hours. No blocks were used and all runs
were randomized save for the temperature due to the home-
built autoclave heating six reactions at a time in unison. With all
the cube points, axial points and replicates, a total of 30 runs
were performed. The reaction loadings and conditions are
summarized in Table S1.

Response Surface Design

A central composite face-centered design was used to obtain a
multiple polynomial regression equation that would take the
same form as an adjusted Arrhenius equation describing the
kinetics of the reaction.[20] A response surface design is a setup
for an experiment where for each regressor three points are
taken, namely a lower boundary, the mid-point and a higher
boundary. Generally, for a face-centered design, these bounda-
ries are codified as � 1, 0 and 1. In this work we were not
interested in creating an abstract statistical model, but rather
one with physical significance, therefore our factors remained

Figure 2. Reaction schematics showing the hydrogenation of acetophenone in presence of MnCNP catalyst (top); the schematics of the experimental workflow
(bottom).
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un-coded. With a polynomial fit of multiple regressors a
“response surface” is created to facilitate finding an optimum. A
response surface design is therefore usually performed after an
initial factorial design with two-level factors and linear fits. If the
optimum is not found within the bounds of the factorial design
it is followed by a “path of steepest ascent” approach. Instead
of using this methodology to find an optimum, the main focus
was put on mapping the effects of each regressor and
constructing a physical equation from the dependence ob-
tained.

A multiple polynomial regression analysis takes the form of
a linear equation where each separate factor is included. In this
sense, the simplest first order version with no quadratic terms
and no interaction terms takes the following form:

by ¼ b0 þ
X

i

bi*xi (1)

Where ŷ is the actual (or expected) response, β0 is the
coefficient corresponding to the intercept, βi is the coefficient
corresponding to the i-th iteration of the regressor xi.

A physical meaning for a linear regression model can be
established from the generalization of the formal reaction
kinetics. Thus, in a general form for a given chemical process,
the reaction rate W can be defined in a differential and
logarithmic form:

W ¼ �
d Xi½ �

vidt ¼
d Yj

� �

vjdt ¼
Y

i

kXni
i (2)

ln Wð Þ ¼ ln kð Þ þ
X

i

nilnXi (3)

The temperature dependence of the reaction rate constant
is described by the Arrhenius equation:

ln kð Þ ¼ �
Ea
R
* 1

T þ ln Akð Þ (4)

Overall, the expansion of the rate constant in the rate
equation leads to a full linear equation as such:

ln Wð Þ ¼ ln Akð Þ �
Ea
R
* 1

T þ
X

i

nilnXi (5)

Via the comparative analysis of Equations (1) and (5),
intercept β0 can be denoted as the frequency factor, and the
rest are similar first order terms. Besides, one regressor (xi) may
be seen as 1/T, leaving one coefficient βi as � Ea/R.

A second order polynomial regression of multiple variables
includes square terms and interaction terms, each with its own
coefficient.[21] With the ordinary least squares method, empirical
response values are fit to approximate the actual response. The
fit is assessed by analyzing the goodness of fit. Additional values
for assessing the model are the R2 value, adjusted R2 value, the
predicted residual error sum of squares (PRESS), the predicted

R2 and the p-value assessing the statistical significance of each
term in the model.[22]

A potential benefit of attempting to approximate a physical
equation with an abstract statistical model is with the inclusion
of normally excluded factors or terms, which might have a
more complex effect on the reaction kinetics. This is exemplified
by our addition of pressure as a factor, or the inclusion of
quadratic and interaction terms showing the joint effect of
couples of parameters. If the addition of these terms is properly
justified, it can be indicative to some actual physical effects. The
eventual full regression equation will take the form of

by ¼ b0 þ
X

i

bi*xi þ
X

i¼n

bn*xn
2 þ

X

i¼m

bmjk* xmj*xmk

� �

(6)

Following this approach, the first step is to construct a full
multiple polynomial regression with all quadratic terms and
interaction terms. The resulting model is then examined and
statistically insignificant terms or factors are removed using a
stepwise elimination algorithm. To further justify the resulting
model, the linearity of the corresponding main effects plot
should be assessed along with the p-value for the regressor.

The key process variables including temperature, hydrogen
pressure, concentration of the catalyst and concentration of the
base are modified into a logarithmic form to fit the physical
equation (Table 1). Additionally, the corresponding responses
are shown as the logarithm of the concentration of the reaction
product divided by the reaction time which represents an
averaged reaction rate (Table 1). It is worth noting that the
average rate is different from the initial reaction rate conven-
tionally used in kinetic experiments. The initial reaction rate is
often preferred as it makes it easier to extract formal kinetic
parameters. However, for fast processes and for processes with
a more complex behavior extracting the initial rates can be
problematic and the resulting values can be heavily impacted
by the reaction initiation procedure. Besides, it does not provide
information about the overall process kinetics which can
change during the process. In contrast, the average reaction
rate can be a good descriptor for obtaining the formal kinetic
parameters and capturing more complex behavior. For the
formal kinetic parameters, the assumption can be made that
the rate throughout the reaction is either linear or in correlation
with the initial reaction rate of the target process.

The full quadratic fit was done in Matlab using linear
regression model fit function (fitlm) based on a least squares
methodology. The data is weighted with the RobustOpts
function which uses an iteratively reweighted least squares

Table 1. Overview of the main variables used in all models, their
mathematical notation and the form in which they are generally used

Variable Notation Input form

Temperature/T X1 1/T
Pressure/P X2 P
Catalyst concentration/(Cat) X3 ln(Cat)
Base concentration/(Base) X4 ln(Base)
Average reaction rate
(system response)

y ln(Product/Time)
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methodology. The analysis of variance was done using the
ANOVA procedure.[23] This analysis was done on both the
components of the model, and the whole model. R-squared
and adjusted R-squared values are given with each produced
model. The predicted R-squared is produced by the following
formula:

pred R2 ¼ 1 �
PRESS
SST

� �

(7)

where one is subtracted by PRESS (the prediction error sum of
squares)[4] which is calculated from all the factors in the model,
divided by the SST (sum of square total).

The data obtained from the catalytic tests were processed
using four different statistic models schematically shown in
Figure 3. First the full linear regression model (I) was con-
structed featuring all possible parameters and their interactions.
Subsequent elimination of the parameters based on the
statistical significance and chemical logic principles gave rise to
the reduced linear regression models (II) and (III), respectively.
The non-linear regression model (IV) was constructed by
following the general principles of the formal kinetics. The
specific details of these models and the associated mathemat-

ical equations denoted in Figure 3 will be described in detail in
the text below.

