

Delft University of Technology

On-board decision making in space with deep neural networks and risc-v vector
processors

Di Mascio, Stefano; Menicucci, Alessandra; Gill, Eberhard; Furano, Gianluca; Monteleone, Claudio

DOI
10.2514/1.I010916
Publication date
2021
Document Version
Final published version
Published in
Journal of Aerospace Information Systems

Citation (APA)
Di Mascio, S., Menicucci, A., Gill, E., Furano, G., & Monteleone, C. (2021). On-board decision making in
space with deep neural networks and risc-v vector processors. Journal of Aerospace Information Systems,
18(8), 553-570. https://doi.org/10.2514/1.I010916

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2514/1.I010916
https://doi.org/10.2514/1.I010916

On-Board Decision Making in Space with Deep Neural
Networks and RISC-V Vector Processors

Stefano Di Mascio,∗ Alessandra Menicucci,† and Eberhard Gill‡

Delft University of Technology, 2629 HS Delft, The Netherlands

and

Gianluca Furano§ and Claudio Monteleone¶

European Space Agency, 2200 AG Noordwijk, The Netherlands

https://doi.org/10.2514/1.I010916

The use of deep neural networks (DNNs) in terrestrial applications went from niche to widespread in a few years,

thanks to relatively inexpensive hardware for both training and inference, and large datasets available. The

applicability of this paradigm to space systems, where both large datasets and inexpensive hardware are not

readily available, is more difficult and thus still rare. This paper analyzes the impact of DNNs on the system-level

capabilities of space systems in terms of on-board decision making (OBDM) and identifies the specific criticalities of

deploying DNNs on satellites. The workload of DNNs for on-board image and telemetry analysis is analyzed, and the

results are used to drive the preliminary design of a RISC-V vector processor to be employed as a generic platform to

enable energy-efficient OBDM for both payload and platform applications. The design of the memory subsystem is

carried out in detail to allow full exploitation of the computational resources in typically resource-constrained space

systems.

I. Introduction

T HE success of deep neural networks (DNNs) for terrestrial

applications has been mainly due to the availability of large

datasets (i.e., rise of “big data”) and the availability of relatively

inexpensive hardware that can run learning and inference in reason-

able timescales, for instance, graphics processing units (GPUs) [1].

The space industry looks at this phenomenon with interest, although

the availability of large datasets for space applications is limited and

the hardware employed in space applications lags behind in terms of

performance compared with its commercial counterpart.

One of the main issues in terms of hardware faced by the space

industry is that it is not possible to reuse in a straightforward way the

hardware platforms employed in terrestrial applications, given the

specific constraints of satellite data systems especially in terms of

robustness to ionizing radiation [2]. For instance, the GPU tested in

[3] is reported to fail during an irradiation with high-energy proton

beam roughly every 43 s. Themain reason behind this very lowmean

time to failure (MTTF) is that GPUs are much larger (e.g., 2.2 billion

transistors,** which corresponds to roughly 550 MGE if we assume

four transistors per GE††) than single-core, single-issue processors

(890 kGE for the one in [5]) typically employed in space. As a matter

of fact, the failure rate of a processor (given a certain technology and

environment) is proportional to its area (i.e., the number of sequential

elements when considering only upsets in sequential elements) [6].

Therefore, even employing a Rad Hard By Design (RHBD) technol-
ogy, a GPU is expected to fail almost three orders of magnitude more

often than a state-of-the-art space processor.
A larger soft error vulnerability is not the only reason why simple

microarchitectures with low parallelism are still the vast majority of

processors employed in space. As a matter of fact, most of the tasks
executed by processors in space data systems are non-compute-

intensive workloads; i.e., they perform a low number of operations

per byte read from and written to memory. The reason is that they are
mainly employed for nondemanding control and housekeeping oper-

ations, whereas on-board data processing typically is not an attractive

solution, because it can be executed in most cases on ground with
much less expensive machines for a given computational need

(unless it allows for improved capabilities of the satellite, e.g., data

encryption or compression).
It is still matter of discussion whether artificial intelligence (AI) is

of actual interest in space applications and whether it will be feasible

to deploy it systematically on-board satellites in the next 10–15 years.
Therefore, the first goal of this paper is to carry out an analysis of the

impact and requirements of DNNs (the most successful form of AI in

terrestrial applications) in space systems. To try tomeet these require-
ments, the space industry is following three main approaches:
1) Work is being done to map efficiently DNNs on resource-

constrained state-of-the-art space processors [7], accepting a consis-
tent loss of performance compared with DNNs in high-performance
processors for terrestrial applications. This approach can exploit
synergies with the trend in Internet of Things (IoT) of implementing
DNNs in low-power and resource constrained processors [8].
2) High-performance proprietary commercial-off-the-shelf (COTS)

processors employed in terrestrial applications are being proposed [9].
Although they can achieve higher-order magnitude performance com-
pared with state-of-the-art space processors [10], they come with a
large “cost of ownership” to avoid losses in terms of dependability
[11], and possible restrictions on its usage and knowledge of internal
behavior [4].
3) Field programmable gate arrays (FPGAs) allow the design of a

customized hardware accelerator, typically connected to either a hard
or soft processor through an interconnect [10]. The accelerator can be
either handcrafted in hardware description languages (HDLs) or
autogenerated from software, after profiling to identify the most
computational intensive functions. In [12] it is shown that Vivado
HLS with enabled optimizations (i.e., pipelining and concurrent

Received 14 October 2020; revision received 7 April 2021; accepted for
publication 1 May 2021; published online Open Access 24 June 2021.
Copyright © 2021 by the authors. Published by the American Institute of
Aeronautics and Astronautics, Inc., with permission. All requests for
copying and permission to reprint should be submitted to CCC at www.
copyright.com; employ the eISSN 2327-3097 to initiate your request. See
also AIAA Rights and Permissions www.aiaa.org/randp.

*Ph.D. Candidate, Faculty of Aerospace Engineering, Space Systems
Engineering; s.dimascio@tudelft.nl (Corresponding Author).

†Assistant Professor, Faculty of Aerospace Engineering, Space Systems
Engineering; a.menicucci@tudelft.nl.

‡Professor, Faculty of Aerospace Engineering, Space Systems Engineer-
ing; e.k.a.gill@tudelft.nl.

§On-Board Computer Engineer, Microelectronics and Data Systems
Division, European Space Technology Centre, Keplerlaan 1; gianluca.
furano@esa.int.

¶On-Board Computer Engineer, Microelectronics and Data Systems
Division, European Space Technology Centre, Keplerlaan 1; claudio.
monteleone@esa.int.

**https://www.techpowerup.com/gpu-specs/radeon-e9173-pcie.c3031.
††Agate equivalent (GE) is a technology-independent unit ofmeasure of the

area of a design (normalized to a reference 2-input NAND gate) [4].

