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A B S T R A C T

Using an immersed boundary-lattice Boltzmann method, we investigated the response of dense granular
suspensions to time-varying shear rates and flow reversals. The evolution of the relative apparent viscosity
and particle structures was analysed. The concentration of solids (𝜙𝑣) and particle Reynolds numbers (𝑅𝑒𝑝)
were varied over the ranges 6% ≤ 𝜙𝑣 ≤ 47% and 0.105 ≤ 𝑅𝑒𝑝 ≤ 0.529. The simulations included sub-grid scale
corrections for unresolved lubrication forces and torques (normal and tangential). When 𝜙𝑣 surpasses 30%, the
contribution of the tangential lubrication corrections to the shear stress is dominant. While for intermediate
solids fractions we find weak shear-thinning, we see weak shear-thickening for 𝜙𝑣 > 40%. We show how the
structure and apparent viscosity of a suspension evolves after a reversal of the shear direction. For 47% solids,
simulations with step changes in the shear rate show the effects of the previous shear history on the viscosity
of the suspension.
1. Introduction

Suspensions are complex fluids and their rheology is determined
by the characteristics of the suspended particles and their interactions.
Although hydraulic transport of dense solids suspensions is typical
practice in many processes, such as wastewater treatment, drilling oper-
ations, and ore refining plants, operating such transport lines frequently
results in significant disruptions. Improved understanding of the com-
plicated dynamics of particle–particle and fluid–particle interactions
is thus highly desirable. Specifically, changes in the rheology and
structure that occur due to the effects of flow reversals and abrupt shifts
in the shear rate are of particular interest to us, as the transport of slurry
involves such phenomena in bends, fittings, and valves. In our previous
study [1], we explored the effects of steady shear rate on rheology
by implementing a spring-like force to handle particle collisions. In
this paper, we improve the modelling of interparticle interactions by
applying explicit lubrication corrections over sub-grid scale distances,
so that the resulting simulation can provide a better understanding of
both the steady-state and transient rheological behaviour of granular
suspensions. We restrict ourselves to suspensions of particles typically
some 300 μm in diameter, with solids volume fractions 𝜙𝑣 between 6
and 47%, and particle Reynolds numbers 𝑅𝑒𝑝 between 0.105 and 0.529.
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∗∗ Corresponding author at: Bernal Institute and School of Engineering, University of Limerick, V94T9PX, Limerick, Ireland.
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Over the last few decades, research on the rheology of suspen-
sions has advanced through both experimental and computational stud-
ies. Brady and Bossis [2] used Stokesian dynamics to investigate the
apparent viscosity (the ratio of the effective viscosity over the viscos-
ity of the suspending fluid) of concentrated suspensions. Jogun and
Zukoski [3] conducted experiments with plate-like particles suspended
inside a basic solution to study its rheological behaviour (the yielding
type of response). A review article by Stickel and Powell [4] also
discusses the rheology of dense suspensions with more emphasis on mi-
crostructure and total fluid stresses. The non-Newtonian behaviour of
dense suspensions, such as normal-stress differences and shear-induced
migration, has been discussed by Guazzelli [5] and co-workers [6]. By
coupling the Lattice Boltzmann Method (LBM) with a hybrid Immersed
Boundary Method (IBM) and a bounce-back scheme, Lorenz et al.
[7] demonstrated the continuous and discontinuous shear thickening
of concentrated suspensions. Both [8] and [1] performed numerical
simulations using LBM — the former discussed the effects of particle
concentration and density ratio on the viscosity of suspensions, while
the latter discussed the role of particle rotation and cluster formation
on the shear thickening of suspensions.

Suspension properties are well known in dilute regimes [9,10].
However, as the concentration of solids increases, the rheological
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properties of suspensions become more complicated. While many re-
searchers have reported the steady-state rheology of suspensions [11–
13], few have studied their transient behaviour. The time-dependent
response of the relative apparent viscosity of a dense suspension may
arise due to a change in the magnitude of the shear rate or a reversal of
the direction of the shear flow. Gadala-Maria and Acrivos [14] reported
the first experimental observation of the response of shear stress to
a reversal of the flow direction. Experiments with spherical particles
in the Couette device showed that for solid fractions 𝜙𝑣 > 30%, the
memory effects of previous shearing were evident when the shear was
stopped and then resumed in either the same or opposite direction.
Both [15] and [16] conducted experiments to demonstrate the transient
evolution of suspensions after reversing the direction of flow.

In recent years, interpretation of the transient rheology of sus-
pensions through numerical simulation is gaining more attention. For
instance, Srinivasan et al. [1] examined the history-dependent rheology
of suspensions at finite inertia when subjected to a sudden increase
and decrease in the shear rate. Simulations of suspensions in Stokes
flow submitted to shear reversal have been reported by Peters et al.
[17]. However, the aspects of some of the underlying characteristics
of the suspension dynamics, such as the time scales that govern the
development of wall shear stress (for particles with finite inertia,
i.e. 𝑅𝑒𝑝 of order 10−1) after flow reversal, are often not considered.

We have developed an in-house numerical code to simulate solid–
liquid suspensions using IB-LBM [1]. We now improve the simulations
by modifying the sub-grid scale force from the previously applied spring
model to lubrication corrections [18–20]. While the IB-LBM simulations
resolve the flow and provide an accurate value of the force on particle
over larger interparticle gaps, corrections for unresolved normal and
tangential lubrication corrections (which we denote as NTLC in the
remainder of the paper) are turned on when the gap size between the
adjacent particles is smaller than a selected cutoff (on the order of the
computational grid size). We choose the cutoff such that it restores the
correct behaviour of the force on the particles in the limit of small
interparticle gaps, with the understanding that the forces calculated
for intermediate gap sizes are not strictly accurate — although they
do interpolate well between the two extremes.

In this work, we analyse both the steady-state and time-dependent
rheology of dense suspensions (up to 47% solids by volume) under sim-
ple shear flow. In particular, we focus on the effects of particle volume
fraction and shear rate (expressed in terms of 𝑅𝑒𝑝) by considering the
simulations of suspensions that are subjected to:

• an instantaneous reversal of the direction of shear flow,
• increases and decreases in the shear speed in one step, and
• a sudden stop and then a restart of the fluid flow.

The main purpose of this paper is to improve the results of our previous
study [1] by including the contribution of lubrication corrections and
to understand the suspension behaviour in time-varying shear flows.
Quantitatively, the significance of the two time scales (viscous and
advective) that control the transients after shear reversal is shown. For
the range of 𝜙𝑣 and 𝑅𝑒𝑝 considered, we also show that our findings
are consistent with the results reported by Krieger and Dougherty [21],
Dbouk et al. [12], Thorimbert et al. [8], and Srinivasan et al. [1].

This paper is arranged in the following way: In Section 2, we
summarise our problem statement. In Section 3, we briefly describe
the immersed boundary-lattice Boltzmann method. In the remainder
of Section 3, we first discuss the implementation of the sub-grid scale
normal lubrication correction (referred to as NLC), the specifics of
the integration of particle motion, and finally show how the relative
apparent viscosity is computed from the stress on the moving walls. In
Section 4.1, we present the results of steady-state rheology of suspen-
sions. Then, in Section 4.2, we discuss the simulations of the effects
of shear reversal followed by the simulations of suspensions subjected
to step changes in the magnitude of shear rate in Section 4.3. In the
2

final Section 5, we provide our conclusions. Appendix A deals with
the lubrication force and torque expressions for particles interacting
with walls, while Appendix B specifies the initial particle positions for
varying solids volume fractions.

2. Problem statement

The transport of slurry through industrial pipelines has inspired
us to carry out the current numerical analysis. The dynamics of such
transport are complex due to the transient fluctuations in the flow rate
and spatial variations along the line (e.g., bends and valves). In this
application, the concentration of solids amounts to some 35%, and
particles have finite inertia with particle Reynolds number typically of
O(10−1), and the flow is laminar. The carrier liquid phase is Newtonian
with kinematic viscosity 𝜈. We model the suspensions as consisting
of monodisperse rigid spheres that are 300 μm in diameter, which is
typical for the slurries we are interested in.

While our current numerical analysis is intended to mimic a repre-
sentative volume of suspension within a macroscopic flow, simulation
domain dimensions and boundary conditions are similar to the pa-
rameters of a rheometer. A typical case is a suspension of 300 μm
diameter particles in a standard rheometer with a 2 mm gap, resulting
in a confinement ratio 𝛿 = 2𝑅∕𝐻 = 0.15 (where 𝑅 denotes particle
radius and 𝐻 is the gap width). In our suspension simulations, the
confinement ratio is 0.16, with 𝑅 = 4 lu and 𝐻 = 50 lu, where lu
denotes lattice units (multiples of the simulation grid size).

A schematic of the simulation domain with particles suspended
between two parallel plates is presented in Fig. 1. These plates move
in opposite directions with a speed 𝑈𝑤, and we define 𝑈∗ = 𝑈𝑥∕𝑈𝑤
(where 𝑈𝑥 is the 𝑥 component of the liquid velocity). The particles are
placed randomly between the parallel walls. The flow is induced only
by the shearing motion of the walls, and we do not take into account the
effects of gravity. The imposed shear rate is �̇� = 2𝑈𝑤∕𝐻 . The simulation
box is periodic in the flow (𝑥) and vorticity (𝑦) directions. We determine
the relative apparent viscosity of the suspension under steady-state and
transient conditions by varying the wall speed (shear rate) and the
number of particles (solids volume fraction).