Full Model (I)

To describe the experimental kinetic dataset, we first introduce
kinetic model (I) based on the full multiple polynomial
regression, which includes all the quadratic terms and inter-
action terms [Eq. (2)]. In this model the reaction rate (system
response) can be defined as follows:

by ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x1x2 þ b6x1x3þ

b7x2x3 þ b8x1x4 þ b9x2x4 þ b10x3x4 þ b11x12 þ b12x22þ

b13x32 þ b14x42
(8)

Figure 4a shows the goodness of fit of the experimental
data points with model (I). The results point to the substantial
predictive power of this indiscriminately constructed multiple
polynomial model as evidenced by pred-R2=0.9003 (see
Table S3). Further validation can be done via a p-value test that
gives the probability of new data deviating from model
prediction (see Table S4). The p-value of 1.29e� 10 suggests a
good predictability of this model based on the data provided.
The F-statistic vs. constant model was 60.7 showing the
significance of the model against the model consisting of only a
constant term. However, the analysis of the individual p-values
for each term in the model reveals many instances far larger
than an α of 0.05 indicating that many of the term effects are to
be deemed insignificant, or within the “noise” (see Table S5).
The only terms deemed significant are x1, x2, x3, x4, the
interactions x1 : x3 and x2 : x4, as well as the x4

2 quadratic term.
Furthermore, the p-value for the lack of fit is 0.015 (see
Table S4). These data show that the inclusion of excess
(catalysis-irrelevant) terms in model (I) renders it over-fitted.

Figure 3. Statistical models based on linear (I–III) and non-linear (IV)
regression used in this work.

Figure 4. Model fitting with residual plot incorporated: a) full statistical model (I); b) stepwise eliminated model (II); c) interaction terms-eliminated model (III);
d) nonlinear regression model (IV). The y stands for the observed responses whereas the ŷ stands for the predicted response.
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Stepwise Eliminated Model (II)

To remove the redundant factors, a new model was derived
using the stepwise regression methodology. This methodology
iteratively adds terms and keeps them if they meet a pre-
defined criterion, or removes them otherwise. The criterion
used was the p-value for the F-test of the change in the sum of
squared error when a term is added or removed. Additionally,
outliers were removed by assessing whether the standardized
residuals were larger than 1.25 or smaller than � 1.25. In our
case, 4 outliers were determined, leaving a dataset of 26
observations. Accordingly, a model with significant terms only
was obtained:

by ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x1x3þ

b6x2x4 þ b7x4
2 (9)

This model has a predicted R2 of 0.9696 and an adjusted R2

of 0.978 (as can be seen in Table 2). The nuance between
predicted and adjusted R2 makes the assessing of these
coefficients of determination trustworthy. The p-value for the
model being so small stems from this value being susceptible
to overfitting. The goodness of fit is further exemplified by the
residual plot (Figure 4b).

To further evaluate the models, the effect of model
parameters was examined using z-score and DoE t-statistics
methods. Upon conversion of each term value (including the
response) to a “standard score” (also known as standardizing) or
z-score, with the same unit, we are able to compare the effects
of those catalysis parameters.[24] Besides, terms from multiple z-
transformed models can be compared.[25] The z-transformed
effect results in Figure 5a show that the terms with the largest
weight are the temperature, the base concentration and the 2nd

order term for the base concentration.

The interaction terms have the lowest impact on the
reaction rate. Next, by codifying the used factors as 1 and � 1
for highest level and lowest level value respectively, the
corresponding t-statistic may be interpreted as the amount of
influence of the term on the response in a standardized form,
though the technical definition is it being a test of the null
hypothesis that the effect is zero. The added value of this
method is that the significance of such a standardized effect
can be verified with a two tailed test using the error degrees
freedom (df) and the chosen significance level α. For a df of 20
and an α of 0.05 the significance level is 2.086. In this case the
response does not require standardization. The DoE t-statistic
results in Figure 5a show that all the terms are significant, with
the terms for the base concentration, the 2nd order base
concentration and the temperature having the most signifi-
cance to the change in response being from these terms.

Interaction Terms-Eliminated Model (III)

The stepwise eliminated model also runs the risk of overfitting.
Though the predicted R2 is excellent, the currently abstract
statistical model must bear resemblance to reality. The inter-
action terms between temperature and the catalyst (x1x3,
[Eq. (9)]), and the interaction term between the pressure and
the base (x2x4, [Eq. (9)]) are not explained by the generalized
rate equations. A new model was constructed by removing
these interaction terms. The square term for the base however
was kept due to the high weight of its effect. Whereas the first
three primary parameters may be well fitted with a linear
equation, the fourth parameter (the base) is undeniably second
order. Interestingly, constructing the same stepwise model from
this hypothetical rate normalized by the concentration of
catalyst used (TOF) obviously eliminates the catalyst term and
produces a model featuring only the main linear terms and a
quadratic base term, and naturally excludes interaction terms.
The regression equation for model III is similar but includes the
catalyst term:

by ¼ b0 þ b1x1 þ b2x2 þ b3x3þ

b4x4 þ b5x42
(10)

All p-values, except for that of the base term, are sufficiently
low to refute the null hypothesis (see Table S13). Next, all
experiments with standardized residuals higher than 1.25 and
lower than � 1.25 were removed from the model. This left 24
observations as 6 observations were identified as outliers. The
residual plots for the resulting model (Figure 4c) show a good

Table 2. Statistical analyses for all the models comprising of statistical values including R-squared, adjusted R-squared, predicted R-squared, the p-value for
the model, F-statistic versus constant model, the root mean squared error (RMSE) and the p-value for the lack of fit.

Models R2 adj R2 pred R2 p-value F-statistic vs.
constant model

RMSE Lack of fit p-value

Model II 0.984 0.978 0.9696 6.75E-15 160 0.387 0.0598
Model III 0.979 0.973 0.9572 2.24E-14 165 0.413 0.0448
Model IV 0.955 0.945 0.9221 1.79E-12 99.7 0.657 –

Figure 5. Effects of the reaction parameters: a) stepwise eliminated model
(II); b) interaction terms-eliminated model (III).
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distribution but a bad normal probability fit (see Figure S3). The
main effects of each parameter are presented as the prediction
slice plots in the supporting information (see Figure S4). The
prediction plot for the base concentration shows that at a high
enough base concentration the corresponding effect saturates
and reaches a plateau of a certain maximum rate.