553

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

Vol. 18, No. 8, August 2021

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

https://doi.org/10.2514/1.I010916
www.copyright.com
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
https://www.techpowerup.com/gpu-specs/radeon-e9173-pcie.c3031
https://www.techpowerup.com/gpu-specs/radeon-e9173-pcie.c3031
https://www.techpowerup.com/gpu-specs/radeon-e9173-pcie.c3031
https://www.techpowerup.com/gpu-specs/radeon-e9173-pcie.c3031
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.I010916&domain=pdf&date_stamp=2021-06-28

execution of operations) achieves a 6.23× speed-up for a small
convolutional neural network (CNN) and 9× for a larger CNN on
a Zynq compared with the software implementation on its hard
processor (which can be considered roughly equivalent to space
processors). However, in space applications this approach cannot
be typically employed for application-specific integrated circuits
(ASICs), given the niche-sized market available. Furthermore, in
[13] it is noted that only 25% on average is spent waiting on accel-
erator computations, with the rest of the time taken up by data
transfers (34%) and processor computations (42%).
The second goal of this paper is to show that a fourth approach can

be followed, as performances of space processors can be substantially
improved with data-level parallelism (DLP) to achieve performance
of the same order of magnitude of high-performance terrestrial
processors for DNNs. To do this, we develop in more detail the study
of the RISC-V processors needed to enable on-board decision mak-
ing (OBDM) carried out in [4], focusing on the preliminary design of
a RISC-V vector processor specifically for space applications. This
preliminary design is intended to serve as a baseline for futureworks,
during the Very High Speed Integrated Circuit Hardware Description
Language (VHDL) implementation of a RISC-V vector processor for
space applications based on the NOEL-V platform (developed by
Cobham Gaisler) [14].
RISC-V is an instruction set architecture (ISA) that is rapidly

growing in popularity in both terrestrial and space applications [4].
Its main characteristics are simplicity, openness (being a free and
open standard allows open-source implementations), and modularity
(i.e., composed of a base ISA and many optional ISA extensions).
Among themany ISA extensions defined in the standard, the RISC-V
Vector Extension (RVVE) is being proposed to provide general
support for data-parallel execution [15].
The paper starts by analyzing the benefits thatDNNs can provide at

the system level and the feasibility of the deep learning approach for
space applications (Sec. II). Then, an analysis of the software work-
loads required for DNNs is carried out in Sec. III. The information
collected is then used to define a suitable hardware platform (Secs. IV
and V). To account for both computational and memory constraints,
separate discussions are carried out for the microarchitecture of the
processing core (Sec. IV) and its memory subsystem (Sec. V).
Finally, Sec. VI concludes with a summary of the main findings
and several recommendations to systematically enable OBDM with
RISC-V vector processors in the medium-term.

II. Impact at System Level

The focus of the space industry in recent years shifted from large
geostationary orbit (GEO) satellites to small (< 500 kg) low-Earth-
orbit (LEO) satellites (especially CubeSats) [16,17].
While GEO satellites can continuously communicate with the

ground station, LEO satellites can only communicatewith the ground
station periodically, sometimes with large periods between contacts
[18]. In thisway, the satellitemay enter an unsafe state and the ground
operator in the worst case can only intervene hours later.
However, there is a trend of launching LEO satellites in constella-

tions and mega constellations [19], with the possibility of mitigating
the risk of failure of a single satellite and replace them if they fail
(as they are much cheaper than large GEO satellites). There is there-
fore a tradeoff to be made between dependability of a single satellite,
its cost, and number of spare satellites.
Furthermore, space systems are inherently constrained in terms of

power available (e.g., only a limited surface is available to collect
power). Limited power implies that the data rate of the downlink
given a certain target bit error rate (BER) is also limited, as the data
rate is proportional to the power employed during the transmis-
sion [20].
Therefore, small satellites in LEO pose new challenges both in

terms of amount of data that can be transmitted to the ground and in
terms of dependability. In the following two subsectionswewill show
how OBDM can help mitigating these shortcomings of LEO satel-
lites. In Sec. II.C the feasibility of applying DNNs to these problems
is investigated.

A. Downlink Efficiency

In [20] it is shown that, assuming a transmission power of 1W for a
CubeSat in LEO, a maximum data rate of 512 kbps can be obtained
with a ultra-high-frequency (UHF) downlink (BER < 10−5). On
the other hand, in [20], an image from a simple VGA camera with
640 × 480 pixels is 900 KiB, and a cube from a hyperspectral sensor
with 32 bands and 1024 × 1024 pixels is instead 32 MiB. In LEO a
potential access duration to the ground station can be 5 min every
orbit (around 90 min in [21]), and in this time span, only around 21
VGA images or roughly half a cube of 32 bands can be transmitted to
the ground. Even considering the relatively large 6U CubeSat
described in [22], the power budget for the downlink limits the data
rate to 14 Mbps, whereas its spectrometer (with five spectral bands)
generates 255Mbps.Without considering data compression, during a
single ground station pass, only up to 31.5 s worth of imaging data
can be downlinked, which is only around 0.6% of the data that can be
collected during a typical LEO orbit. Although it is not realistic to
assume that the spectrometer operates continuously during the mis-
sion, this shows that there is a mismatch between the capability of a
small satellite in LEO to generate data and its capability to transmit
data to the ground.

1. Benefits of Data Removal and Compression

Given the tight power budgets and the expensive hardware
required for on-board data processing, data processing is typically
executed on ground. For instance, noise filtering can be executed on
ground with cheaper hardware. On the other hand, sometimes on-
board data processing provides an advantage over on-ground data
processing in terms of satellite performance. For instance, data
compression is already deployed in many missions (e.g., in [22] a
2:1 compression is employed) because it mitigates the bottleneck of
the downlink. The efficiency of the downlink can be increased even
further, removing useless data instead of sending it to the ground
(i.e., data removal [23]). For instance, in the Landsat datasets [24], the
average cloud cover in an archived scene is 34%, with 38% of the
scenes containing less than 10% cloud cover. Therefore, selecting
only imageswith less than 10%of cloud cover results in an average of
2.63× data reduction. Combining data removal with a 2:1 compres-
sion, the amount of useful data sent increases by 5.26× compared
with a system without on-board data processing.

2. Cost of Required Hardware

When DNNs and other data processing algorithms are to be
deployed on data produced by instruments, a payload processor is
required to process the data. Although memories with long retention
time and low power dissipation (e.g., flash memories) can be
employed for mass memories, faster memories are required to act
as main memory of the payload processors. Typically dynamic
random-access memory (DRAM) arrays are chosen, ranging from
single data rate (SDR) to double data rate 2 (DDR2) to double data
rate 3 (DDR3), depending on the radiation resilience/performance
tradeoff required [25]. From the datasheet [26] of the 1 Gb DDR2
DRAM tested in [25], a peak power consumption of around 0.5 W
can be taken as an estimation of power consumption, and 1W for the
most powerful version of the vector processor in [27] running a
peak-performance application. Assuming a requirement of 1 GiB
of main memory, we consider 5Was the cost in terms of powerPP of
applying data reduction and compression. As a comparison, 1U
CubeSats and 3U CubeSats in [20] generate, respectively, 1–2 W
and 5–6 W, whereas the 6U CubeSat in [22] generates around 20 W.
Assuming a common amount of power allocated for the trans-

mission and data processing subsystems (PTP), we can estimate
the amount of useful data transmitted per station contact DC when
data are not processed as DC � �PTP∕RR� � k, where k is a
constant (dependent on the transmission subsystem, receiver,
propagation, and required BER) [20] and RR is the optimal
removal rate, i.e., the ratio between useful data and data produced
by the payload. When only useful data are selected and a data
compression of CR:1 is applied, the amount of useful data trans-
mitted is instead DC � CR � �PTP − PP� � k. The ratio R between

554 DI MASCIO ETAL.

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

the amount of useful data transmitted in the two cases is then

R � RR � CR � �PTP − PP�∕PTP), which for PTP ≫ PP tends to

its maximum, i.e., RR � CR. This means that data removal is more

effective for larger satellites, which have more power available for

transmission and processing.