3. Simulation methods

3.1. The immersed boundary-lattice Boltzmann method

We solve the flow of the incompressible Navier–Stokes equations
with a common lattice Boltzmann technique [22]. We used a 𝐷3𝑄19
model (19 discrete velocities in 3-D) and the usual BGK collision oper-
ator. While the [23] immersed boundary method has been implemented
to impose the no-slip boundary condition on the surface of the particles,
the [24,25] bounce-back method has been used to enforce the no-slip
boundary condition for moving plates at the top and bottom. In the
immersed boundary method, two sets of Lagrangian points, namely the
marker and the reference points, are used to represent the surface of
each particle. The fluid’s motion advects the marker points, while the
reference points move as a rigid body. The difference in the positions
between the marker and the reference points results in a Lagrangian
force which is computed using an explicit spring force model [26]. By
means of a linear interpolation scheme [1,26], these local Lagrangian
forces are spread to the surrounding Eulerian fluid nodes by the [27]
forcing scheme. The velocity at each Lagrangian boundary point is
calculated by interpolating the fluid velocities at neighbouring nodes.
We solve the linear and rotational motion of the particles by using
explicit leapfrog integration of Newton’s equations. For more details,
the reader is referred to our earlier paper [1].

Previously, we tested the accuracy of the implemented IB-LBM code
by simulating the translation of a single rigid sphere at constant speed
in the Newtonian liquid [1]. For the radius of 𝑅 = 4 lu, the effective size
of the sphere (its hydrodynamic radius 𝑅ℎ𝑦𝑑) increased by about 5%

(4.2 lu) compared to the input radius 𝑅. It has been demonstrated by
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Fig. 1. Simulation geometry with particles suspended randomly in a Newtonian liquid subject to simple shear flow. The left panel shows the random location of the particles
within the simulation box. The right panel shows 2-D cross-sections through the spheres that intersect the centre plane the simulation box. In both snapshots, the background
colours indicate the 𝑥 liquid velocity component normalised by the wall velocity 𝑈𝑤. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
several authors [28,29] that the exact location of the no-slip condition
differs from the ‘‘input’’ radius on the order of 0.2 to 1 lu. For particles
with large input radii, the variation in the effective radius of this
order is not significant [30]; however, we require a calibrated radius.
This calibrated radius is used for the force calculation, solids volume
fraction, and particle Reynolds number 𝑅𝑒𝑝 = �̇�𝑅2

ℎ𝑦𝑑∕𝜈 because it
gives the effective position of the no-slip boundary. We perform the
calibration under the conditions (low Reynolds number and a large
domain) for which the equation for the force on a sphere (Stokes drag
force) is valid.

Corrections to the fluid inside the sphere are not taken into account
in any of the simulations discussed in this paper, and particles with
densities twice that of the fluid density are simulated. The fluid density
𝜌𝑓 is equal one (in lattice units), and the solid density is effectively
𝜌𝑠 = 𝜌𝑝 + 𝜌𝑓 , where 𝜌𝑝 is the additional density of the solid [28]. All
simulations use 𝜌𝑝 = 1, and it follows that the density ratio 𝜎 = 𝜌𝑠∕𝜌𝑓 =
2.

3.2. Sub-grid scale lubrication corrections

The main difference between the suspension simulations described
in this paper and our previous study [1] is that we now include sub-grid
scale corrections for the unresolved normal and tangential lubrication
forces and torques between particles. This is required because as soon
as the gap between the surfaces of two spheres (or between the sphere
and the wall) approaches the resolution of the simulation grid, the
LB simulation will no longer accurately resolve the flow accurately
in the gap. To improve the calculation of the forces and torques on
the particles, we explicitly include lubrication corrections to account
for sub-grid scale details of the flow. The expression for the leading
order normal lubrication correction (NLC) on particle 𝑝 due to relative
translation of the spheres 𝑝 and 𝑞 along the line connecting the centres
of the spheres is given by [20,30]

𝐅𝑛,𝑙𝑢𝑏
𝑝 = 6𝜋𝜇𝑅2

ℎ𝑦𝑑
𝛼2

(1 + 𝛼)2

(

1
ℎ
− 1

ℎ𝑛𝑜

)

𝐔𝑛. (1)

The superscript 𝑛 denotes normal. For a monodisperse suspension, the
ratio of the radii of spheres 𝑝 and 𝑞 is 𝛼 = 𝑅𝑞

ℎ𝑦𝑑∕𝑅
𝑝
ℎ𝑦𝑑 = 1 and

ℎ = |𝐱𝑞 − 𝐱𝑝| − 2𝑅ℎ𝑦𝑑 is the gap between particles, where 𝐱𝑝 and 𝐱𝑞 are
the centres of the spheres. The normal velocity 𝐔𝑛 = (𝐔𝑝𝑞 ⋅�̂�𝑝𝑞)�̂�𝑝𝑞 , where
𝐔𝑝𝑞 = 𝐮𝑞 − 𝐮𝑝 is the relative translational speed and �̂�𝑝𝑞 =

𝐱𝑞 − 𝐱𝑝
‖𝐱𝑞 − 𝐱𝑝‖

is

the unit vector that points from the centre of sphere 𝑝 to the centre of
sphere 𝑞.

The above Eq. (1) expresses the additional lubrication force that
is needed to compensate for lack of resolution at small gap sizes.
The lubrication expressions for the total lubrication forces are derived
for Stokes flow and small film thickness (relative to particle radius).
The particle Reynolds number is based on the characteristic velocity
scale �̇�𝑅 and length scale 𝑅. The approach speeds between particles
3

in suspensions are lower than this characteristic velocity, and the
film thickness is smaller than the radius. Therefore, the film Reynolds
number is smaller than the particle Reynolds number (0.105 to 0.529)
which justifies the use of lubrication corrections.

The equations for computing the tangential lubrication force correc-
tion on the 𝑝th particle due to relative translation and rotation of the
sphere perpendicular to the centreline are [18,20]

𝐅𝑡,𝑙𝑢𝑏
𝑝 = 6𝜋𝜇𝑅ℎ𝑦𝑑

[

4𝛼(2 + 𝛼 + 2𝛼2)
15(1 + 𝛼)3

ln
(

ℎ
ℎ𝑡𝑜

)]

𝐔𝑡, (2a)

𝐅𝑟,𝑙𝑢𝑏
𝑝 = 6𝜋𝜇𝑅2

ℎ𝑦𝑑

[

2𝛼2

15(1 + 𝛼)2
ln
(

ℎ
ℎ𝑟𝑜

)]

(𝝎𝐹 × �̂�𝑝𝑞). (2b)

The superscripts 𝑡 and 𝑟 denote translation and rotation. 𝐔𝑡 = 𝐔𝑝𝑞 −𝐔𝑛
and 𝝎𝐹 = 𝝎𝑝𝑞 + 4𝛼−1𝝎𝑝 + 4𝛼𝝎𝑞 (where 𝝎𝑝𝑞 = 𝝎𝑝 + 𝝎𝑞) are the relative
tangential translational and rotational speeds. The translational and ro-
tational lubrication cutoffs below which the corrections are applied are
ℎ𝑡𝑜 and ℎ𝑟𝑜, respectively. The lubrication torques due to the translation
and rotation of the spheres are given by

𝐓𝑡,𝑙𝑢𝑏
𝑝 = 8𝜋𝜇𝑅2

ℎ𝑦𝑑

[

𝛼(4 + 𝛼)
10(1 + 𝛼)2

ln
(

ℎ
ℎ𝑡𝑜

)]

(�̂�𝑝𝑞 × 𝐔𝑝𝑞), (3a)

𝐓𝑟,𝑙𝑢𝑏
𝑝 = 8𝜋𝜇𝑅3

ℎ𝑦𝑑

[

2𝛼
5(1 + 𝛼)

ln
(

ℎ
ℎ𝑟𝑜

)]

𝝎𝑇 , (3b)

where 𝝎𝑇 =
(

𝝎𝑝 +
𝛼𝝎𝑞

4

)

−
[(

𝝎𝑝 +
𝛼𝝎𝑞

4

)

⋅ �̂�𝑝𝑞
]

�̂�𝑝𝑞 . The normal and
tangential lubrication thresholds are estimated to be ℎ𝑛𝑜∕𝑅ℎ𝑦𝑑 = 0.72
and ℎ𝑡𝑜∕𝑅ℎ𝑦𝑑 = ℎ𝑟𝑜∕𝑅ℎ𝑦𝑑 = 0.1, respectively. These values are computed
from benchmark simulations of steady translation and rotation of rigid
spheres with an input radius of 𝑅 = 4 lu at varying interparticle gaps,
ensuring that the force and torque on the spheres is accurate in the
limit ℎ → 0. We neither saturate the lubrication forces at small gap
sizes nor introduce additional repulsive forces in the simulations to
prevent overlap because for the cases considered, the divergence of the
lubrication (correction) force with decreasing gap size is sufficient to
prevent overlap.