Because the current model only leans on the validity of 24
remaining experiment data-points, the p-value for the lack of fit
is only 0.0448 (Table 2). This shows that the terms currently
used in the model are not sufficient. The missing terms could
be the eliminated interaction terms, but could also be some-
thing as of yet unknown although the p-value for the lack of fit
can also be improved with more accurate additional data.
Again, the results for the effects of the reaction parameters
(Figure 5b) show that the base concentration has the most
significant effect on the reaction rate. Compared to the z-score,
however, we see that the quadratic term for the base
concentration and the temperature have now exchanged places
in the effect weight. With a df of 21 and an α of 0.05 the
significance level is 2.080 (t-test table).

Nonlinear Regression Model (IV)

The linear regression models presented above imply that a
kinetic equation, in which a linear product of the concentrations
of the catalyst and the base produce the rate of alcohol
production, which makes little sense from the chemical kinetics
perspective. To understand why these variables give rise to
such a good linear fit, the kinetics of the reaction were revisited.
Though the exact reaction mechanism is not fully known, the
basic process of catalyst activation and carbonyl compound
hydrogenation can be explicitly considered. Following prior
mechanistic analysis,[19] we presume certainty over an elemen-
tary reaction where the catalyst is activated by the use of a
base (e.g. potassium tert-butoxide). Secondly, we assume
certainty over the reaction, upon which the substrate is
converted to the product with the use of the catalyst on a
human time-scale. No microscopic details are assumed for the
catalytic process, but the respective processes are approxi-
mated by a power law instead. Therefore, the rate of the
catalyst activation is

d CAT½ �

dt ¼ ka CAT �½ � BASE½ � (11)

where [CAT� ] stands for the concentration of catalyst precursor
and [CAT] is the concentration of the activated catalyst. Catalyst
activation proceeds via the base-assisted hydride formation
step. Given the assumption of the semi-batch catalytic experi-
ment (p(H2)=constant during the reaction) with the solution
saturated with H2, this component is left out of the reaction
rate equation. The rate of the catalytic hydrogenation reaction
can be written as

dP
dt ¼ kr S½ � CAT½ � (12)

where S and P denote the substrate (carbonyl derivative) and
the product (alcohol) of the catalytic reaction. The reaction
order for the catalyst and substrate will be introduced as
coefficients in the statistic model. Integrating Equation 11 over
time we obtain the following equation:

CAT½ � ¼ CAT0½ � BASE0½ �ekat (13)

The zero in the superscript signifies the initial concentration.
Combining Equations (12) and (13) gives:

dP
dt ¼ kr S½ � CAT0½ � BASE0½ �ekat (14).

Expanding kr as dictated by the Arrhenius equation we obtain:

dP
dt ¼ Ae� Ea=RT S½ � CAT0½ � BASE0½ �ekat (15)

Taking the natural logarithm thereof gives:

ln
dP
dt

� �

¼ ln A½ � �
Ea
R
* 1

T
þ ln CAT0½ � þ ln BASE0½ �þ

ln S½ � þ kat
(16)

This equation resembles closely the one obtained from the
stepwise elimination procedure [Eq. (9)], but with a few addi-
tional factors. The additional factors in this equation include
ln[S] which is the natural logarithm of the substrate concen-
tration, and ka·t, which is the catalyst activation rate constant
times the time in seconds. The respective parameters were next
estimated using a nonlinear regression model. Due to the data
for rate being taken at the end of the reaction, a decision was
made to use the substrate concentration at the end of the
reaction (as measured by GC) and to use the reaction time in
seconds that it took to finish each reaction according to the H2

consumption data.

The nonlinear model was set up as:

by ¼ b0 �
b1

8:314*10� 3

� �

*x1 þ b2x2 þ b3x3þ

b4x4 þ x5 þ b5x6
(17)

with x2 being pressure in bar, x3 being the natural logarithm of
the catalyst concentration, x4 being the natural logarithm of
base concentration, x5 being the natural logarithm of the
substrate concentration at the end of the reaction (note there is
no coefficient for this factor) and x6 being the reaction time in
seconds and the corresponding coefficient β5 being the rate
constant for catalyst activation.

This model is set up with six initial values of 1 for the
coefficients, and with robust fitting options[26] using weighted
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residuals tuned using the bi-square weight function.[27] Outliers
were identified by setting the standardized residual at �1.25
and removed. After removing the outliers, 24 observations are
left and there are 19 error degrees of freedom. In table 2 certain
statistical values for the model can be seen, like the R-squared
values for example. It must be said that R2 values cannot be
used for nonlinear regression[28] and should therefore be
ignored.

Plotting the predicted rates with the experimental rates
gives a sense for the goodness of fit with an R2 of 0.9497
(Figure 4d). It must be noted that the Jacobian of this model is
ill-conditioned, which can be attributed to the model being
described by six independent factors.

A nonlinear regression model is generally more difficult to
validate. One of the possible validation methods is “leave-one-
out-cross-validation” (LOOCV). Upon analyzing the model using
LOOCV, an RMSE of 0.732 is calculated and an R2 of 0.9920
(Figure 6a).

All the p-values for the coefficients in this model were
found significant (see Table S20). The expansion of the model
with an added coefficient for the substrate variable results in
the respective p-value of 0.24403 which is not significant.
Importantly, the coefficients for most terms are comparable to
the coefficients from the interaction eliminated model, saving
for the obvious addition of the fifth coefficient related to the
time term, and the base term which is now ~1 potentially due
to the lack of a second order term. The residual plots show a
good distribution with a slight tailing in the histogram. The
normal probability plot shows a good normal distribution and
no residual sticks out in the residual vs fitted value plot or in
the residual vs lagged residual plot (see Figure S5).

Assuming that this model accurately describes the reaction
kinetics, it explains why the prior stepwise model fits well as it
is in essence the stepwise model with additional factors
corresponding to the substrate concentration and the reaction
time. These factors are obviously related to the response as the
substrate concentration is the current concentration at any
given moment of time, and the reaction time is considerably
dependent on how fast the reaction proceeds, which in itself
depends on other parameters.