To give an idea ofwhat the effect of amore power-efficient solution

would be, in Fig. 1 the ratioR depending on the power budgetPTP for

two different values of power spent for data processing PP (5 and

2.5 W) is shown. While the fraction of the maximum ratio achieved

for a certainPTP is independent fromRR � CR, it depends onPP. As

amatter of fact, it takes a largerPTP to achieve a certain fraction of the

maximum improvement possible when PP is increased.

B. Virtual Operator

In [21] it is assumed that a LEO satellite has an orbit duration of

90 min and that there is a contact with the ground station either 5 min

every orbit (6% of the orbital period) or every 5 orbits (1%). In a

similar scenario, the idea of an on-board virtual operator monitoring

the status of the satellite and taking autonomous decisions when no

communicationwith the ground operator is possible becomes of great

interest. The on-board virtual operator can, for instance, enable

autonomous failure detection (and forecasting) and autonomous safe

mode management. For instance, DNNs can be employed to predict

the telemetry of the next orbit given the previous one (or more) [28].

This can be used to help diagnose anomalous behaviors before the

next contact with the ground station [28].

1. Benefits of an On-Board Virtual Operator

Assuming a constant failure rate λ (typical of soft errors [6]), the
reliability of the spacecraft after the end of the ith contact and before
(i� 1)th contact can be expressed as R�t� � R�ti�e−λ�t−ti�, where ti
is the time instant of the end of the ith contact. Assuming a ground

operator capable of handling safely the failures of the spacecraft and a

satellite not capable of handling safely failures in autonomy, the

safety (we define safety as the percentage of time a satellite is work-

ing in nominal conditions or it is in a safe state because of a detected

failure) S�t� is 100% during contact and is S�t� � R�t� when the

satellite is not in contact. When considering an on-board virtual

operator, a percentage of failures is detected with a certain detection

factor (DF), then S�t� � R�ti�e−�1−DF�λ�t−ti� when not in contact.

Figure 2 shows an example for DF � 0.9, a λ of 10e-4 failures/min

(approximately one failure per week), and two different time periods

between contacts (90 and 450 min). The average safety increases

from 99.60 to 99.96% in the first case and from 97.83 to 99.78% in

the second. Although this is a simple model and some on-board

failure detection capabilities are possible without DNNs, it shows

that improving the on-board capabilities of a satellites can help LEO

satellites to achieve typical requirements for dependable systems
(at least 99.9%).

2. Cost of the Required Hardware

The most attractive solution to deploy telemetry analysis and
forecasting is to use an enhanced version of a typical on-board
computer (OBC). As a matter of fact, the requirements for this kind
of applications are less stringent compared with DNNs for image
analysis. In [28], telemetry forecasting was implemented with a
64 Mb DRAM on a single core reaching 661 predictions per second,
meaning that all the parameters of the satellite telemetry in [28]
(13,216 in total) can be predicted in around 20 s. It is enough to
execute this computation once per orbit to predict the telemetry of the
following orbit, taking only 0.4% of an orbit period. Furthermore,
enhancing a general purpose in processor with minimal vector facili-
ties (i.e., two lanes) increases power consumption of the processor
from 52 mW [5] to 138 mW [27] (�65%).

C. Feasibility of the DNN Approach

DNNs proved to be the best approach in classification and pre-
diction when large datasets are available for training, reaching accu-
racies close to or slightly above human level [29]. When the training
set is not large enough, othermachine learning approaches or human-
defined DSP algorithms may instead achieve better results. The
degradation of DNN accuracy for small datasets is shown, for
instance, in [30], whereCNNs are trained formulticlass classification
with different datasets sizes. It is shown that, for a three-class clas-
sification problem, using 5000 images per class achieves 97% accu-
racy in average, bringing the training set down to 1000 images per
class lowers accuracy to 74% in average.When the problem becomes
more complicated (i.e., larger number of classes), even using 45,000
images in total achieves an average accuracy below 94% (nine
classes) [30].
One of the most popular datasets for terrestrial applications is

ImageNet.‡‡ It is a large image dataset typically used to assess the
effectiveness of a certain neural network architecture for image
classification, containing RGB images of 256 × 256 pixels for a total
of 1000 classes [29]. There are 1.3M training images (ranging from
732 to 1300 per class) and 100,000 test images [29]. Large reference
datasets available to the public are much less common for space
applications. One of the most popular is the public Landsat 8 data-
set,§§ which provides hyperspectral images composed of 11 bands

Fig. 1 Ratio R between useful data transmitted with and without data
removal against PTP allocated for the transmission subsystem and data
removal for different PP and RR. In all cases 2:1 compression is assumed.

Fig. 2 Increase of safety for a virtual operator with DF � 0.9 for
contact of 5 min with ground station every 90 min and every 450 min.
Dashed lines represent average values.

‡‡http://www.image-net.org.
§§https://www.usgs.gov/land-resources/nli/landsat/landsat-8.

DI MASCIO ETAL. 555

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
https://www.usgs.gov/land-resources/nli/landsat/landsat-8
https://www.usgs.gov/land-resources/nli/landsat/landsat-8
https://www.usgs.gov/land-resources/nli/landsat/landsat-8

ranging from ultra-blue to thermal infrared. A large number of
land cover classification solutions were developed on subsets of the
Landsat datasets [31].
Setting up a reference, standardized dataset is instead more

difficult for more specific applications, especially those involving
inner behavior of the satellite, like telemetry forecasting or anomaly
detection. As amatter of fact, design parameters like orbits, observed
signals, and nominal values change from mission to mission.
Furthermore, major prime contractors have very restrictive data
policies concerning open access to telemetry data. However, some
datasets of telemetries are available to the public, like those of the
GOCE mission.¶¶ Even in this case, it is difficult to pinpoint anoma-
lies, as information about them is typically not shared by the mission
teams with the public. However, public datasets can help to study the
feasibility of telemetry forecasting, as done in [28].
In the future, the idea of deploying telemetry analysis on-board

will have to face the problem of relying on ad-hoc datasets for
specific applications to use for training and testing. One option is to
wait for a certain period of nominal operation of a satellite and use
the past telemetry to train the network on ground and then uplink the
trained network in software. When the telemetry forecasting is to be
deployed on a constellation composed of replicas of the same
satellite, more statistics for larger datasets are available. As reported
in [19], existing and planned constellations comprise hundreds to
thousands satellites (e.g., 4200 for the planned constellation from
Samsung), thus making DNNs potentially very effective also for
mission-specific parameters.