The forces and torques on the 𝑞th particle can simply be written as
𝐅𝑞 = −𝐅𝑝 and 𝐓𝑞 = 𝐓𝑝. By taking the limit 𝛼 → ∞ in Eqs. (1) through
(3b) and replacing 𝑞 with 𝑤 to denote a wall, one can derive the equa-
tions for the lubrication forces on a particle near either wall (equations
are given in Appendix A). These wall contributions are added with the
above equations to obtain the total (lubrication correction) forces and
torques as

𝐅𝑙𝑢𝑏
𝑝 = 𝐅𝑛,𝑙𝑢𝑏

𝑝 + 𝐅𝑡,𝑙𝑢𝑏
𝑝 + 𝐅𝑟,𝑙𝑢𝑏

𝑝 + 𝐅𝑤,𝑙𝑢𝑏
𝑝 , (4a)

𝐓𝑙𝑢𝑏
𝑝 = 𝐓𝑡,𝑙𝑢𝑏

𝑝 + 𝐓𝑟,𝑙𝑢𝑏
𝑝 + 𝐓𝑤,𝑙𝑢𝑏

𝑝 , (4b)

where 𝐅𝑤,𝑙𝑢𝑏
𝑝 and 𝐓𝑤,𝑙𝑢𝑏

𝑝 are the particle–wall lubrication force and
torque corrections.
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3.3. Particle motion

The integration of particle motion uses smaller time steps than the
LBM flow solver. We ensure the stability of the integration of the
explicit leapfrog scheme by using 𝑛𝑡𝑝 equal sub-time steps for every
luid time step. For 𝜙𝑣 up to 40%, a constant number of sub-time steps
as used throughout the simulation, and the required value of 𝑛𝑡𝑝 that

s needed to ensure stability increases with increasing 𝜙𝑣 and 𝑅𝑒𝑝. To
assess the effect of the number of sub-time steps, we considered two
simulations at 𝜙𝑣 = 17 and 25% with 𝑅𝑒𝑝 = 0.32. While the difference
in the apparent viscosity at 17% solids was 0.02% when the number of
sub-time steps increased from 50 to 100, the difference was 0.14% for
25% solids when using 70 and 150 sub-time steps, respectively. This
shows that the viscosities are therefore not sensitive to the number of
sub-time steps.

We employed an adaptive time-stepping scheme for 𝜙𝑣 = 47%.
When overlap between two particles or between a particle and a
wall is detected, the integration of the particle motion is successively
recalculated with double the number of sub-time steps until the overlap
is no longer detected. In the next fluid time step, integration is first
attempted with half the number of sub-time steps that was used for
the previous fluid time step. In this way, the algorithm uses larger
time steps for the particle motion when this is sufficient to resolve the
interactions. In the simulations with 47% solids, the typical number of
sub-time steps was 512. Using this adaptive time-stepping approach, we
were able to simulate suspensions up to 𝑅𝑒𝑝 = 0.211, and the integration
of particle motion is the bottleneck in the computational algorithm. For
higher Reynolds numbers, the algorithm demanded impractically high
numbers of sub-time steps (on the order of 105) to prevent overlap, and
this was insufficient to prevent instability.

The computation of interparticle interaction forces is accelerated
by the use of a binning algorithm instead of checking all pairs of
particles to find those that are sufficiently close to applying lubrication
corrections. The simulation domain is divided into a grid, and all
particles are assigned to a cell within this grid. The algorithm then
compares only the positions of particles that are in adjacent cells. With
this algorithm, the suspension simulations were approximately seven
times faster than with the less-efficient alternative.

The overall algorithm of IB-LBM with lubrication force computa-
tions is summarised as follows: at 𝑡 = 𝑡𝑜, the fluid velocities and
densities, as well as particle velocities and positions, are specified.
For 𝑛𝑡𝑝 equal sub-time steps (constant or adaptive depending on the
concentration of solids), the lubrication force and torque corrections are
computed by employing the previously described binning algorithm.
The velocity (translational and rotational) and the position of the
particles is updated. The immersed boundary method is used to apply
a no-slip condition on the surfaces of the particles: first, the Lagrangian
force on the boundary points is spread to the neighbouring fluid
nodes, and the velocity of each boundary points is obtained through
interpolation of the fluid velocity on the neighbouring nodes. Finally,
the flow field is solved using the LBM with the body forces specified by
the immersed boundary method and the loop is executed until 𝑡 = 𝑡𝑛
end of the simulation).

.4. Relative apparent viscosity

The relative apparent viscosity of the suspension is determined as
he sum of the resolved fluid shear stress and unresolved lubrication
orrection for particle–wall interactions. First, we evaluate the local
luid shear stress on every lattice node adjacent to the sheared walls
top and bottom) as

𝐿𝐵
𝑤 = 𝜇

𝑈𝑥 − 𝑈𝑤
𝛥𝑦

(5)

here 𝛥𝑦 = 0.5 lu is the distance between the wall and the neigh-
ouring fluid node and 𝜇 is the dynamic viscosity of the fluid. The
4

uperscript 𝐿𝐵 denotes the resolved fluid contribution to the shear
tress on either wall 𝑤. These local shear stresses are averaged across
he 𝑥 − 𝑦 cross-sectional plane to obtain the total fluid shear stress.
n the simulations with tangential lubrication correction (NTLC), the
dditional stress, 𝜏𝑙𝑢𝑏𝑤 , due to translation and rotation of particles near
he walls is 1

𝐿𝑊

[
∑

𝐅𝑤,𝑡
𝑝 +

∑

𝐅𝑤,𝑟
𝑝

]

(where 𝐅𝑤,𝑡
𝑝 and 𝐅𝑤,𝑟

𝑝 are the (lubrica-
tion correction) forces on particles — see Appendix A for equations).
These contributions are added to Eq. (5) and the overall stress on the
suspension and therefore the relative apparent viscosity is obtained as

𝜂𝑟 =
⟨𝜏𝐿𝐵𝑤 ⟩ + 𝜏𝑙𝑢𝑏𝑤

𝜇�̇�
. (6)

In this equation, ⟨ ⟩ denotes the average over the 𝑥 − 𝑦 cross-sectional
area.

4. Three-dimensional simulations of suspensions

Three-dimensional simulations of dense monodisperse suspensions
have been performed under simple shear flow. In these simulations,
the solids volume fraction was varied between 6% and 47% and the
particle Reynolds number between 0.105 and 0.529. Several different
approaches have been taken to specify the initial positions of the
spheres over the range of 𝜙𝑣. The specifics of these methods are set
out in Appendix B. The liquid kinematic viscosity 𝜈 = 1∕30 lu2/ts.
Explicit NTLCs were included to account for sub-grid scale details of
the flow between solid surfaces. Simulations of dense suspensions (that
is, 𝜙𝑣 ≥ 25%) ran on ICHEC (Irish Centre for High-End Computing)
machines with 2 × 20 core 2.4 GHz Intel Xeon Gold 6148 (Skylake)
processors with 192 GB RAM. Local computing resources with 4 core
Intel i7-6700 processor of 64 GB RAM were used to simulated dilute
suspensions (𝜙𝑣 < 25%). In Section 4.1, we first discuss the rheology of
suspensions at constant shear rates. Then we move on to address the
transient rheology of suspensions due to flow reversals (in Section 4.2)
and instantaneous shifts in the shear rate magnitude (in Section 4.3).

4.1. Steady-state rheology

For one set of randomly drawn particles (denoted as set 1), the
evolution over time of apparent viscosities calculated from the stresses
on the top and bottom walls under constant shear is presented in
Fig. 2. The solids volume fractions were 𝜙𝑣 = 6, 30, 38, and 47%,
espectively, and 𝑅𝑒𝑝 = 0.105. The suspensions were sheared up to
�̇� 𝑡 = 100. The figures display the individual contribution of resolved (by
LBM), unresolved (modelled by NTLC), and the sum of both resolved
and unresolved wall shear stresses (expressed as the implied relative ap-
parent viscosity 𝜂𝑟). Simulations with only NLCs for the above specified
concentrations of solids have also been performed under simple shear
flow, and a sample evolution of viscosity at 47% solids is shown in
Fig. 2. Since the simulations with only NLC under-predict the viscosity
of the suspension (as seen from the purple and orange dotted lines in
Fig. 2), the inclusion of tangential lubrication corrections is necessary.

At 𝜙𝑣 = 47%, from Fig. 2, we can see that the viscosities computed
rom the (resolved) fluid stress (that is, dash–dot black and magenta
ines) first increase up to �̇� 𝑡 ≈ 5 and then decrease before they start to
tabilise after �̇� 𝑡 ≈ 10. On the contrary, the viscosities computed from
he (unresolved) lubrication stress (that is, dashed green and brown
ines) are negligible until �̇� 𝑡 ≈ 5 due to the initial gap between the

particles and either wall. Once the initial packing structure breaks,
some particles approach to within the cutoff distance from the walls,
and the lubrication stress rises rapidly to �̇� 𝑡 ≈ 20 and then stabilises.
The sums of resolved and unresolved stresses, i.e., the (total) apparent
viscosity of the suspension, are shown with blue and red lines. The
smaller figures on the top panel of Fig. 2 display the evolution of
relative apparent viscosity for several lower volume fractions ranging
from 6 (top-left) to 38% (top-right). In the case of dilute suspensions

(that is, 𝜙𝑣 = 6%), we can see that the lubrication stress is negligible
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Fig. 2. Evolution of the relative apparent viscosity of a suspension at 𝜙𝑣 = 47% and
𝑅𝑒𝑝 = 0.105 as a function of time (�̇� 𝑡) calculated from the stresses on the top and
bottom walls. The Individual contributions of resolved (LBM) and unresolved (NTLC)
shear stresses (expressed as the implied relative apparent viscosity) as well as their sum
(LBM + NTLC) are shown. The dotted purple and orange lines indicate the simulation
viscosity obtained by including the contribution of only NLC. Figures along the top
show the evolution of 𝜂𝑟 for 𝜙𝑣 = 6, 30, and 38% with NTLCs, respectively. The images
below show 2-D cross-sections through the simulation domains 𝜙𝑣 = 6 (left) and 47%
(right) at �̇� 𝑡 = 50. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

relative to the fluid stress. As the suspension becomes more dense, the
number of particles adjacent to the wall increases (see the 2-D cross-
sections at the bottom of Fig. 2) and the unresolved stresses surpass the
resolved fluid stress; they are comparable in magnitude when the solids
volume fraction is 30%.