The Variance inflation factor (VIF) is a value that determines
the multicollinearity of a term with other terms. Generally, a VIF

of 4 would indicate strong multicollinearity, and require a term
to be removed from the model. In the nonlinear model we see
high VIF values for the substrate and the time terms, but low
enough that one could argue they should remain (Figure 6b).
The high multicollinearity of these terms is due to the fact that
the reaction time and substrate at the end of the reaction can
be considered dependent variables.[25]

The main statistical characteristics of the different models
constructed above are listed in Table 2. As it shows, the
stepwise model (II) with the interaction terms shows a high
predictability and could be considered pragmatic for predicting
the results of future reactions within the model limits. Statisti-
cally, the population of observations is too low to make strong
conclusions on the interaction terms as their effects are deemed
small. The results in Table 2 show that the stepwise eliminated
model has the lowest RMSE and the highest p-value from the
models considered here. The p-value for the lack of fit is also
the only one over 0.05 which indicates the model fits the data
well. In contrast, the interaction terms eliminated model (III) has
the best balance between overfitting, statistical accuracy and
predictability. Its lack of fit p-value is just barely insignificant
with an alpha of 0.05. This however is likely due to the lack of
degrees freedom, which can influence the calculation. As such,
this model will be used to compare with the kinetic data
obtained via conventional protocols. Interestingly, the equation
[Eq. (17)] of nonlinear regression model (IV) shows high
resemblance to those Equations (9) and (10) of linear stepwise
multiple regression models (II, III). Accordingly, the statistical
models (II, III) without incorporation of reaction mechanism
should potentially be able to provide information on the kinetic
nature of the reaction.

Stepwise eliminated model (II):

by ¼ b0 þ
b1

T
þ b2Pþ b3ln CAT½ � þ b4ln BASE½ � þ

b5

T
� ln CAT½ �þ

b6P � ln BASE½ � þ b7ðln BASE½ �Þ2 ð18Þ

Interaction-term eliminated model (III):

by ¼ b0 þ
b1

T þ b2Pþ b3ln CAT½ � þ b4ln BASE½ � þ b5ðln BASE½ �Þ2 ð19Þ

Nonlinear regression model (IV):

by ¼ b0 �
b1

8:314*10� 3

� �

* 1
T þ b2Pþ b3ln CAT½ �þ

b4ln BASE½ � þ ln S½ � þ b5t ð20Þ

Although the exact values of the main coefficients in the
three considered model equations [Eq. (18), (19), (20)] vary
significantly, pronounced similarities and common trends can
be noted in the obtained parameters (Table 3).[29] Most notably
the models differ in the intercept values due to the regression
equations being markedly different in the interdependence of
each parameter. The coefficients for T� 1 are similar for the
interaction-term eliminated model (III) and the nonlinear model

Figure 6. a) Leave-One-Out-Cross-Validation fit; b) Variance Inflation Factors
(VIF) for all variables used in the nonlinear regression model.
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(IV), but are distinctly different from that in the stepwise
eliminated model (II). This is due to the fact that T� 1 in the latter
case is also accounted for the ln[CAT]·T� 1 interaction term.
Considering the coefficient for T� 1 can represent activation
energy Equations (16) and (17), the above result implies that
the apparent activation energy is affected by initial catalyst
concentration. Similarly, ln[CAT] has a decidedly higher coef-
ficient in model II as compared to the other models (III and IV)
because of the ln[CAT]·T� 1 interaction term, suggesting effective
catalyst concentration is limited by temperature. In both models
II and III, the ln[BASE] is present with a negative coefficient.
Model IV instead has a positive coefficient for ln[BASE], arguably
due to the negative coefficient related to the reaction time t.
This indicates a potentially negative coefficient for a parameter
still missing in the equation IV. The coefficient for ln[BASE] thus
can be interpreted as a potential catalyst deactivation path
induced by base, as the reaction rate is seen to diminish at the
higher [BASE] (see Figure S4). It is also worth noting that
interaction term [P]·ln[BASE] with a positive coefficient compen-
sates for the negative effect of ln[BASE], suggesting high H2

pressure can suppress the aforementioned deactivation. The
coefficients for the (ln[BASE])2 are equivalent between the linear
models I and II. Finally, the coefficients for P are comparable in
the three models.

Model Validation & Kinetic Analysis

The statistical analysis results were then compared to the
reaction parameters obtained via conventional kinetic measure-
ments. In formal kinetic experiments, the reaction parameters
are extracted from the initial reaction rates (see Section 5 in the
SI). The initial reaction rates for two different catalyst loadings
were measured at varied temperature to assess the apparent
activation energy, while kinetic runs at varying [BASE] and [CAT]
were used to estimate the respective reaction orders. The
results of the kinetic experiments are summarized in Figure 7.

The kinetic data shown in Figure 7a reveal that already at
the catalyst concentration of 200 ppm, the catalytic hydro-
genation reaction is severely mass-transfer limited. Indeed, for
the higher catalyst concentration of 200 ppm we find an
activation energy of 51 kJ/mol that is approximately 2 times
lower than the value obtained at a lower (50 ppm) catalyst

concentration. The change in the catalyst reaction order at
higher loading also supports this (Figure 7c). Our data strongly
imply that, with mass-transfer limitations, the intrinsic activity of
catalysts can be missed when screening them even at a
relatively low loading amount (e.g. 200 ppm). In the intrinsic
kinetics regime, the reaction order in the catalyst was close to
1.5, while the reaction order for the base changes from ca. 2.5
at low base concentration to 0 at high concentrations (Fig-
ure 7b). The complex behavior observed for these kinetic
parameters suggest that the reaction has different regimes.

Table 3. An overview of the parameter coefficients obtained from different
statistical models.

Model parameters Model II Model III Model IV

Intercept 57.28 16.705 31.554
T� 1[a] 162.3 41.0 39.3
P 0.068951 0.040648 0.035241
ln[CAT] 6.0532 1.3553 1.5982
ln[BASE] � 2.6974 � 2.1133 1.0932
ln[CAT]·T� 1 � 1601.3 – –
P·ln[BASE] 0.0058 – –
ðln BASE½ �Þ2 � 0.24092 � 0.21516 –

[a] The coefficients for T� 1 are normalized to the form that represent the
apparent activation energy (kJ/mol).