III. Workloads Analysis

The run time of compute-intensive workloads composed of a
certain amount of floating point calculations is typically expressed
in terms of number of floating point operations (FLOPs) per second
(FLOP/s) or number of FLOPs per clock cycle (FLOP/CC).*** The
number of FLOP/CC that can be achieved by a certain hardware
platform has an upper bound defined by the number of functional
units and the amount of operations these units can perform simulta-
neously.We call this upper boundmaximum theoretical performance
per clock cycle (MTPCC). MTPCC is independent of any other
microarchitectural feature, like instruction-level parallelism (ILP),
speculation, and caching. However, it is not possible to achieve
#FLOP∕CC ≈ MTPCC for every workload, as data are to be fetched
from memory, and in some cases this cannot be done fast enough to
keep the functional units busy all the time. To visualize whether a
workload can achieve theMTPCC (compute-bounded workloads) or
the performances are bound from the memory bandwidth (memory-
bounded workloads), the roofline model was introduced in [32].
According to this model, the fraction ofMTPCC that can be achieved
by a workload on a certain platform depends on the operational
intensity (OI) of the workload, which is

OI � #FLOP

MT
(1)

where MT is the memory traffic composed of the read traffic RT plus
the write traffic WT. For each hardware platform there is an OI� for
which workloads are memory-bounded if OI < OI� (therefore the
performances are limited to #FLOP∕CC � BW � OI, where BW is
the bandwidth of the memory) and compute-bounded if OI > OI�
(where achieving the MTPCC is actually possible with microarchi-
tecture and software optimizations). Although based on several
assumptions, for instance, that it is possible to overlap memory
transfers and computations [33]), the roofline model is a successful
tool to benchmark processors in an application-independent way,
mainly focusing on the performance of popular kernels (e.g., [27]).

A. CloudNet

As a case study of DNN for image analysis, we will consider the
public code††† of CloudNet [34]. It is a fully convolutional network
(FCN) [35] for cloud detection; i.e., its output is a mask of the same

size of the input image indicating the pixels coveredwith clouds. The
use of an FCN instead of a CNN helps in mapping efficiently the
DNN in resource-constrained hardware, as it is possible to work on
patches of a large image without the need of working on the entire
image. The fraction of bits covered in clouds can then be averaged on
the ∼400 patches. In the case of CloudNet four spectral bands of the
large images of Landsat 8 (e.g., 7621 × 7791 pixels) are divided in
nonoverlapping patches of 384 × 384 pixels, which are then down-

sampled to 192 × 192 pixels.
Analyzing the model in Keras,‡‡‡ we find that CloudNet contains

38 two-dimensional convolutional layers (ofwhich 5 are transposed),

15 addition layers, 31 batch normalization layers, 45 standalone
activation layers, and 53 concatenate layers. To give an idea of the
contribution of each of these layers, we profiled the execution of the
model on a quad-core Intel i7-6600U. The breakdown of the execu-
tion type for each type of layer is shown in Fig. 3, and considerations
on each of them are carried out in the remainder of this section.
Furthermore, running a single inference per time requires a peak
memory of 836.65 MiB. This value is compatible with values found

in literature for other DNNs, typically ranging from 645MiB to 1.49
GiB [36].

1. Convolutional Layers

As shown in Fig. 4, applying a convolutional layer withN kernels,
each of dimensionsC × J × K, kernels to an input of dimensionsC ×
W ×H generates an output ofNmatrices, each of dimensionsU × V
[37], with U and V depending on the stride S and padding P of the
convolutional layer with the equation (an analogous relationship
holds replacing W, J, and U with, respectively, H, K, and V) [38]:

U � b�W − J � 2P�∕Sc � 1 (2)

As straightforward software implementations of convolutions
achieve low performance, performances are typically improved
unrolling the convolutions into matrix–matrix multiplications [39].
In this case, the number of FLOPs for each layer is estimated as
#FLOP � 2UVNCJK, given that there are UVN output elements
and for each of them CJK multiplications and accumulations are
required. The read traffic is thenRT � 4�NCJK �UVCJK� and the
write traffic isWT � 4NUV. In Table 1we show the size of the unroll

of the convolution for only the first 15 layers (for sake of brevity) of
the network. Some observations can be made:
1) OIs are large (in the order of tens of FLOP/B), except for

convolutions withK � 1 for which OI can go down to 1.60 FLOP/B.

Fig. 3 Breakdown of the execution time for an inference of CloudNet.

¶¶https://goce-ds.eo.esa.int/oads/access/collection/GOCE_Telemetry/.
***Normalizing by frequency is a common procedure to obtain technol-

ogy-independent metrics that measure the effectiveness of a certain micro-
architecture.

†††https://github.com/SorourMo/Cloud-Net-A-semantic-segmentation-
CNN-for-cloud-detection.

‡‡‡https://keras.io.

556 DI MASCIO ETAL.

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

https://goce-ds.eo.esa.int/oads/access/collection/GOCE_Telemetry/
https://goce-ds.eo.esa.int/oads/access/collection/GOCE_Telemetry/
https://goce-ds.eo.esa.int/oads/access/collection/GOCE_Telemetry/
https://goce-ds.eo.esa.int/oads/access/collection/GOCE_Telemetry/
https://github.com/SorourMo/Cloud-Net-A-semantic-segmentation-CNN-for-cloud-detection
https://github.com/SorourMo/Cloud-Net-A-semantic-segmentation-CNN-for-cloud-detection
https://github.com/SorourMo/Cloud-Net-A-semantic-segmentation-CNN-for-cloud-detection
https://keras.io
https://keras.io

2) Even if OI is large and therefore the workloads can be assumed
to be compute-bounded, the absolute amount of memory traffic is
very high (3–45 MiB per layer). These values require a dedicated
design of the memory subsystem compared with processors for non-
compute-intensive workloads, which will be carried out in Sec. V.
3) The memory traffic is for a large majority composed by reads

(92.83% in average).
Further performance enhancements can be obtained by mapping

thematrix–matrixmultiplication with optimized libraries. In [39] it is

shown that using basic linear algebra subroutines (BLAS) instead of

coding the unrolled version from scratch produces a speed-up rang-

ing from 2.43× to 3× depending on the architecture and on the input

size. Using BLAS subroutines, matrix–matrix multiplications are

mapped to the SGEMM subroutine,§§§ which (in its nontransposed

form) implements the following algorithm:

A2←αA0 × A1� βA2 (3)

where A0, A1, and A2 are matrices of, respectively, size n1 × n2,
n2 × n3, and n1 × n3, and α and β are scalars. Assuming α � β � 1
(as in the case of convolutions) and a square matrix at the output

(n1 � n3), SGEMM has

OI � n21�1� 2n2�
8�n21 � n1 � n2�

Assuming that 2n2 ≫ 1, OI ≈ �n1 � n2∕4�n1 � n2��,which given a

certain memory traffic (i.e., n1 � n2 � const) is maximized for

n1 � n2, reaching OI ≈ n1∕8. As OI is proportional to the size of

the output matrix, SGEMM will eventually achieve the peak perfor-

mance for a large enough matrix on a given hardware platform. For

this reason, the SGEMM efficiency

ESGEMM � FLOP∕CC
MTPCC

(i.e., the fraction of time the functional units of the processor are busy

when executing SGEMM) is typically given as a measure of attain-

able performance on a certain hardware platform [40].When caching

levels are present, increasing the size of the matrix multiplications to

increase OI will eventually cause a drop in performance, as the

operands will not fit anymore in the cache level responsible of peak

performance and reads from lower levels (even main memory) are

required during thematrixmultiplication, breaking the assumption of

the rooflinemodel thatmemory traffic and computation overlap. This

issue is analyzed in Sec. V.

2. Concatenate and Addition

Given that CloudNet is very deep (38 convolutional layers), it

requires specific solutions in its architecture to mitigate the vanishing

gradient problem [41]. The designers of CloudNet handled this

problem using skip connections, and addition and concatenation

Fig. 4 Unrolling of a convolution (similarly to Ref. [37]).