Since the evolution of relative apparent viscosities determined from
shear stress on either wall follows a similar trend, the average of top
and bottom wall viscosities (denoted as �̄�𝑟 = (𝜂𝑡𝑟 + 𝜂𝑏𝑟 )∕2, where the
superscripts 𝑡 and 𝑏 denote top and bottom, respectively) is used in
all subsequent discussions. While we see in Fig. 2 that the viscosity
fluctuates throughout the simulations, the steady viscosity of the sus-
pension is determined by averaging the variations over an interval of
steady fluctuations. Since the suspensions were sheared up to �̇� 𝑡 = 100,
based on Fig. 2, we average the viscosities between 50 and 100. These
time-averaged viscosities are denoted as 𝜂𝑟 (note the double over bar).

The effect of particle concentration on the time-averaged viscosity
is shown for one random draw (set 1) in the left panel of Fig. 3 together
with a comparison of 𝜂𝑟 for three additional random configurations
for the highest solids concentration (47%). The right panel shows the
effect of shear rate (particle Reynolds number) on 𝜂𝑟 for two random
sets. We first discuss the results in the left panel of Fig. 3, which
shows a comparison of 𝜂𝑟 computed from the present work (that is, LB
simulations with NTLCs) with the correlation of Krieger and Dougherty
[21] with the parameters 𝐵 = 2.5 and 𝜙𝑐 = 0.60, experiments of Dbouk
et al. [12], and LB simulations of Thorimbert et al. [8] and Srinivasan
et al. [1] at 𝑅𝑒 = 0.1 and 0.55, respectively.
5

𝑝

For dilute suspensions (that is, 𝜙𝑣 < 17%), our viscosities (filled
magenta triangles) agree with [21] and [8]. As the concentration of
solids increases (𝜙𝑣 ≥ 17%), we see that the computed viscosities
diverge from the data reported by both [21] and [8], and approach
the value of Dbouk et al. [12]. We consider two reasons why our
data deviate from particularly those reported by Thorimbert et al. [8],
viz. (a) grid resolution and (b) interparticle forcing scheme. On the
one hand, in terms of the grid resolution, the ratio of lattice spacing
to particle radius, 𝛥𝑥∕𝑅, used in the simulations of Thorimbert et al.
[8] is 0.2, whereas it is 0.25 (with 𝛥𝑥 = 1 lu and 𝑅 = 4 lu) in the
current simulation. Sample simulations of suspensions with double the
resolution (i.e., 𝑅 = 8 lu such that 𝛥𝑥∕𝑅 = 0.125) showed that for
𝜙𝑣 ≥ 40%, the viscosities decrease by approximately 16% and agree
closely with [8]. On the other hand, analysing the results in terms
of interparticle force models, the simulations of Thorimbert et al. [8]
used a spring-like repulsive force for sub-grid scale interactions, and the
details of the hydrodynamic lubrication correction over short distances
were not modelled. In our current simulations with hydrodynamic
lubrication forces, the contribution of tangential stress is shown to be
prominent (see Fig. 2), and therefore the relative apparent viscosity is
higher.

Presented with filled and open diamonds are the results of our
previous study [1] at 𝑅𝑒𝑝 = 0.55. In these simulations, we applied a
spring force between the colliding particles to prevent overlap when
the distance between any neighbouring particles is less than 1 lu. The
filled diamonds are drawn at the volume fraction corresponding to
the hydrodynamic radius 𝑅ℎ𝑦𝑑 = 4.2 lu, while the open diamonds are
drawn at 𝜙𝑣 calculated based on the spring radius 𝑅𝑠𝑝𝑟𝑖𝑛𝑔 = 4.5 lu
(which follows from the separation distance imposed by the repulsive
spring force). Interestingly, we can see that the our previous findings
match with the [21] correlation if 𝜙𝑣 was computed based on the spring
radius. This effect is, however, not present in current simulations with
NTLC.

Now we move on to address the effects of particle Reynolds number
shown in the right panel of Fig. 3 on the time-averaged suspension
viscosity. Two different sets of particle configurations were considered,
namely set 1 (triangles) and set 2 (circles). We will first discuss the
simulation results of set 1. In the regime of dilute suspensions (that
is, 𝜙𝑣 ≤ 17%), it is evident that the influence of 𝑅𝑒𝑝 has no effect on
�̄�𝑟 (as the viscosity remains steady with increasing 𝑅𝑒𝑝). However, for
𝜙𝑣 = 30 and 35%, we see that the viscosity first decreases slightly with
increasing 𝑅𝑒𝑝 up to 0.317. The viscosity then temporarily increases
at 𝑅𝑒𝑝 = 0.423 and decreases at 𝑅𝑒𝑝 = 0.529. In order to understand
the reason for this temporary increase in the viscosity, we performed
one additional simulation for both concentrations at 𝑅𝑒𝑝 = 0.423 with a
different collection of random particles (set 2). From the circles shown
in green and black, we can see that the viscosity is lower than that of
set 1 and follows a weak shear-thinning behaviour. This leads us to the
conclusion that the higher viscosity value seen for set 1 is associated
with the choice of random initial particle configuration.

In the case of solid concentrations at 40 and 47%, we were able
to simulate suspensions up to 𝑅𝑒𝑝 = 0.317 and 0.211, respectively,
with the current numerical scheme, before encountering instability in
the integration of particle motion. At these high concentrations, the
rheological behaviour of suspensions changes to weak shear-thickening
(𝜙𝑣 > 40%). A similar transformation in rheology has also been ob-
served in the transient simulations — details are given in the next
section.

In all simulations presented so far, one random configuration (set 1)
was chosen to analyse the steady-state rheology (for which the results
agree with the literature — see Fig. 3). The effects of simulating suspen-
sions with particles from multiple random sets (denoted as sets 2, 3, and
4, respectively) are now evaluated. Since the concentration of solids
varies between 6 and 47%, we use these two extremes to investigate the
sensitivity of different initial particle positions for one particle Reynolds
number, 𝑅𝑒 = 0.105. The left panel of Fig. 4 shows the temporal
𝑝
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Fig. 3. Left panel: the time-averaged relative apparent viscosities of the present work (IB-LBM simulations with NTLC: filled magenta triangles) for varying solids volume fraction
nd 𝑅𝑒𝑝 = 0.105 are compared with [21] (dashed line), [12] (pluses), [8] (open circles), and [1] (filled and open diamonds). For each solids fraction, data are shown for one
andom initial particle configuration; for 47% solids, data sets for three additional initial configurations are shown. The significance of using two types of diamonds to represent
he results of Srinivasan et al. [1] is that 𝜙𝑣 is determined on the basis of 𝑅ℎ𝑦𝑑 and 𝑅𝑠𝑝𝑟𝑖𝑛𝑔 for the results in the filled and opened diamonds, respectively. Right panel: all symbols

correspond to IB-LBM simulations with NTLCs. For the set 1 particle configurations (right-pointing triangles), the effect of 𝑅𝑒𝑝 on the time-averaged 𝜂𝑟 is shown for 𝜙𝑣 between 6
nd 47%. Circles reveal the additional simulation viscosity obtained for the set 2 particle configurations at 𝑅𝑒𝑝 = 0.423 and 𝜙𝑣 = 30 and 35%, respectively. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. The evolution of the average (of top and bottom wall) relative apparent viscosity, �̄�𝑟, for four different random configurations at 𝜙𝑣 = 6 and 47%, and 𝑅𝑒𝑝 = 0.105 is
hown in the left panel. The mean viscosity values differ depending on the configuration, as shown in the right panel, where 𝜂𝑟 is �̄�𝑟 averaged over 50 ≤ �̇� 𝑡 ≤ 100. The error bars
how the standard deviation, and the maximum and minimum values of 𝜂𝑟 are calculated by adding and subtracting the standard deviation from the highest and the lowest mean

values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
evolution of �̄�𝑟 for all four randomly placed particles, whereas the right
anel shows the time-averaged viscosity. Like previously, the viscosities
ere averaged over 50 ≤ �̇� 𝑡 ≤ 100 to obtain 𝜂𝑟. For 6% solids, random

packing was used, while a cubic packing with random perturbations
was used for 47% solids.

From the time evolution plot, it is evident that, in both cases, the
details of the fluctuations in viscosity are different for each random
configuration; nonetheless, the suspensions attain statistical steadiness
once the initial packing arrangement collapses. The number of inter-
actions between the particles (and between the particles and walls)
increases as the solids loading increases, and hence the frequency of
fluctuation increases for 𝜙𝑣 = 47%. The average viscosity, as well as
he maximum and minimum values of these fluctuations, are presented
n the right panel as symbols and dashed blue and brown lines. The
aximum 𝜂𝑟 is calculated by adding the standard deviation to the
ighest (of all four configurations) average value, while the minimum

𝜂𝑟 is calculated by subtracting the standard deviation from the lowest
(of all four configurations) average value. For dilute suspensions, the
standard deviations are meagre, whereas for 47% solids, simulations
with set 2 and set 4 particles provide the highest (20.15) and the
6

lowest (17.86) average viscosity values, respectively. The results are
presented in Fig. 3, and it is evident that all values nearly coincide
with [12], implying that our conclusions are not sensitive to the choice
of the random initial configuration. Therefore, we discuss the results
of transient simulations (both shear reversals and step changes in the
magnitude of shear rates) for one configuration (set 1).