Figure 7. Kinetic data. a) Arrhenius plot for varying catalyst loadings showing
the natural log of the rate constants vs the multiplicative inverse of the
temperature multiplied by the gas constant. b) The rate order plot for bases
concentration showing the natural log of the rate vs the natural log of base
concentration. c) The rate order plot for catalyst concentration showing the
natural log of the rate vs the natural log of the catalyst concentration.
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An increased reaction rate at high catalyst loading might
result in diffusion limitations, while the initial reaction rate can
be affected by the catalyst activation processes. It is worth
noting that the exact role of the base in the homogeneous
hydrogenation processes is not fully clear and might play an
important role in both pre-catalyst activation and deactivation
processes.[19] Furthermore, previous studies have shown that
the KOtBu cation may facilitate the ketone hydrogenation by
functioning as a Lewis acid.[7e] In our previous work we have
shown direct hemilability of the phosphine arm when KBHEt3
was used as an alternative activator. Similarly, the hemilability
can play an important role when KOtBu is used as the base.[19]

Next, the reaction parameters obtained from the direct
kinetic measurements were compared to the results of the
statistical analysis. The comparison of model III and IV with the
barriers obtained from the kinetic measurements (Figure 7a)
reveal a close coherence of the T� 1 coefficient of ~41 kJ/mol
and ~39 kJ/mol with the Arrhenius barrier (Table 3). Further-
more, the ln[CAT] coefficients derived from both models III and
IV produced similar catalyst orders of ~1.35 and ~1.59 (Table 3).
Similarly, we observed the same comparableness with the base
concentration, as the coefficient corresponding to the ln[BASE]
in model III is � 2.11. The absolute value would be comparable
to the ~2.5 rate order found in the rate order plot for the base.
However, it must be noted that the parameters have different
signs. This is likely due to the completely different effects
captured by the statistical and kinetic analysis.

While conventional kinetics measured under the differential
conditions gives information about the initial stages of the
reaction, statistical analysis is focused on the effect of the
reaction parameters on the average reaction rate. Thus, the
increased base concentration can have a strong positive effect
on the pre-catalyst activation resulting in a higher initial
reaction rate. On the other hand, it can contribute to the
catalyst deactivation at the later stages of the reaction giving
rise to a decreased final yield and, accordingly, lower average
rate. The nonlinear regression model IV also shows resemblance
between statistical coefficients and direct kinetic measure-
ments. The activation rate from this model is ~39 kJ/mol which
corresponds better to the ~41 kJ/mol value from model III than
to the 51 kJ/mol from the experimental results. The coefficient
corresponding to the catalyst concentration is 1.6 which neatly
corresponds to the ~1.5 rate order from kinetic experiment.
Other parameters however diverged. Thus, the coefficient
corresponding to the base concentration is ~1.1 which is
markedly different from the ~2.5. When the stepwise model is
made without quadratic term a similar coefficient (~0.9) was
found. The coefficient of ~1 could be due to the lack of a
quadratic term, whereas the fit remains acceptable due to the
(over)abundance of terms in the form of time and substrate
concentrations. This potential overabundance is indicated by an
ill-conditioned Bayesian.

Conclusion

The kinetics of homogeneous hydrogenation of benzophenone
ketone substrate catalyzed by a recently developed highly
active Mn(I)-CNP catalyst has been investigated and analyzed in
the framework of formal kinetics as well as by using a response
surface Box-Wilson statistical methodology. In addition to
gaining deeper insights into the behavior of this highly potent
catalytic system, the study aimed at investigating the possibility
of enhancing the data output from high-throughput catalyst
screening/optimization procedures. The results presented high-
light the critical role of the secondary effects such as the
reaction temperature and the presence and concentration of
base activator/promotor on the performance of the homoge-
neous carbonyl hydrogenation catalysts.

Equating the regression equations and the coefficients
derived from it with statistical values has to be treated with
strong skepticism and must therefore require rigorous statistics
to validate this kind of method. The exact relation of the
statistical models to the intrinsic reaction kinetics is often
difficult to evaluate. However, having found significant models,
we are now able to speculate on the relations of certain factors
to the observed reaction rate. In this work the stepwise
eliminated model (II) is found to be the most statistically
significant. The interaction terms between temperature and
catalyst concentration and between the pressure and the base
concentration indicate some complexity worth further inves-
tigation. The interaction terms eliminated model (III) retains a
quadratic term for the base concentration, which may be
related to the complex role that the base plays in the reaction.
For both of the models II and III we consistently find that the
base concentration holds the strongest effect on the reaction
rate. The limited effect we observe from the pressure is
explainable by the increase in molecular hydrogen availability
within the reaction medium. We have clearly demonstrated the
ability of the statistical model to measure the activation energy
of the reaction and to capture different reaction regimes. The
coefficients resulting from the stepwise model correlate with
the kinetic parameters from classically obtained kinetics. Addi-
tionally, the nonlinear model (IV) can be compared with the
addendum that an argument could be made for the removal of
substrate and time due to the fairly high VIF value, which in
turn explains why models II and III are valid.

The statistical methodology described in this paper may
prove a reliable method to further understand complex and
seemingly chaotic reactions. An apparent advantage of such an
approach is that no initial assumption for the kinetics or the
reaction mechanisms are required. This provides an opportunity
to construct descriptive yet unbiased models. Besides it allows
for the simultaneous testing of multiple factors allowing under-
standing of how one factor may influence the other, the
addition of terms that usually do not belong to a “default”
kinetic rate equation in order to understand the effect this term
has, the statistical validation of the data and any coefficients or
conclusions taken thereof and allowing extensive interpolation
and predictability (effectively mapping a response to multiple
factors of interest). Additionally, once the model is made it can
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be used for both optimization and for mechanistic studies. A
careful marriage between reaction kinetics and statistical
modelling could prove useful for combining the chemical
fundamentals of the reaction mechanism happening in reality
with our theoretical understanding of the reaction mechanism,
usually supported by computational chemistry and through the
avenue of microkinetic modelling.