Table 1 Workload characterization for the first 15 layers of CloudNet [34]

Convolution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W � H 192 192 192 192 96 96 96 48 48 48 24 24 24 12 12

C 4 16 16 32 32 32 64 64 64 128 128 128 256 256 512

K � J 3 3 3 1 3 3 1 3 3 1 3 3 1 3 3

N 16 32 16 32 64 32 64 128 64 128 256 128 256 512 512

U � V 192 192 192 192 96 96 96 48 48 48 24 24 24 12 12

RT [MiB] 5.06 20.27 20.26 40.54 10.20 10.16 20.39 5.34 5.20 10.69 3.66 3.09 7.31 5.77 11.53
WT [MiB] 2.25 4.50 2.25 4.50 2.25 1.13 2.25 1.13 0.56 1.13 0.56 0.28 0.56 0.28 0.28
MT [MiB] 7.31 24.77 22.51 45.04 12.45 11.29 22.64 6.47 5.77 11.81 4.22 3.38 7.88 6.05 11.81
#MFLOP 42.5 340 170 75.5 340 170 75.5 340 170 75.5 340 170 75.5 340 679
OI [FLOP/B] 5.54 13.08 7.20 1.60 26.03 14.36 3.18 50.09 28.10 6.10 76.80 48.00 9.14 53.58 54.86

§§§Analogous subroutines are defined for different data types, and the first
letter represents the data type. For instance, SGEMM is for single precision
(SP), DGEMM is for double precision (DP), and IGEMM is for integers. In
this paper, data will be assumed to be SP unless specified otherwise; therefore
SGEMM will be used.

DI MASCIO ETAL. 557

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

layers [34]. As can be seen in Fig. 3, although the impact of addition
layers on the execution time is negligible (1.1%), concatenation
layers take a considerable part of the execution time (24.7%). Fur-
thermore, concatenate operations contain no FLOPs and consist
mainly of memory transfers; therefore they cannot be sped up with
increased computation capabilities. These considerations suggest
avoiding architectures concatenation and using skip connection
between layers with same dimensions (where concatenations are
not needed), as done in [41].

3. Batch Normalization

Batch normalization layers are employed to speed up training and
increase accuracy of DNNs [42]. This type of layer also acts as a
regularizer, keeping the magnitude of the parameters low and avoid-
ing overfitting [42,43]. When using batch normalization during
inference, each element xi of the activationvector x from the previous
layers is normalized according to

x̂i �
xi − E�xi�������������������������
Var�xi� � ϵ

p (4)

where E�xi� and Var�xi� are, respectively, the expected value and the
variance of xi (obtained from cumulative statistics collected during
training), and ϵ is a small constant to ensure convergence. The
number of operations required for an activation vector of n elements
is 2n, and the number of elements to be read from and written to
memory is 3n; therefore OI � 1∕6 FLOP=B. This value shows that
this layer is typically very memory-bounded, taking up a nonnegli-
gible part of the total execution time of CloudNet (5.5%).

4. Activation Layers

AnalyzingCloudNet inKeras,we found that a total of 84 activation
layers are present. However, only 48 are nonlinear (i.e., 36 activation
layers are composed of pass-through functions that do not have any
computational impact), of which 47 are rectified linear units (ReLUs)
and only 1 is a sigmoid (at the last layer). ReLU functions have low
computational impact, as it is enough to set to 0 all the negative values
[44]. Sigmoids (and hyperbolic tangents) are computationally more
expensive, as in principle they require the calculation of a nonlinear
math function. A typical approach to implement them is to use a
lookup table [44] or a piecewise linear approximation [28].

5. Subsampling Layers

To reduce the number of computations and make features more
robust [45], typically convolutional layers are followed by subsam-
pling (or pooling) layers. In CloudNet all the subsampling layers are
implementedwithmax pooling; i.e., themaximumvalue of awindow
is selected as the output value. This is common in state-of-the-art
DNNs [37], although sometimes different approaches are employed,
such as average pooling (the output is the average of the values in the
window), a mix of max and average pooling, and stochastic pooling)
[45]. Pooling can be either implemented as a nested for-loop over
each window, or split into operations in one axis and then in the other
(which usually provides better performance [44]).

B. Other Layers in DNNs for Image Analysis

When DNNs are employed for classification, the expected output
is typically a vector containing the probability of classification for a
certain object. In these cases, the last layers of the DNN after the
convolutional layers are composed of fully connected (FC) layers to
make a decision based on the information contained in groups of
pixels. This type of network is usually called CNN. FC layers can be
seen as convolutional layers where there is no sharing of coefficients,
i.e., J � K � W � H [37]. This implies that the output is a vector of
size N, the number of operations is #FLOPs � 2NCHW, the
memory traffic isMT � 4�CHW�N � 1� � N�, and

OI � 1

2�1� 1∕N � 1∕�CHW��

Therefore, OI reaches its maximum (0.5 FLOP/B) for very large

CHW and N. To give an idea of how FC layers compare against

convolutional layers, we compared the memory traffic and OI for the

convolutional layers in Table 1 to FC layers with same C,W,H, and

N. The MT of the FC layers ranges between 1.31× and 18.36×
compared with the respective convolutional layer, whereas the OI

is 3.3× to 154.2× smaller. The high MTassociated with FC layers is

confirmed by [37], although a trend can be noticed: for early CNNs

with few convolutional layers (e.g., AlexNet with five convolutional

layers and three FC layers) the percentage of parameters in the FC

layers is very high (for AlexNet 96.07%), whereas state-of-the-art

deeper CNNs (typically achieving higher accuracy) like ResNet have

many convolutional layers (for ResNet the number of convolutional

layers ranges from 53 to 155 and typically only one FC layer is

present) and have a much lower percentage of parameters in the FC

layers (ranging, respectively, from 8.04 to 3.42%).
Furthermore, the performance for FC layers can be improved

employing batching, i.e., processing more input features in paral-

lel [37]. This technique is particularly effective in the case of

FC layers, as it allows reuse of the large amount of parameters

read frommemory over several input features.¶¶¶ When processing

B input features in parallel, the number of operations is

#FLOP � 2NBCHW, the memory traffic is MT � 4�CHW�N �
B� � BN� and the operational intensity is

OI � 1

2�1∕B� 1∕N � 1∕�CHW��

This equation shows that the effectiveness of batching

eventually saturates. For instance, for C � 512, N � 512 and

W � H � 12 without batching OI � 0.5 FLOP/B. For small

batching, i.e., 1∕B ≫ �1∕N � 1∕�CHW��, batching causes an

almost linear increase of OI and OI ≈ B∕2 (e.g., OI � 3.93
FLOP/B for B � 8). The effectiveness of batching saturates for

larger B until for very large batching an upper bound of

OImax �
1

2�1∕N � 1∕�CHW��

is reached (in this example around 254 FLOP∕B). A relatively high

value of Bmay be required to achieve an OI in the order of the tens

(e.g., 15.05 FLOP/B for B � 32). Furthermore, batching introdu-

ces an extra latency, as to process a frame in the worst case B − 1
successive input feature maps have to be calculated. This effect of

batching can be an issue in real-time applications and is further

analyzed in Sec. III.C.
Despite the described criticalities of FC layers, they typically have

limited impact on the execution time of CNNs. For instance, in [46]

the breakdown of the execution time for inference according to the

different type of layers is reported to be 90.7% for convolution layers,

9.15% for subsampling layers, 0.03% forReLUactivation layers, and

0.11% for FC layers. The breakdown of the number of layers is

instead 25% convolution layers, 20% subsampling layers, 40%

activation layers, and 15% FC layers.