4.2. Effects of flow reversal

In the steady-state rheology calculations, the shear rate was con-
stant throughout the simulation. However, in some situations, such
as disrupted flow due to obstructions and bends in pipes and valves,
the shear rate’s direction and magnitude can vary in time and space.
It is, therefore, essential to learn how the rheology and structure of
suspensions may change under these conditions. In the sections that
follow, we analyse the effects of reversing the shear flow direction
instantaneously on (a) the suspension rheology and (b) the spatial
distribution of particles. For a number of 𝜙𝑣 values ranging from 10
to 40% and two Reynolds numbers, 𝑅𝑒𝑝 = 0.105 (solid blue lines)
and 0.317 (solid green lines), numerical results of the shear reversal
simulations are discussed.
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Fig. 5. Average relative apparent viscosity as a function of accumulated strain after
flow reversal at 𝑅𝑒𝑝 = 0.105 (solid blue lines) and 0.317 (solid green lines). The
concentration of solids varies from 10 to 40%. Insets in the right panel show a
comparison of the numerical results obtained by IB-LBM simulation for 𝜙𝑣 = 30 and
40% at 𝑅𝑒𝑝 = 0.105 with the experimental results (symbols) of Blanc et al. [16] under
Stokes condition (𝑅𝑒𝑝 ∼ 10−9 − 10−7). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

4.2.1. Rheology
Shown in Fig. 5 is the average relative apparent viscosity as a

function of the accumulated strain after the time of the reversal (𝑡𝑟).
The constant shear simulation shows that following the initial increase
from the minimum (see Fig. 2), the apparent viscosity achieves statis-
tical steadiness after about 20 strain times. Therefore, in all of these
simulations, the suspension was first sheared up to �̇� 𝑡𝑟 = 30 (except
at 𝜙𝑣 = 40%, where �̇� 𝑡𝑟 = 40 to ensure steady fluctuations) in one
direction. After reversing the direction of shear flow (𝑡 ≥ 𝑡𝑟), all the
simulations ran up to �̇�(𝑡−𝑡𝑟) = 30, and the steady viscosity is calculated
by averaging the value between 10 ≤ �̇�(𝑡 − 𝑡𝑟) ≤ 30 (as shown as arrow
in bottom right panel of Fig. 5) because the suspensions regain their
equilibrium configuration sooner than starting from a random cubic
packing. At 40% solids, from the green line (𝑅𝑒𝑝 = 0.317), at the end of
the simulation (�̇�(𝑡− 𝑡𝑟) > 28), although one might argue that the trend
appears to be increasing, we interpret this to be a temporary fluctuation
of the apparent viscosity (which is related to temporary collisions
between particles and particles and walls). A similar behaviour can also
be seen in Fig. 2 at �̇� 𝑡 ≈ 50, where the apparent viscosity suddenly
increases, and then descends to the previous range.

Consistent with our observation from the constant shear simulations
(see right panel of Fig. 3), even after flow reversal, we can see in Fig. 5
that the rheology of the suspension varies from weak shear-thinning (at
𝜙𝑣 = 30 and 33%) to weak shear-thickening (at 40% solids); at 𝜙𝑣 =
35%, the viscosities are comparable. These changes in the rheological
behaviour of suspensions are related to the slower rotation of particles
at high volume fractions [1]. In dilute suspensions, the particles rotate
at half the imposed shear rate (that is, 𝜔𝑝 = �̇�∕2); however, as the
concentration of solids increases, the (temporary) clustering of particles
increases. Such clusters may occupy most of the space in the wall-
normal direction, and they rotate slower than individual particles. An
example of the distribution of clusters is presented in Section 4.2.2 —
see Fig. 9. Overall, cluster rotations have a major impact not only on
the steady viscosity [1] but also on the transient viscosity.

At 𝑡 = 𝑡𝑟, we switch the direction of the walls instantaneously
7

(while maintained the same speed), and the shear stress on the walls F
(and therefore the relative apparent viscosity) instantly increases from
its previous steady value (that is, �̇�(𝑡 − 𝑡𝑟) < 0) and then decreases
s the boundary layer develops. In the case of low concentrations of
olids (10 and 17%), the viscosity tends to decrease until the previous
teady-state value is reached. With an increase in the concentration of
olids (𝜙𝑣 ≥ 30%), the viscosity first decreases to a minimum and then
ncreases to a steady value. The magnitude of the temporary decrease
n the viscosity increases with increasing solids volume fraction.

The insets in the figures on the right panel of Fig. 5 present a com-
arison of the simulated viscosities (𝑅𝑒𝑝 = 0.105) with the experimental
alues of Blanc et al. [16] at Stokes flow condition (𝑅𝑒𝑝 ∼ 10−9−10−7 ≪

1). At 30% solids, the minimum viscosity after shear reversal and the
steady value are consistent with [16]. At the higher volume fraction
(40% solids), the minimum simulation viscosity deviates from [16] by
≈ 4%. From a steady value of about 10 prior to the flow reversal,
the viscosity after reversing the flow drops to a minimum of ≈ 7.
Though the steady structure of the particle arrangement is destroyed
temporarily due to an instantaneous flow reversal, the structure eventu-
ally rebuilds and the relative apparent viscosity returns to 10 (average
over 10 ≤ �̇�(𝑡 − 𝑡𝑟) ≤ 30). Simulations with a different random initial
particle configuration (set 2) were performed and the differences in the
viscosity were found to be minor.

With an increase in the solids concentration, we observe a delay
in the development of the suspension viscosity that decreases with
increasing 𝜙𝑣. We analyse the reason for this delay by considering the
development of the viscosity of the suspension over two time scales.
The first of these scales is the viscous time scale based on the domain
height, and the second is an advection time scale based on the mean
centre–centre distance between particles. We first present in Fig. 6,
a comparison of the wall shear stress (instantaneous average relative
apparent viscosity) as a function of time scaled by the viscous time
scale 𝐻2∕𝜈 for 𝜙𝑣 between 10 and 40% and 𝑅𝑒𝑝 = 0.105 and 0.317.
We can see that the minimum viscosities coincide for both 𝑅𝑒𝑝, which
indicates that the dynamics of the first stage (the attainment of the
minimum viscosity) are determined by the viscous time scale. For 10
and 17% solids, the initial decreases in the viscosity of the suspension
have similar slopes until becoming steady for (𝑡 − 𝑡𝑟)𝜈∕𝐻2 ≥ 0.1.
With increasing 𝜙𝑣, the slope of �̄�𝑟 increases, and the time to reach
the minimum viscosity decreases (relative to the viscous time scale)
as the higher number of solids increases the apparent viscosity (and
accelerates momentum transport).

Along with the simulation results, in Fig. 6, we also present the
analytical solution [31] for the developing shear stress in the absence of
particles (dashed magenta line). The slope from the LB simulation with
𝜙𝑣 = 10% matches with the analytical solution well during the initial
development of the wall shear stress. Under the steady-state condition,
the analytical relative apparent viscosity must be exactly equal to 1.
The deviation of �̄�𝑟 in the simulation for (𝑡 − 𝑡𝑟)𝜈∕𝐻2 > 0.1 reflects the
igher viscosity of a suspension with 10% solids.

For all dense suspensions (𝜙𝑣 ≥ 30%) presented in Fig. 5, after
he attainment of the minimum viscosity, the suspension slowly re-
tructures to a stable configuration. We remark here that the spatial
rrangement of particles contributes to the relative apparent viscosity
t higher solids fractions. This re-structuring of suspensions occurs over
n advective timescale. Taking �̇�𝑅ℎ𝑦𝑑 as the velocity scale and the mean
entre–centre distance 𝑙 = 3

√

𝑉 ∕𝑁𝑝 = 𝑅ℎ𝑦𝑑
3
√

4𝜋∕(3𝜙𝑣) (where 𝑉 is
he volume of the simulation domain) as the length scale, we form
he advective time scale 𝑙∕(�̇�𝑅ℎ𝑦𝑑 ). Fig. 7 presents the development of
�̄�𝑟 as a function of time scaled by this advective time scale starting
rom rest with random particle positions (left panel) and after flow
eversal (right panel). For this analysis, we consider solids volume
ractions up to 47% and 𝑅𝑒𝑝 = 0.105. While the development of �̄�𝑟
rom rest follows a similar pattern for 𝜙𝑣 up to 35%, the variations
een in the initial trends at higher concentrations (𝜙𝑣 = 40 and 47%)
re due to the use of a cubic packing (details are given in Appendix B).

rom the right panel of Fig. 7, it is evident that the relative apparent
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Fig. 6. Wall shear stress (expressed as the implied average relative apparent viscosity
�̄�𝑟) after shear reversal as a function of time scaled by the viscous time scale 𝐻2∕𝜈. The
solids volume fractions vary from 0% to 40% in the order of increasing viscosity, and
𝑅𝑒𝑝 = 0.105 and 0.317. The initial particle positions correspond to set 1 of Fig. 5. The
dashed magenta line shows the analytical solution for �̄�𝑟 in the absence of suspended
particles (𝜙𝑣 = 0%). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

viscosity evolves differently after flow reversals. In both panels, for
all dense suspensions (that is, 𝜙𝑣 ≥ 30%), after the first increase
from the minimum value, a steady viscosity is achieved between 2
and 4 advective time scales. Instead of defining the length scale based
on mean centre–centre distance, one could use the gap size between
adjacent particles (that is, 𝑙 − 2𝑅ℎ𝑦𝑑). Using an advective timescale
based on this length, the non-dimensional time for the suspension to
re-structure to the equilibrium state increases with 𝜙𝑣.