Experimental Section
Acetophenone hydrogenation was chosen as a model reaction. The
reaction schematics, catalyst structure and the experimental setup
are shown in Figure 2. Catalytic runs were performed using a
home-built parallel high-pressure low-volume autoclave system
equipped with pressure sensors. In a typical catalytic run, the
reaction mixture containing substrate (acetophenone, 5 mmol),
potassium tert-butoxide (KOtBu), catalyst (MnCNP), solvent (diox-
ane) and an internal standard (dodecane) were charged in the
autoclave inside a moisture- and air-free glove box. Prior to
experiments, all liquid chemicals were treated with basic alumina,
degassed in a Schlenk line and dried over 3 Å molecular sieves. The
autoclaves were then sealed inside the glovebox and connected to
the gas feeding system of the catalytic setup. All gas lines were
purged with compressed Ar to remove air, and then the reactors
were pressurized to a target pressure with hydrogen gas. The
reaction mixtures were stirred with Teflon-coated magnetic stirrers
and rapidly heated to a target reaction temperature. Prior to
experiments, the temperature in the reactors was calibrated using
an external thermocouple. Molar hydrogen consumption during
the course of the reaction was followed with parallel pressure
sensors volumetrically calibrated prior to catalytic experiments.
After the reaction, products were analyzed with a gas chromato-
graph equipped with an FID detector.

Acknowledgements

This project has been funded by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation program (Grant Agreement No. 725686).

Conflict of Interest

The authors declare no conflict of interest.

Keywords: Catalytic hydrogenation · Design of experiments ·
High-throughput experimentation · Reaction kinetics · Statistical
analysis

[1] a) I. Delidovich, R. Palkovits, Green Chem. 2016, 18, 590–593; b) P. W.
Van Leeuwen, Homogeneous catalysis: understanding the art, Springer
Science & Business Media, 2006; c) A. Mortreux, F. Petit, Industrial
applications of homogeneous catalysis, Vol. 10, Springer Science &
Business Media, 1987.

[2] a) A. G. Maldonado, G. Rothenberg, Chem. Soc. Rev. 2010, 39, 1891–
1902; b) C. Wulf, M. Beller, T. Boenisch, O. Deutschmann, S. Hanf, N.
Kockmann, R. Kraehnert, M. Oezaslan, S. Palkovits, S. Schimmler,
ChemCatChem 2021, https://doi.org/10.1002/cctc.202001974.

[3] A. Savara, E. A. Walker, ChemCatChem 2020, 12, 5385–5400.

[4] a) P. N. Rylander, Catalytic Hydrogenation in Organic Syntheses: Paul
Rylander, Academic Press, New York, 1979; b) J. G. d. Vries, The hand-
book of homogeneous hydrogenation, Wiley-Vch, Weinheim, 2007; c) J.
Magano, J. R. Dunetz, Org. Process Res. Dev. 2012, 16, 1156–1184; d) F. J.
McQuillin, Homogeneous hydrogenation in organic chemistry, Vol. 1,
Springer Science & Business Media, 2012; e) P. A. Chaloner, M. A.
Esteruelas, F. Joó, L. A. Oro, Homogeneous hydrogenation, Vol. 15,
Springer Science & Business Media, 2013; f) C. Gunanathan, D. Milstein,
Science 2013, 341, 1229712; g) J. Pritchard, G. A. Filonenko, R. Van Put-
ten, E. J. Hensen, E. A. Pidko, Chem. Soc. Rev. 2015, 44, 3808–3833;
h) P. A. Dub, J. C. Gordon, Nat. Chem. Rev. 2018, 2, 396–408; i) C. S. Seo,
R. H. Morris, Organometallics 2018, 38, 47–65.

[5] N. Arai, T. Ohkuma, Chem. Rec. 2012, 12, 284–289.
[6] a) S. Chakraborty, P. Bhattacharya, H. Dai, H. Guan, Acc. Chem. Res. 2015,

48, 1995–2003; b) S. Werkmeister, J. Neumann, K. Junge, M. Beller,
Chem. Eur. J. 2015, 21, 12226–12250; c) T. Zell, D. Milstein, Acc. Chem.
Res. 2015, 48, 1979–1994; d) M. Garbe, K. Junge, M. Beller, Eur. J. Org.
Chem. 2017, 2017, 4344–4362; e) B. Maji, M. K. Barman, Synthesis 2017,
49, 3377–3393; f) L. Alig, M. Fritz, S. Schneider, Chem. Rev. 2018, 119,
2681–2751; g) G. A. Filonenko, R. van Putten, E. J. Hensen, E. A. Pidko,
Chem. Soc. Rev. 2018, 47, 1459–1483; h) N. Gorgas, K. Kirchner, Acc.
Chem. Res. 2018, 51, 1558–1569; i) F. Kallmeier, R. Kempe, Angew. Chem.
Int. Ed. 2018, 57, 46–60; Angew. Chem. 2018, 130, 48–63; j) M. L. Clarke,
M. B. Widegren, Homogeneous Hydrogenation with Non-Precious Cata-
lysts 2019, 111–140; k) Y. Wang, M. Wang, Y. Li, Q. Liu, Chem 2020; l) K.
Azouzi, D. A. Valyaev, S. Bastin, J.-B. Sortais, Curr. Opin. Green Sustain.
Chem. 2021, 31, 100511.