C. DNNs for Telemetry Forecasting

Recurrent neural networks (RNNs) are typically employed in time

series analysis like speech recognition and natural language process-

ing (NLP) [47–49], and they can be applied, for instance, to early

failure detection or to predict the telemetry of the next orbit given the

telemetry of previous orbits, as done in [28]. RNNs are composed by

a cascade of units with internal feedback, where each unit requires the

output of the previous one to be ready to calculate the next activation.

Typically long short-term memory (LSTM) implementations are

chosen to achieve higher accuracy, whereas gated recurrent unit

(GRU) implementations provide lower accuracy with higher

¶¶¶Batching is instead not effective with convolutions, as the amount of
parameters in a convolution is very small (e.g., 3 × 3 × 16).

558 DI MASCIO ETAL.

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

performance [28]. Furthermore, one or more FC layers are placed
before the output [28].
LSTM layers are typically memory-bounded [50]. Similarly to

[28], the linear part of the LSTM layer can be described as

st � W ⋅ xt �U ⋅ ht−1 � b (5)

where xt,ht−1, and st are columnvectors, respectively, of lengthm, n,
and n.W andU are, respectively, [m × n] and [n × n]. Therefore the
#FLOPs is 2�n2 � n� nm�, the MT seen by main memory is

4�n2 � nm� 3n�m�, and the OI is

OI � #FLOP

2�#FLOP� 2n�m� (6)

with a maximum value of 0.5 FLOP/B for large matrices, i.e.,
#FLOP ≫ 2n�m. This low value can be increased with batching,
as it turns matrix–vector multiplications into more computational
intensivematrix–matrixmultiplications (asB vectors are put together
to create a matrix of dimensions [n × B]). In this case,

OI � #FLOP � B

2�#FLOP� �3B − 1�n�m � B� (7)

This equation shows that the efficacy of batching in terms
of increase of OI saturates as B grows, until the upper bound
of OImax � #FLOP∕�6n� 2m� is achieved. This upper bound is a
relatively large value, for instance, 27.29 for m � 27 and n � 60
(typical values in [28]). However, OI cannot be increased arbitrarily
by batching in real-time applications, as batching requires that all the
inputs to the LSTM layers of the batch are ready. For instance, in [50]
increasing batching from 16 to 64 increases performance to 2.41× the
original value, whereas the time required to complete execution in
more than 99% of the cases increases from 7.2 to 21.3 ms (2.95×).

IV. RISC-V Vector Processors

State-of-the-art processors for space applications typically execute
instructions on two scalar operands [51]. Considering a single core,
this type of platform has an MTPCC of 1 FLOP/CC.
The simplest way of increasing the MTPCC of future space pro-

cessors is to introduce ISA extensions with instructions defining
fused multiply-add (z←wx� y) and fused multiply-accumulate
(z←xy� z) operations,**** achieving an MTPCC of 2 FLOP/CC
(as shown in Fig. 5). This requires modifications to the floating point
unit (FPU) and arithmetic-logic unit (ALU). However, the cost of
these changes in the FPUs and ALUs is limited (as, for instance, the
area of these units is dominated by the multiplier). The biggest cost is
instead on the complexity of the register file, which is required to
provide more operators to the functional units [52].
To increase the MTPCC even further, DLP is the most energy-

efficient solution available [53]. As a matter of fact, large part of the

power consumption of a general-purpose scalar processor is spent on
fetching instructions. For instance, the breakdown of energy dissi-
pation on a scalar processor executing IGEMM in [5] shows that the
instruction cache dissipates 19.63% of the total energy, instruction
fetch and decode stages 4.69%, and the virtual memory (comprising
both instruction and data) 7.41%. A percentage of energy dissipation
ranging between around 24 and 32% can therefore be attributed to
instructions fetching and decoding. Data parallel processors reduce
this fraction of power, defining instructions that operate on arrays of
D elements instead of scalar elements. Figure 5c shows an example
with D � 4, which (together with FMA operations) achieves
MTPCC � 8 FLOP/CC. However, DLP is the least flexible form of
parallelism [53], as it can only be applied to calculations that can be
vectorized (i.e., expressedwith instructions on vectors), e.g., matrix–
matrix multiplications in convolutional layers. As a matter of fact, in
[54], the speed-up found in the convolutional layers of a CNN using
the data-parallel NEON extension over the baseline ARM ranges
from 2.45× to 2.78×, with a decrease of energy consumption per
convolutional layer ranging from 59.11 to 82.04%. The energy
efficiency of the data-parallel solution (i.e., performance in terms
of executed layers per amount of energy) is in this case then 5.98× to
15.50× the energy efficiency of the non-data-parallel baseline.When
the effectiveness of DLP saturates for large D, the solution left to
increase theMTPCC is to replicate the processing core. In Fig. 5d the
core is replicated four times (P � 4), achieving an MTPCC of 32
FLOP/CC (together with FMA andD � 4). Going above four cores
typically reduces the utilization of the functional units. For instance,
in [55] it is shown that with eight cores it is possible to obtain for
CNNs’ performances ranging from 3.99× to 5.76× the performance
of a single core. Similarly, with eight cores it is possible to reach
5.55× the performance of a single-core implementation of an LSTM
RNN [28].

A. Data-Parallel Processors

When compute-intensive applications were to be addressed in the
commercial market, computer architects resorted to packed single
instruction multiple data (SIMD) ISAs with the Intel’s MMX exten-
sions (1996) for integers [56] and the SSE extensions (1999) for floats
[57]. The success of ARM in high-end embedded applications made
the SIMD NEON extension, first introduced in the ARMv7-A Cor-
tex-A8 (2005) [58], very popular. Also PULP, one of the most
popular sets of RISC-V cores, employs the RI5CY packed SIMD
extension (2016) defined outside of the RISC-V standard [59].
PackedSIMDextensions are typically chosen by hardware design-

ers because they can be applied to scalar processorswithout extensive
modifications to the microarchitecture [60]. However, the end of
Moore’s law is leading computer architects to use more efficient
ISA extensions, and ARM recently (2017) released its ARMv8-A
Scalable Vector Extension (SVE) [61]. Although previous Fujitsu’s
supercomputers were based on SIMD extensions of SPARC, the
Fujitsu A64FX is the first processor based on the ARMv8-A SVE,
targeting supercomputer applications. It achieves 2.7 DP-TFLOPS
(7 nm process), a DGEMM efficiency>90% [62] and it is composed
by 48 computing cores, each achieving around 57DP-GFLOPS [62].

a) No FMA, D=1, P=1 b) FMA, D=1, P=1 c) FMA, D=4, P=1 d) FMA, D=4, P=4

Fig. 5 Steps to increase theMTPCC of space processors in a power- and area-efficient way.