4.2.2. Structure
As mentioned earlier, flow reversal that can occur due to sudden

change in the geometry of the transport line affects not only the
rheology observed so far, but also the structural arrangement of the
particles. Therefore, we study the spatial distribution of particles in two
different ways, i.e. (a) study of the evolution of particle clusters and (b)
pair distribution function. The purpose of the first analysis is to provide
a qualitative description of the changes in structure after a reversal of
the shear direction. In this analysis, we count the number of particles
that are within a certain cutoff ℎ (which we call the cluster cutoff).
8
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The dependence of the number of clusters on the choice of cutoff value
describes how the particles are distributed in space. The second analysis
shows the pair distribution function at steady-state after shear reversal.

For the first analysis, a cluster is defined as a collection of two or
more particles in which the gap between each particle and at least one
other particle in the cluster is smaller than ℎ∗𝑐 = ℎ𝑐∕𝑅ℎ𝑦𝑑 . Presented
in Fig. 8 are the comparisons of the evolution of both the number of
clusters 𝑁𝑐 (left vertical axis) and the average relative apparent viscos-
ity �̄�𝑟 (right vertical axis) after shear reversal as a function of time for
several concentrations of solids. In order to illustrate the evolution of
the suspension structure, we pick ℎ∗𝑐 to obtain approximately 20 clusters
at steady-state after flow reversal for all concentrations. Comparing the
evolution of the number of clusters and the relative apparent viscosity,
we see that the time scales of these processes coincide during both the
initial development and attainment of the steady value. For example,
at 47% solids, both 𝑁𝑐 and �̄�𝑟 begin to stabilise after flow reversal,
when �̇�(𝑡 − 𝑡𝑟) ≥ 5. In all dense suspensions (𝜙𝑣 ≥ 33%), a temporary
increase in the number of clusters is seen after flow reversal, with a
maximum of approximately 50 clusters for all such suspensions. This
increase is because the particles are temporarily loosened from their
previous configuration (prior to flow reversal), causing the group of
particles detected within the chosen cutoff to disintegrate into several
groups of small clusters, thus increasing the overall cluster count.

A sample visualisation of the spatial distribution of clusters at the
end of shear reversal (�̇�(𝑡 − 𝑡𝑟) = 30) is presented in Fig. 9. In each
scenario, the number of particles in a cluster differs, and the particles
with same colour indicate the group of clusters. As the concentration of
solids increases, we can see that a cluster (coloured in transparent olive
green) takes up the entire space along the wall-normal direction. For
the same cluster threshold as used in illustrating the temporal evolution
of 𝑁𝑐 in Fig. 8, the number of clusters in the order of increasing 𝜙𝑣 at
�̇�(𝑡 − 𝑡𝑟) = 30 is 13, 14, 14, and 9, respectively. In Fig. 9, each of these
clusters is coloured differently to show their spatial distribution.

Next, we interpret the spatial distribution of particles after flow
reversal by calculating the average cluster size 𝑄 = 𝑁𝑝𝑁𝑠∕𝑁 𝑡

𝑐 where
𝑁𝑝 is the number of particles and 𝑁 𝑡

𝑐 is the total number of clusters
(including all individual particles not within ℎ∗𝑐 ) observed over 𝑁𝑠
simulation samples. The definition of 𝑄 is such that its value is between
1 and 𝑁𝑝. When 𝑄 = 1 there are no clusters, and 𝑄 = 𝑁𝑝 implies that
all particles are counted as being in one cluster. The left panel of Fig. 10
shows the dependence of the average cluster size after flow reversal on
the value of ℎ∗𝑐 for 𝜙𝑣 = 10, 33, 40, and 47%. With an increase in 𝜙𝑣, for
a fixed ℎ∗𝑐 the average cluster size increases because of the presence of
more particles in a constant volume. While for 10% solids, the average
cluster size at ℎ∗𝑐 = 0.119 is ≈ 1.2, for the same cluster threshold at
47% solids 𝑄 is ≈ 244. For all 𝜙𝑣, the average cluster size plateaus to
coincide with 𝑁𝑝 when ℎ∗𝑐 surpasses a critical value. In this case, all
particles are counted as being in a single cluster. For instance, at 47%
Fig. 7. Time-evolution of the wall shear stress (average relative apparent viscosity) of suspensions starting from rest with random particle configurations (left) and after shear
reversal (right). Simulation time is scaled by the advective time scale, 𝑙∕(�̇�𝑅ℎ𝑦𝑑 ), with 𝑙 being the mean centre–centre distance. For all solids concentrations (10% ≤ 𝜙𝑣 ≤ 47%) the
article Reynolds number is 0.105.



Computers and Fluids 230 (2021) 105115S. Srinivasan et al.
Fig. 8. The evolution of the number of clusters 𝑁𝑐 (left vertical axis) and the relative apparent viscosity �̄�𝑟 (right vertical axis) as a function of non-dimensional time �̇�(𝑡 − 𝑡𝑟)
after a reversal of the shear direction for several values of 𝜙𝑣 at 𝑅𝑒𝑝 = 0.105. In all simulations, ℎ∗

𝑐 was chosen to obtain ≈ 20 clusters at steady-state after flow reversal. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. The spatial distribution of particles with clusters (drawn in different colours) at the end of the simulation (�̇�(𝑡 − 𝑡𝑟) = 30) is shown for 𝜙𝑣 = 10, 33, 40, and 47%. The
transparent olive colour particles at 𝜙𝑣 = 33, 40, and 47% are all in one cluster. The same cluster threshold as illustrated in Fig. 8 is used to demonstrate the distribution of
clusters. The particle Reynolds number is 𝑅𝑒𝑝 = 0.015. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
solids, 𝑄 = 𝑁𝑝 = 432 when ℎ∗𝑐 ≥ 0.25. For ℎ∗𝑐 < 0.25, the average cluster
size increases quickly with increasing ℎ∗𝑐 .

For the second analysis, we quantitatively interpret the structural
arrangement of the particles in our suspensions using the pair distribu-
tion function 𝑔(𝑟) [32]. For the collection of particles, 𝑔(𝑟) is computed
as

𝑔(𝑟) = 𝑉
2 2

𝑁𝑝
∑

𝑁𝑝
∑

𝛩(|𝐫𝑝𝑞| − 𝑟)𝛩(𝑟 + 𝛿𝑟 − |𝐫𝑝𝑞|) (7)
9

4𝜋𝑟 𝛿𝑟𝑁𝑝 𝑝=1 𝑞=𝑝
𝛩(𝑋) =

{

1, 𝑋 > 0
0, 𝑋 < 0

(8)

where 𝑉 is the volume of the simulation box, 𝑟 is the distance from
the centre of a particle, 𝛿𝑟 = 1 is the thickness of the ring used for
calculating 𝑔(𝑟), |𝐫𝑝𝑞| is the distance vector, and 𝛩(𝑋) is a step function.
The pair distribution function provides information on the probability
of finding a particle at a distance between 𝑟 and 𝑟 + 𝛿𝑟 of a reference
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Fig. 10. Left panel: the dependence of the average cluster size 𝑄 on ℎ∗
𝑐 for 𝜙𝑣 = 10, 33, 40, and 47%. In order of increasing solids concentration, the total number of particles

in each case is 85, 259, 330, and 432, respectively. Right panel: the pair distribution function 𝑔(𝑟) for the same solids concentrations. For each 𝜙𝑣, 𝑔(𝑟) is averaged over the
steady-state (20 ≤ �̇�(𝑡 − 𝑡𝑟) ≤ 30 sampled every 500 LB time steps) particle configurations observed after flow reversal.
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particle. Since the simulation box is a cuboid (with 𝑊 = 𝐿∕2), we
onsider 𝑟 over the range 1 ≤ 𝑟 ≤ 𝑊 ∕2. In the right panel of Fig. 10,
e calculate 𝑔(𝑟) for suspensions between 10 and 47% solids after shear

eversal at 𝑅𝑒𝑝 = 0.105. 𝑔(𝑟) is averaged over all steady-state particle
onfigurations after flow reversal. The position of the first peak in the
ight panel of Fig. 10 shows how the distance between the particles
ecreases as the solids fraction increases. The second smaller peak in
ense suspensions at about 𝑟∗ = 𝑟∕𝑅ℎ𝑦𝑑 = 3.7 (also seen by Sierou and
rady [32]) shows the development of longer range structure in the
uspension. For a further increase in 𝑟∗ > 4, we do not observe any
urther peaks which suggests that the size of the structures is limited.

.3. Effects of step changes in the shear rate

We now study the transient behaviour of dense suspensions in
esponse to step changes in the magnitude of the shear rate. For this
urpose, we consider two solids fractions, 𝜙𝑣 = 40 and 47%. At 40%
olids, we used the same initial cubic packing as previously (details
re provided in Appendix B). In order to show trends more clearly,
n Fig. 11, �̄�𝑟 is obtained by averaging the results of simulations with
wo initial particle configurations. For 47% we use an initial particle
onfiguration from the period of steady fluctuations shown in Fig. 2.
he number of sub-time steps is constant for 40% solids, and it is
etermined by the requirements for the highest 𝑅𝑒𝑝 = 0.211 to ensure
tability throughout the simulations. The adaptive algorithm for the
umber of sub-time steps was used for 47% solids.