[7] a) C. Liu, M. Wang, S. Liu, Y. Wang, Y. Peng, Y. Lan, Q. Liu, Angew. Chem.
Int. Ed. 2021, 60, 5108–5113; Angew. Chem. 2021, 133, 5168–5173; b) V.
Papa, Y. Cao, A. Spannenberg, K. Junge, M. Beller, Nat. Catal. 2020, 3,
135–142; c) L. Zhang, Y. Tang, Z. Han, K. Ding, Angew. Chem. Int. Ed.
2019, 58, 4973–4977; Angew. Chem. 2019, 131, 5027–5031; d) S. Weber,
B. Stöger, L. F. Veiros, K. Kirchner, ACS Catal. 2019, 9, 9715–9720; e) F.
Freitag, T. Irrgang, R. Kempe, J. Am. Chem. Soc. 2019, 141, 11677–11685;
f) R. Buhaibeh, O. A. Filippov, A. Bruneau-Voisine, J. Willot, C. Duhayon,
D. A. Valyaev, N. Lugan, Y. Canac, J.-B. Sortais, Angew. Chem. Int. Ed.
2019, 58, 6727–6731; Angew. Chem. 2019, 131, 6799–6803; g) Y.-Q. Zou,
S. Chakraborty, A. Nerush, D. Oren, Y. Diskin-Posner, Y. Ben-David, D.
Milstein, ACS Catal. 2018, 8, 8014–8019; h) D. Wei, A. Bruneau-Voisine, T.
Chauvin, V. Dorcet, T. Roisnel, D. A. Valyaev, N. Lugan, J. B. Sortais, Adv.
Synth. Catal. 2018, 360, 676–681; i) A. Kumar, T. Janes, N. A. Espinosa-
Jalapa, D. Milstein, Angew. Chem. Int. Ed. 2018, 57, 12076–12080; Angew.
Chem. 2018, 130, 12252–12256; j) A. Kaithal, M. Hölscher, W. Leitner,
Angew. Chem. Int. Ed. 2018, 57, 13449–13453; Angew. Chem. 2018, 130,
13637–13641; k) M. Glatz, B. Stöger, D. Himmelbauer, L. F. Veiros, K.
Kirchner, ACS Catal. 2018, 8, 4009–4016; l) J. A. Garduño, J. J. García, ACS
Catal. 2018, 9, 392–401; m) M. B. Widegren, G. J. Harkness, A. M. Slawin,
D. B. Cordes, M. L. Clarke, Angew. Chem. Int. Ed. 2017, 56, 5825–5828;
Angew. Chem. 2017, 129, 5919–5922; n) V. Papa, J. R. Cabrero-Antonino,
E. Alberico, A. Spanneberg, K. Junge, H. Junge, M. Beller, Chem. Sci.
2017, 8, 3576–3585; o) D. H. Nguyen, X. Trivelli, F. d. r. Capet, J.-F.
o. Paul, F. Dumeignil, R. G. M. Gauvin, ACS Catal. 2017, 7, 2022–2032;
p) M. Garbe, K. Junge, S. Walker, Z. Wei, H. Jiao, A. Spannenberg, S.
Bachmann, M. Scalone, M. Beller, Angew. Chem. Int. Ed. 2017, 56, 11237–
11241; Angew. Chem. 2017, 129, 11389–11393; q) N. Deibl, R. Kempe,
Angew. Chem. Int. Ed. 2017, 56, 1663–1666; Angew. Chem. 2017, 129,
1685–1688; r) A. Mukherjee, A. Nerush, G. Leitus, L. J. Shimon, Y.
Ben David, N. A. Espinosa Jalapa, D. Milstein, J. Am. Chem. Soc. 2016,
138, 4298–4301; s) M. Mastalir, M. Glatz, E. Pittenauer, G. N. Allmaier, K.
Kirchner, J. Am. Chem. Soc. 2016, 138, 15543–15546; t) S. Elangovan, C.
Topf, S. Fischer, H. Jiao, A. Spannenberg, W. Baumann, R. Ludwig, K.
Junge, M. Beller, J. Am. Chem. Soc. 2016, 138, 8809–8814; u) S.
Elangovan, M. Garbe, H. Jiao, A. Spannenberg, K. Junge, M. Beller,
Angew. Chem. Int. Ed. 2016, 49, 15364–15368.

[8] R. Langer, G. Leitus, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed.
2011, 50, 2120–2124; Angew. Chem. 2011, 123, 2168–2172.

[9] S. Rösler, J. Obenauf, R. Kempe, J. Am. Chem. Soc. 2015, 137, 7998–8001.
[10] F. Kallmeier, T. Irrgang, T. Dietel, R. Kempe, Angew. Chem. Int. Ed. 2016,

55, 11806–11809; Angew. Chem. 2016, 128, 11984–11988.
[11] S. Werkmeister, K. Junge, B. Wendt, E. Alberico, H. Jiao, W. Baumann, H.

Junge, F. Gallou, M. Beller, Angew. Chem. Int. Ed. 2014, 53, 8722–8726;
Angew. Chem. 2014, 126, 8867–8871.

[12] G. Zhang, B. L. Scott, S. K. Hanson, Angew. Chem. 2012, 124, 12268–
12272; Angew. Chem. Int. Ed. 2012, 51, 12102–12106.

ChemCatChem
Full Papers
doi.org/10.1002/cctc.202101140

10ChemCatChem 2021, 13, 1–12 www.chemcatchem.org © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH

These are not the final page numbers! ��

Wiley VCH Dienstag, 14.09.2021

2199 / 219250 [S. 10/12] 1

https://doi.org/10.1039/C5GC90070K
https://doi.org/10.1039/b921393g
https://doi.org/10.1039/b921393g
https://doi.org/10.1002/cctc.202000953
https://doi.org/10.1021/op2003826
https://doi.org/10.1126/science.1229712
https://doi.org/10.1039/C5CS00038F
https://doi.org/10.1038/s41570-018-0049-z
https://doi.org/10.1002/tcr.201100019
https://doi.org/10.1021/acs.accounts.5b00055
https://doi.org/10.1021/acs.accounts.5b00055
https://doi.org/10.1002/chem.201500937
https://doi.org/10.1021/acs.accounts.5b00027
https://doi.org/10.1021/acs.accounts.5b00027
https://doi.org/10.1039/C7CS00334J
https://doi.org/10.1021/acs.accounts.8b00149
https://doi.org/10.1021/acs.accounts.8b00149
https://doi.org/10.1002/anie.201709010
https://doi.org/10.1002/anie.201709010
https://doi.org/10.1002/ange.201709010
https://doi.org/10.1002/9783527814237.ch5
https://doi.org/10.1002/9783527814237.ch5
https://doi.org/10.1016/j.cogsc.2021.100511
https://doi.org/10.1016/j.cogsc.2021.100511
https://doi.org/10.1002/anie.202013540
https://doi.org/10.1002/anie.202013540
https://doi.org/10.1002/ange.202013540
https://doi.org/10.1038/s41929-019-0404-6
https://doi.org/10.1038/s41929-019-0404-6
https://doi.org/10.1002/anie.201814751
https://doi.org/10.1002/anie.201814751
https://doi.org/10.1002/ange.201814751
https://doi.org/10.1021/acscatal.9b03963
https://doi.org/10.1021/jacs.9b05024
https://doi.org/10.1002/anie.201901169
https://doi.org/10.1002/anie.201901169
https://doi.org/10.1002/ange.201901169
https://doi.org/10.1021/acscatal.8b02902
https://doi.org/10.1002/adsc.201701115
https://doi.org/10.1002/adsc.201701115
https://doi.org/10.1002/anie.201806289
https://doi.org/10.1002/ange.201806289
https://doi.org/10.1002/ange.201806289
https://doi.org/10.1002/anie.201808676
https://doi.org/10.1002/ange.201808676
https://doi.org/10.1002/ange.201808676
https://doi.org/10.1021/acscatal.8b00153
https://doi.org/10.1002/anie.201702406
https://doi.org/10.1002/ange.201702406
https://doi.org/10.1039/C7SC00138J
https://doi.org/10.1039/C7SC00138J
https://doi.org/10.1021/acscatal.6b03554
https://doi.org/10.1002/anie.201705471
https://doi.org/10.1002/anie.201705471
https://doi.org/10.1002/ange.201705471
https://doi.org/10.1002/anie.201611318
https://doi.org/10.1002/ange.201611318
https://doi.org/10.1002/ange.201611318
https://doi.org/10.1021/jacs.5b13519
https://doi.org/10.1021/jacs.5b13519
https://doi.org/10.1021/jacs.6b10433
https://doi.org/10.1021/jacs.6b03709
https://doi.org/10.1002/anie.201007406
https://doi.org/10.1002/anie.201007406
https://doi.org/10.1002/ange.201007406
https://doi.org/10.1002/anie.201606218
https://doi.org/10.1002/anie.201606218
https://doi.org/10.1002/ange.201606218
https://doi.org/10.1002/anie.201402542
https://doi.org/10.1002/ange.201402542
https://doi.org/10.1002/ange.201206051
https://doi.org/10.1002/ange.201206051
https://doi.org/10.1002/anie.201206051
https://doi.org/10.1002/anie.201206051