****Both will be indicated with FMA, unless a distinction is to be done.

DI MASCIO ETAL. 559

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

Vector extensions are already known to be more efficient than
packed-SIMD, as they can be seen as more flexible versions of
packed-SIMD thanks to their time-multiplexed and vector length-
agnostic approach (the software is oblivious to the hardware vector
length of a specific implementation and the same code executes using
the largest parallelism available) [27,60,61]. In SIMD extensions
instead, the data width of the operations is encoded in the instruction
opcodes. When the architects of such ISAs wish to increase perfor-
mance by widening the vectors, they must add a new set of instruc-
tions to process these vectors. For instance, Intel’s newest AVX
instructions are as long as 11 bytes [60]. Furthermore, application
code compiled for previous versions cannot automatically leverage
the widened vectors of new implementations. At the same time, code
compiled forwider SIMD registers fails to execute on oldermachines
as the new instructions are not known to older implementations.
Furthermore, in SIMD extra code is needed to handle up to three
fringe elements of stripe mine loops [60].
For these reasons, the proposal for packed-SIMD floating-point

was dropped in favor of theVextension for large floating-point vector
operations [15]. However, there was interest in packed-SIMD fixed-
point operations for use in the integer registers of small RISC-V
implementations. A task group is working to define the packed-
SIMD P extension [15].

1. RISC-V Vector Extension

TheRISC-VVector Extension (RVVE) is similar to theARMv8-A
SVE and was heavily inspired by the Hwacha†††† development [63].
Both RVVE and ARMv8-A SVE define a configurable vector unit
with 32 vector registers (i.e., given a certain VRF size, the number of
elements and size of elements can be configured with instructions)
[15] and allow the same binary code to work efficiently across
a variety of hardware implementations, varying in physical vector
storage capacity and data path parallelism. Additionally, ARMv8-A
SVE includes 16 scalable predicate registers (not defined in the
baseline RVVE [64]) to optimize loops, using the predicate con-
trolled loops vectorization style [61].
Although the RVVE is still in the process of being standardized, it

plays such a crucial role in state-of-the-art applications that already
several developments implementing the RVVE are described in
literature. The two most notable examples are the Xuantie-910, a
12 nm RISC-V processor with 16 cores clocked up to 2.5 GHz
with an out-of-order triple-issue 12-stage pipeline [65], and Ara,
a RISC-V vector processor based on Ariane achieving up to 33
GFLOP/s and 41 GFLOP/J on 22 nm fully-depleted silicon-on-
insulator (FD-SOI) technology. Furthermore, work is being done to
support the RVVE in popular DNN frameworks like TensorFlow
Lite [66].

2. Microarchitecture of Vector Processors

There are twomain approaches to design a vector processor.Vector

processors for supercomputers, like the Fujitsu AF64X, typically

have a joint scalar and vector pipelinewith separated register files and

execution units. The main disadvantage of this approach is that a

vector load instruction stalls the pipeline also for scalar instructions,

unless a superscalar pipeline with large ILP is employed (e.g., this is

done in the FujitsuAF64Xwith up to fourways).When the ILP is not

high enough, using a decoupled vector pipeline, where the scalar

pipeline pushes vector instructions into an instruction queue inter-

facing the vector pipeline, can mitigate this issue. The scalar pipeline

can continue execution and the vector pipeline acknowledges com-

pletion of vector instructions and passes scalar results (when needed)

to the scalar pipeline without passing through the bus. This approach

is employed, for instance, for theAra processor [27] and it is shown in

Fig. 6. Another advantage of this approach is that it provides a more

modular solution and a vector version of a RISC-V processor can be

achieved with minimal modifications to the scalar design (i.e., the

introduction of a front end).

The critical elements of a vector processor are shown in Fig. 6. The

following subsectionswill focus on thevector register file (Sec. IV.B),

and on the issues limiting scalability of performance (Sec. IV.C).

Furthermore, Sec. IV.D provides insights on the soft error vulner-

ability of vector processors.

B. Vector Register File

Vector register files (VRFs) are typically more complex than

register files (RFs), as they have in general more contention given

FMA operations and masked execution‡‡‡‡ [27]. When considering

Ara, theworst case for contention for access to theVRF is themasked

FMA (multiply-add) instruction, which reads four operands from

four vector registers (one mask, two factors, and one addend) [27],

executes the operation only if themask has a certain value, and writes

to a register the result of the operation. A straightforward solution to

avoid contention in the VRF is therefore to employ a multiported

static random-accessmemory (SRAM)with asmany ports as needed,

in this case four read ports and one write port (4R1W). However,

multiported register files comewith a large area overhead. In [53], the

area of the VRF for the T0 vector processor according to the different

number of ports employed is analyzed. As the T0 vector processor

contains two arithmetic units and one multiplier per lane, to avoid

contention it requires one read port and one write port for the

multiplication, and two ports for read and one for write for each

arithmetic unit (i.e., 5R3W). Different implementations in ASIC

technology are proposed for the VRF, trading-off the number of

banks and ports: one 5R3W bank of 256 elements (1×5R3W), two

Fig. 6 Block diagram of a decoupled vector pipeline.

††††The main difference with RISC-V Vector extension is that Hwacha
fetches its own instructions, as there are two threads: a control thread running
on the scalar core and a worker thread [60]. This can potentially lead to higher
performance, but also higher complexity.

‡‡‡‡RVVE provides for many instructions a field that specifies whether the
instruction is to be executed or not according to the value of a bit in a specific
vector register [64].

560 DI MASCIO ETAL.

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

3R2Wbanks of 128 elements each (2×3R2W), and four 2R1Wbanks
of 64 elements each (4×2R1W).
Data from [53] show that banking decreases the area occupied by

the VRF by 31.7% when going from 1×5R3W to 2×3R2W. How-
ever, the efficacy of this technique saturates quickly, as going from
2×3R2W to 4×2R1Wdecreases the area only by 2.1%. This is due to
the increase of overhead to handle the banks (storage cells compose
88.9%of theVRF for 1×5R3W, 83.1% for 2×3R2W, and only 41.7%
for the 4×2R1W implementation).
Banking is also employed in Ara, where the VRF is composed of

eight single-ported read-or-write banks (1RW). To help avoid con-
tention, in Ara vectors are organized in SRAM banks with a shift of
one element (“barber pole” shift) [27]. This is particular effective to
avoid conflicts when the functional units fetch the first elements of
two vectors [27]. However, this organization leaves some residual
contention, which is addressed with a round-robin with two priority
levels [27]. A way to completely solve bank contention is systolic
execution. For instance, Hwacha uses four 1R1W (4×1R1W) dual
port banks with stall-free systolic bank execution, capable to sustain
n operands per cycle to the shared functional units after an initial
n-cycle latency [63].

C. Scalability

Although existingRISC-Vvector processors havegood scalability
in terms of peak performance and efficiency (as can be seen in
Table 2), there are still criticalities to be addressed for small matrices
and very high requirements of peak performance. The remainder of
this subsection discusses how scalability influences frequency, effi-
ciency, the effects of the issue rate on the achieved performance and
the width of the interconnect.