The left panel of Fig. 11 shows the evolution of the average relative
pparent viscosity as a function of the accumulated strain �̇�𝑜𝑡 starting
rom rest (where �̇�𝑜 is the initial shear rate that corresponds to 𝑅𝑒𝑝 =
.105). The shear rate is increased by a single step up to 𝑅𝑒𝑝 = 0.211 (red

lines) at �̇�𝑜𝑡 = 18.5. The shear rate then remains steady until �̇�𝑜𝑡 = 24.2.
For comparison, we also show the data for simulations with a constant
shear rate (𝑅𝑒𝑝 = 0.105; green lines). Considering the range of the
fluctuations, we conclude that the apparent viscosities after shearing at
𝑅𝑒𝑝 = 0.211 are the same as with 𝑅𝑒𝑝 = 0.105 for both solids fractions;
the average relative viscosities are 10 (𝜙𝑣 = 40%) and 17 (𝜙𝑣 = 47%),
respectively.

After shearing the suspensions at 𝑅𝑒𝑝 = 0.211, we consider how the
viscosity of the suspensions evolves when the shear rate is restored to
𝑅𝑒𝑝 = 0.105 (right panel of Fig. 11). The relative viscosity of the lower
solid fraction (40%) shows no significant history effect, returning to
≈ 10. For 𝜙𝑣 = 47%, however, temporary shear at a higher speed results
in an increase in the apparent viscosity when the shear rate returns
to its previous value. The viscosity increases by approximately 16%
(from an average of 17 in the high shear regime to slightly over 20
in the low shear regime). The right panel of Fig. 11 also includes one
additional case (black lines): instead of continuing from the complete
simulation state of the red case at the end of shearing at 𝑅𝑒𝑝 = 0.211,
10

the fluid and particle velocities are reset to zero. The only history i
that is retained is the positions of the particles but not their speeds
or the motion of the interstitial liquid. The average relative apparent
viscosities (28 ≤ �̇� 𝑡 ≤ 30) in these situations are within 2 and 6% of
he constant shear simulations at 𝜙𝑣 = 40 and 47% solids, respectively,

implying that stopping and resuming the flow will negate the effect of
temporary shear at a higher rate. From these observations, we conclude
that the rheology of suspensions depends not only on the positions of
the particles but also the flow history of the interstitial fluid.

5. Conclusions

Three-dimensional simulations of suspensions have been performed
using an immersed boundary-lattice Boltzmann method for Reynolds
numbers in the range 0.105 ≤ 𝑅𝑒𝑝 ≤ 0.529 and solids volume fractions
from 5 to 47%. The simulations included corrections for unresolved
lubrication forces and torques over sub-grid scale distances. Up to
𝜙𝑣 = 47%, the relative apparent viscosity of suspensions showed
good agreement with the experimental data of Dbouk et al. [12] but
deviate from the simulations of Thorimbert et al. [8]. This difference
is attributed to the grid resolution of our simulations as well as the
incorporation of tangential lubrication corrections during sub-grid scale
interactions. As the concentration of solids increases (𝜙𝑣 ≥ 30%), it
was found that the unresolved tangential stress due to the translation
and rotation of particles near the walls contributes significantly to the
total stress on the walls and therefore to the apparent viscosity. Overall,
the viscosity of the suspension showed no dependence on the Reynolds
number for 𝜙𝑣 ≤ 17%, weak shear-thinning at 30 and 35% solids, and
weak shear-thickening at 𝜙𝑣 > 40%.

Simulations of suspensions submitted to an instantaneous flow re-
versal were performed for solid fractions between 10 and 47% with
𝑅𝑒𝑝 = 0.105 and 0.317; for 47% of solids, simulations were conducted
for 𝑅𝑒𝑝 = 0.105 and 0.211, respectively. The initial development of
the wall shear stress after reversing the flow follows a viscous time
scale. Dilute suspensions (𝜙𝑣 ≤ 17%) obey the trend of pure Newto-
nian liquid (𝜙𝑣 = 0%). At higher volume fractions, minimum shear
stress is observed until the shear stress increases to a steady value
that depends on the imposed shear rate. This minimum stress is the
same for both 𝑅𝑒𝑝. As 𝜙𝑣 increases, the mean centre–centre distance
between the particles decreases, and an advective timescale based on
this mean distance governs the dynamics of the re-structuring of the
suspension towards a steady viscosity. Although the structure of the
particle assembly collapses after flow reversal, the previous structure
is then rebuilt over this advective time scale.

In the case of 𝜙𝑣 between 10 and 47%, the time scales of the
volution of both the structures and the relative apparent viscosity were
ound to coincide. The pair distribution function of these suspensions
as shown the existence of particle structures that facilitate higher
omentum transport and therefore higher relative apparent viscosity
n such dense suspensions.
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Fig. 11. Average relative apparent viscosity as a function of time for suspensions with 𝜙𝑣 = 40% (bottom set; lower viscosity) and 47% (top set; higher viscosity). In the left panel,
the coloured arrows at the top show the duration of the different shear rates for each case. The right panel demonstrates the evolution of the average viscosity after bringing the
shear rate down to its original value (that is, 𝑅𝑒𝑝 = 0.105) from the previous high shear regime. The black lines in the right panel show the effect of stopping the motion of the
luid and particle at �̇�𝑜𝑡 = 24.2 and restarting the flow from the location of the particle at that time. (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)
a

At the highest solids fraction we considered (𝜙𝑣 = 47%), simulations
with step increases in the magnitude (but not the direction) of the shear
rate showed a 16% higher viscosity when the shear rate returned to its
initial value. At low fractions (𝜙𝑣 = 40%), history effects on the viscosity
of the suspension were negligible. The memory effect seen at 𝜙𝑣 = 47%
was removed when motion of the fluid and particles was stopped before
shearing again at the initial rate.

Our next goal is to investigate consequences of including additional
sub-grid scale non-hydrodynamic forces on both the steady-state and
transient rheology of dense suspensions. To this end, we will study the
effects of electrostatic repulsion and van der Waals attraction forces as
a function of particle Reynolds number and solids volume fraction.
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Appendix A. Lubrication forces and torques between particles and
walls

During sub-grid scale collisions, the particles interact not only with
the neighbouring particles, but also come into close proximity of the top
and bottom walls. Therefore, in this appendix, the modelling equations
for both normal and tangential lubrication forces and torques on a
particle during its interaction with either wall are provided. By taking
11
𝛼 → ∞ in Eqs. (1) through (3b) and by replacing 𝑞 with 𝑤, the
lubrication equations are derived as

𝐅𝑤,𝑛
𝑝

6𝜋𝜇𝑅2
ℎ𝑦𝑑

=
(

1
ℎ
− 1

ℎ𝑛𝑜

)

𝐔𝑛, (A.1a)

𝐅𝑤,𝑡
𝑝

6𝜋𝜇𝑅ℎ𝑦𝑑
=
( 8
15

)

ln
(

ℎ
ℎ𝑡𝑤𝑜

)

𝐔𝑡, (A.1b)

𝐅𝑤,𝑟
𝑝

6𝜋𝜇𝑅2
ℎ𝑦𝑑

=
( 2
15

)

ln
(

ℎ
ℎ𝑟𝑤𝑜

)

(𝝎𝐹 × �̂�𝑝𝑤), (A.1c)

nd
𝐓𝑤,𝑡
𝑝

8𝜋𝜇𝑅2
ℎ𝑦𝑑

=
( 1
10

)

ln
(

ℎ
ℎ𝑡𝑤𝑜

)

(�̂�𝑝𝑤 × 𝐔𝑝𝑤), (A.2a)

𝐓𝑤,𝑟
𝑝

8𝜋𝜇𝑅3
ℎ𝑦𝑑

=
( 2
5

)

ln
(

ℎ
ℎ𝑟𝑤𝑜

)

𝝎𝑇 . (A.2b)

In Eqs. (A.1a) through (A.2b), the definition of the translational
and rotational velocities remains the same as previously discussed in
Section 3.2, except that 𝑞 is now replaced with 𝑤. These additional
particle–wall lubrication corrections are individually enabled when
the gap between any particle and either wall is below ℎ𝑛𝑜 , ℎ𝑡𝑤𝑜 , and
ℎ𝑟𝑤𝑜 , respectively. Both ℎ𝑡𝑤𝑜 and ℎ𝑟𝑤𝑜 were computed by simulating
the translation and rotation of a single sphere at several interparticle
distances away from the wall, and the above particle–wall force and
torque contributions are added as,

𝐅𝑤,𝑙𝑢𝑏
𝑝 = 𝐅𝑤,𝑛

𝑝 + 𝐅𝑤,𝑡
𝑝 + 𝐅𝑤,𝑟

𝑝 , (A.3a)

𝐓𝑤,𝑙𝑢𝑏
𝑝 = 𝐓𝑤,𝑡

𝑝 + 𝐅𝑤,𝑟
𝑝 (A.3b)

to obtain the overall lubrication contribution as given in Eqs. (4a) and
(4b).

Appendix B. Initialising the particle positions

This appendix discusses several approaches used to initialise the
particle positions. For suspensions up to 38% solids, random initialisa-
tion of the particle positions was implemented. In this method, random
points are selected and those that overlap with the existing particles
are rejected. Using this approach, non-overlapping spheres (within the
simulation domain as well as across the periodic boundary) up to a
limit of 35% solids (i.e. 𝑁𝑝 = 280) were attainable. In order to achieve
solids up to 38% by volume (𝑁𝑝 = 310), the same approach was used
except that overlaps were accepted across the periodic boundary. Then
we used the spring-like repulsive force [1] to separate the overlap.