[13] R. Van Putten, E. A. Uslamin, M. Garbe, C. Liu, A. Gonzalez-de-Castro, M.
Lutz, K. Junge, E. J. Hensen, M. Beller, L. Lefort, Angew. Chem. Int. Ed.
2017, 56, 7531–7534; Angew. Chem. 2017, 129, 7639–7642.

[14] A. Bruneau-Voisine, D. Wang, V. Dorcet, T. Roisnel, C. Darcel, J.-B. Sortais,
Org. Lett. 2017, 19, 3656–3659.

[15] R. v. Putten, J. Benschop, V. J. d. Munck, M. Weber, C. Müller, G. A.
Filonenko, E. A. Pidko, ChemCatChem 2019, 11, 1–5.

[16] a) L. K. Doraiswamy, Recent Advances in the Engineering Analysis of
Chemically Reacting Systems, Jonh Wiley&Sons Ltd, New Delhi, 1984;
b) J. M. Smith, Chemical engineering kinetics, 1981; c) B. R. James,
Homogeneous hydrogenation, Wiley, 1973.

[17] R. Chaudhari, A. Seayad, S. Jayasree, Catal. Today 2001, 66, 371–380.
[18] G. E. Box, K. B. Wilson, Journal of the royal statistical society: Series b

(Methodological) 1951, 13, 1–38.
[19] W. Yang, I. Y. Chernyshov, R. K. A. van Schendel, M. Weber, C. Müller,

G. A. Filonenko, E. A. Pidko, Nat. Commun. 2021, 12, 1–8.
[20] W. Sibanda, P. Pretorius, Netw. Model. Anal. Health Inform. Bioinform.

2013, 2, 137–146.
[21] W. Karl, H. Rardle, L. Simar, Applied Multivariate Statistical Analysis,

Springer-Verlag Berlin Heidelberg, 2015.

[22] M. Korkmaz, Numerical Methods for Partial Differential Equations 2021,
37, 406–421.

[23] L. St, S. Wold, Chemom. Intell. Lab. Syst. 1989, 6, 259–272.
[24] K. Fayazbakhsh, A. Abedian, B. D. Manshadi, R. S. Khabbaz, Mater. Des.

2009, 30, 4396–4404.
[25] V. B. Kampenes, T. Dybå, J. E. Hannay, D. I. Sjøberg, Inf. Softw. Technol.

2007, 49, 1073–1086.
[26] P. W. Holland, R. E. Welsch, Communications in Statistics-theory and

Methods 1977, 6, 813–827.
[27] A. E. Beaton, J. W. Tukey, Technomet 1974, 16, 147–185.
[28] A.-N. Spiess, N. Neumeyer, BMC Pharmacol. 2010, 10, 1–11.
[29] D. G. Watts, Can. J. Chem. Eng. 1994, 72, 701–710.

Manuscript received: July 28, 2021
Revised manuscript received: August 23, 2021
Accepted manuscript online: August 25, 2021
Version of record online: ■■■, ■■■■

ChemCatChem
Full Papers
doi.org/10.1002/cctc.202101140

11ChemCatChem 2021, 13, 1–12 www.chemcatchem.org © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH

These are not the final page numbers! ��

Wiley VCH Dienstag, 14.09.2021

2199 / 219250 [S. 11/12] 1

https://doi.org/10.1002/anie.201701365
https://doi.org/10.1002/anie.201701365
https://doi.org/10.1002/ange.201701365
https://doi.org/10.1021/acs.orglett.7b01657
https://doi.org/10.1016/S0920-5861(00)00633-7
https://doi.org/10.1007/s13721-013-0032-z
https://doi.org/10.1007/s13721-013-0032-z
https://doi.org/10.1002/num.22533
https://doi.org/10.1002/num.22533
https://doi.org/10.1016/j.matdes.2009.04.004
https://doi.org/10.1016/j.matdes.2009.04.004
https://doi.org/10.1016/j.infsof.2007.02.015
https://doi.org/10.1016/j.infsof.2007.02.015
https://doi.org/10.1080/03610927708827533
https://doi.org/10.1080/03610927708827533
https://doi.org/10.1080/00401706.1974.10489171
https://doi.org/10.1002/cjce.5450720420
https://doi.org/10.1002/cjce.5450720420


FULL PAPERS

Statistical modelling: A rapid and
powerful approach to assess the
catalytic reaction kinetics is
developed by combining the design
of experiments with statistical
modelling. Equating the regression
equations and derived coefficients of
resulting statistical models, we are
able to measure the activation
energy, to capture different reaction
regimes, and to map the response of
the observed reaction rate to
condition parameters.

R. K. A. van Schendel, W. Yang,
Dr. E. A. Uslamin*, Prof. E. A. Pidko*

1 – 12

Utilizing Design of Experiments
Approach to Assess Kinetic Parame-
ters for a Mn Homogeneous Hydro-
genation Catalyst

Wiley VCH Dienstag, 14.09.2021

2199 / 219250 [S. 12/12] 1