Computers and Fluids 230 (2021) 105115S. Srinivasan et al.
Fig. B.1. Differences in the evolution of the relative apparent viscosity of a suspension
as a function of dimensionless time for two different initial particle configurations (set
𝑎 and set 𝑏). For this example, 𝜙𝑣 = 40% and 𝑅𝑒𝑝 = 0.32, and only normal lubrication
corrections were included. The insets show the two initial conditions.

For 𝜙𝑣 = 40%, we used a regular cubic packing and considered two
different configurations as presented in Fig. B.1. In the first configu-
ration (set a), we stacked the spheres with a gap of 0.4 lu which left
additional gaps near 𝑥 = 𝐿, 𝑦 = 𝑊 , and 𝑧 = 𝐻 (7 lu, 1.5 lu, and
6.67 lu, respectively). In the second case (set b), we retained the large
gap near the periodic boundaries (𝑥 = 𝐿 and 𝑦 = 𝑊 ) and stretched
the gaps along the wall-normal 𝑧 direction while maintaining a gap
of 0.5 lu between the particles and the top and bottom walls. The
inset in Fig. B.1 shows cross-sections through the two initial particle
configurations. Both suspensions started from rest and were sheared
until steady-state. While the suspensions attain approximately the same
viscosity in the long run (the difference is ≈ 4%), the evolution of
the viscosity towards this equilibrium depends on the initial particle
configuration. Finally, to achieve 47% solids by volume, we specified
the initial positions of the spheres by using a cubic packing with small
random displacements.

For simulations up to 38% solids, the simulation domain was
100 × 50 × 50 lu. In order to handle more particles at higher concentra-
tions, we slightly altered the domain size by increasing the dimension
along the 𝑥, 𝑦, and 𝑧 directions to 100, 52, and 50 lu for 40% solids, and
102, 52, and 54 lu for 47% solids, respectively. A grid independence
study has been previously reported [1], and our results are not sensitive
to increases in domain size along the periodic boundaries as well as
across the channel height. Therefore, a domain size of 100 × 50 × 50 lu
with particles of 𝑅 = 4 lu is sufficient to represent larger domains.

References

[1] Srinivasan S, Van den Akker HEA, Shardt O. Shear thickening and history-
dependent rheology of monodisperse suspensions with finite inertia via
an immersed boundary lattice Boltzmann method. Int J Multiph Flow
2020;125:103205.

[2] Brady JF, Bossis G. The rheology of concentrated suspensions of spheres in simple
shear flow by numerical simulation. J Fluid Mech 1985;155:105–29.
12
[3] Jogun S, Zukoski CF. Rheology of dense suspensions of plate-like particles. J
Rheol 1996;40(6):1211–32.

[4] Stickel JJ, Powell RL. Fluid mechanics and rheology of dense suspensions. Annu
Rev Fluid Mech 2005;37:129–49.

[5] Guazzelli E. Rheology of dense suspensions of non colloidal particles. In: EPJ
web of conferences. vol. 140, EDP Sciences; 2017, p. 01001.

[6] Simon DB, Hormozi S, Guazzelli E, Pouliquen O. Rheology of dense suspensions
of non-colloidal spheres in yield-stress fluids. J Fluid Mech 2015;776.

[7] Lorenz E, Sivadasan V, Bonn D, Hoekstra AG. Combined lattice-Boltzmann and
rigid-body method for simulations of shear-thickening dense suspensions of hard
particles. Comput & Fluids 2018;172:474–82.

[8] Thorimbert Y, Marson F, Parmigiani A, Chopard B, Lätt J. Lattice Boltzmann
simulation of dense rigid spherical particle suspensions using immersed boundary
method. Comput & Fluids 2018;166:286–94.

[9] Bergenholtz J, Brady JF, Vicic M. The non-Newtonian rheology of dilute colloidal
suspensions. J Fluid Mech 2002;456:239–75.

[10] Kulkarni PM, Morris JF. Suspension properties at finite Reynolds number from
simulated shear flow. Phys Fluids 2008;20(4):040602.

[11] Fall A, Lemaitre A, Bertrand F, Bonn D, Ovarlez G. Shear thickening and
migration in granular suspensions. Phys Rev Lett 2010;105(26):268303.

[12] Dbouk T, Lobry L, Lemaire E. Normal stresses in concentrated non-Brownian
suspensions. J Fluid Mech 2013;715:239–72.

[13] Brown E, Jaeger HM. Shear thickening in concentrated suspensions: phe-
nomenology, mechanisms and relations to jamming. Rep Progr Phys
2014;77(4):046602.

[14] Gadala-Maria F, Acrivos A. Shear-induced structure in a concentrated suspension
of solid spheres. J Rheol 1980;24(6):799–814.

[15] Kolli VG, Pollauf EJ, Gadala-Maria F. Transient normal stress response in a
concentrated suspension of spherical particles. J Rheol 2002;46(1):321–34.

[16] Blanc F, Peters F, Lemaire E. Local transient rheological behavior of concentrated
suspensions. J Rheol 2011;55(4):835–54.

[17] Peters F, Ghigliotti G, Gallier S, Blanc F, Lemaire E, Lobry L. Rheology of
non-Brownian suspensions of rough frictional particles under shear reversal: A
numerical study. J Rheol 2016;60(4):715–32.

[18] O’Neill ME, Majumdar R. Asymmetrical slow viscous fluid motions caused by
the translation or rotation of two spheres. Part 1. The determination of exact
solutions for any values of the ratio of radii and separation parameters. Z Angew
Math Phys 1970;21(2):164–79.

[19] Nguyen NQ, Ladd AJC. Lubrication corrections for lattice-Boltzmann simulations
of particle suspensions. Phys Rev E 2002;66(4):046708.

[20] Simeonov JA, Calantoni J. Modeling mechanical contact and lubrication in direct
numerical simulations of colliding particles. Int J Multiph Flow 2012;46:38–53.

[21] Krieger IM, Dougherty TJ. A mechanism for non-Newtonian flow in suspensions
of rigid spheres. Trans Soc Rheol 1959;3(1):137–52.

[22] Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Fluid
Mech 1998;30(1):329–64.

[23] Feng ZG, Michaelides EE. The immersed boundary-lattice Boltzmann method for
solving fluid-particles interaction problems. J Comput Phys 2004;195(2):602–28.

[24] Ladd AJC. Numerical simulations of particulate suspensions via a dis-
cretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech
1994;271:285–309.

[25] Ladd AJC. Numerical simulations of particulate suspensions via a discretized
Boltzmann equation. Part 2. Numerical results. J Fluid Mech 1994;271:311–39.

[26] Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM. The lattice
Boltzmann method: Principles and practice. Springer; 2017.

[27] Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple
phases and components. Phys Rev E 1993;47(3):1815.

[28] Derksen JJ, Sundaresan S. Direct numerical simulations of dense suspensions:
wave instabilities in liquid-fluidized beds. J Fluid Mech 2007;587:303–36.

[29] Krüger T, Varnik F, Raabe D. Efficient and accurate simulations of deformable
particles immersed in a fluid using a combined immersed boundary lattice
Boltzmann finite element method. Comput Math Appl 2011;61(12):3485–505.

[30] Ten Cate A, Derksen JJ, Portela LM, Van den Akker HEA. Fully resolved
simulations of colliding monodisperse spheres in forced isotropic turbulence. J
Fluid Mech 2004;519:233–71.

[31] Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. John Wiley & Sons;
2007.

[32] Sierou A, Brady JF. Rheology and microstructure in concentrated noncolloidal
suspensions. J Rheol 2002;46(5):1031–56.

http://refhub.elsevier.com/S0045-7930(21)00263-2/sb1
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb1
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb1
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb1
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb1
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb1
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb1
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb2
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb2
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb2
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb3
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb3
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb3
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb4
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb4
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb4
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb5
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb5
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb5
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb6
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb6
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb6
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb7
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb7
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb7
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb7
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb7
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb8
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb8
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb8
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb8
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb8
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb9
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb9
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb9
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb10
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb10
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb10
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb11
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb11
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb11
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb12
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb12
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb12
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb13
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb13
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb13
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb13
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb13
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb14
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb14
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb14
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb15
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb15
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb15
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb16
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb16
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb16
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb17
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb17
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb17
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb17
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb17
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb18
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb18
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb18
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb18
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb18
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb18
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb18
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb19
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb19
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb19
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb20
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb20
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb20
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb21
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb21
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb21
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb22
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb22
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb22
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb23
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb23
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb23
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb24
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb24
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb24
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb24
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb24
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb25
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb25
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb25
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb26
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb26
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb26
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb27
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb27
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb27
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb28
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb28
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb28
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb29
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb29
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb29
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb29
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb29
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb30
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb30
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb30
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb30
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb30
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb31
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb31
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb31
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb32
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb32
http://refhub.elsevier.com/S0045-7930(21)00263-2/sb32

	Numerical simulations of dense granular suspensions in laminar flow under constant and varying shear rates
	Introduction
	Problem statement
	Simulation methods
	The immersed boundary-lattice Boltzmann method
	Sub-grid scale lubrication corrections
	Particle motion
	Relative apparent viscosity

	Three-dimensional simulations of suspensions
	Steady-state rheology
	Effects of flow reversal
	Rheology
	Structure

	Effects of step changes in the shear rate

	Conclusions
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A. Lubrication forces and torques between particles and walls
	Appendix B. Initialising the particle positions
	References