1. Frequency

Most considerations in previous sections were based on the fre-
quency-normalized value FLOP/CC, whereas a reduction of clock
frequency decreases the peak performance in terms of FLOP/s
(as #FLOP∕s � fCPU � #FLOP∕CC) and therefore can decrease
the efficiency of a platform with increased DLP.
In [27] Ara has been implemented in Global Foundries 22FDX

process (FD-SOI). As can be seen in Table 2, the two-lane and four-
lane versions of Ara achieve the same maximum nominal frequency.
In both cases, the critical path is in the DP FMA FPU (1.2 GHz
nominal, 0.92 GHz worst case), about 40 gate delays long. Another
critical path (of the same length) is present in the combinational
handshake between the Vector Load and Store Unit (VLSU) and
operand queues in the lanes of the vector processor.When increasing
the number of lanes, the second path becomes longer, and therefore
the frequency is reduced (down to 1.04 GHz for 16 lanes). This is
because the VLSU handles data to and from all the lanes simulta-
neously. Therefore, a larger number of lanes imply longer combina-
tional paths. This shows that, in general, the scalability of the DLP in
a vector processor is limited by the elements that act on all the
lanes [27].
It should be noted that the maximum frequency of the scalar

processor on the same technology is 1.7 GHz [5]. Therefore, the
two-lane version already comes with a penalty of at least 30%
compared with the scalar processor.

2. Area and Energy Efficiency

The increasing energy efficiency in Table 2 shows good scalability
and suggests that the peak in energy efficiencymay be obtained for an
even larger number of lanes. On 22 nm FD-SOI, Ariane and Ara
(depending on the number of lanes) consume between 138 (2 lanes)
and 794 mW (16 lanes) at peak performance [27]. As energy effi-
ciency depends on the ASIC technology employed, changing tech-
nology will provide different efficiency. Resorting to a 65 nmRHBD
technology would decrease energy efficiency because of larger
power consumption for a given clock frequency.
Area efficiency reaches a maximum for 8 lanes, as for 16 lanes the

increase due to the decreased overhead of the scalar pipeline per
vector lane ismore than compensated by thegreater complexity of the

logic to handle the increased number of lanes. Therefore, area effi-
ciency can be expected to be more critical than energy efficiency in
vector processors. Ariane andAra occupy together between 2228 and
10,735 kGE. In particular, the area of Ariane and Ara with four lanes
is 3434 kGE. i.e., 4.28 times a single-core Ariane comprising level 1
(L1) caches. Therefore a four-lane vector processor has similar
requirements in terms of die area compared with state-of-the-art
quad-core processor for space [51].

3. Small Matrices

Along with the memory bound identified by the roofline model,
the authors of Ara [27] show that the limited issue rate of instructions
for a single-issue scalar pipeline limits the performance for matrices
of sizes smaller than 256 × 256. Therefore, they suggest that the use
of higher ILP and speculation in the scalar pipeline could improve
performance for smaller matrices, where control operations
(e.g., configuration of the lanes) have a larger overhead. Similarly
to [27] for an n × n matrix multiplication with SP parameters, an
upper bound due to the issue rate #FLOP � �16 � OI∕ΔCCissue

� can be
found, and OI� � �MTPCC � ΔCCissue

∕16� due to the issue rate. This
equation shows that doubling the issue rate (i.e., using a dual-issue
microarchitecture) will halve theOI�. For instance, as anFMA instruc-
tion can be issued every five clock cycles (CCs) inAra, theworstOI� is
5 FLOP/B (8 lanes version withMTPCC � 16 FLOP/CC), whereas a
dual-issue version lowers this value to 2.5 FLOP/B. As can be seen in
Sec. V, these values are comparablewith upper bounds due tomemory
bandwidth and therefore canhave an impact onperformancewhen they
produce an higher OI� than memory bandwidth.

4. Interconnect

To increase theOI� due to the memory bandwidth, Ara uses a single
32 � NL-wide bus interface for all the lanes together,§§§§ reaching
512 bits for 16 lanes. To keep the same value of 2 B/DP-FLOP, a
32-lane implementation would need a 1024-bit-wide bus interface.
However, this problem can be mitigated using an L1 cache for vector
data (L1V), which allows large bandwidth for data residing in it without
requiring a wide crossbar (Fig. 7). The design of an area efficient
memory subsystem forRISC-Vvector processors is described inSec.V.

D. Soft Error Vulnerability

Vector processors typically achieve high utilization of the FPU
(e.g., 97% in [27]), whereas scalar processors typically work in
memory-bounded conditions and therefore achieve much lower
FPU utilization. This implies an increase of soft error vulnerability
of arithmetic units, as suggested by the models in [68] relating
utilization and soft error vulnerability. Furthermore, the increase of
frequency compared with state-of-the-art processors for space
(e.g., from 250 MHz to 1 GHz) points to an increased percentage
of errors from combinational logic (as shown in [69]), which com-
pose the majority of the area in FPUs and ALUs. For instance, we
synthesized the BOOM processor¶¶¶¶ on a 65 nm ASIC technology
and the area of the FPU and ALUs (comprising hardware multipli-
cation and division) results composed, respectively, for 79.52 and
86.11% of combinational logic. Finally, scaling efficiently at least up
to 16 lanes, a vector processor can achieve high performance when

Table 2 Scalability of Ara in terms of number of lanes (peak values
in bold) for 22FDX process (FD-SOI) (data derived from [27])

Performance metric

Number of lanes

2 4 8 16

Max. frequency [normalized] 1.00 1.00 0.94 0.83
Max. FPU utilization [%] 98.20 98.00 97.22 97.36
Area efficiency [DP-kFLOP/s/GE] 2.20 2.85 3.08 3.02
Energy efficiency [DP-GFLOP/mJ] 35.58 37.84 39.91 40.81

§§§§Hwacha, instead, uses an interface per lane [67].
¶¶¶¶https://github.com/riscv-boom/boom-template.git.

DI MASCIO ETAL. 561

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

https://github.com/riscv-boom/boom-template.git
https://github.com/riscv-boom/boom-template.git
https://github.com/riscv-boom/boom-template.git

large ASIC implementations are possible. For this reason, small
technology nodes should be preferred. However, in [70] it is reported
that going below 28 nm increases the soft error rate (SER) in the
terrestrial environment. In FD-SOI technologies this is mainly due to
an increase of SER due to protons, whereas the SER due to alpha
particles is slightly decreasing. Given that in space there is a different
radiation environment, the technology node minimizing the SER
may be different.
The separation between scalar and vector pipeline in decoupled

vector processors allows for a selective hardening approach.
Assuming that control operations are executed only in the scalar
pipeline and computations only in the vector pipeline, redundancy
to avoid catastrophic failures is required only in the scalar pipeline.
In Ara, the critical path limiting the maximum frequency for the
four-lane version is in the vector pipeline and allows for amaximum
frequency of around 1 GHz, whereas the scalar pipeline has a
critical path allowing up to 1.7 GHz [5]. Therefore, applying
state-of-the-art techniques to improve fault tolerance only to the
scalar pipeline, such as triple modular redundancy (TMR) at flip-
flop level in the scalar pipeline and error detection and correction
(EDAC) codes in the scalar register file, will not cause any penalties
in terms of maximum frequency and hence in terms of MTPCC.
As a matter of fact, TMR and EDAC are reported to cause only
9% decrease in frequency in the LEON2 [71]. A similar decrease
would keep the maximum frequency of Ariane from 1.7 GHz [5] to
around 1.5 GHz, which is still above the maximum frequency
possible in the vector pipeline.

V. Memory Hierarchy

Figure 7 shows a possible memory hierarchy for a vector proces-
sor. As a typical memory hierarchy for scalar processors, it comprises
an L1 cache for scalar data (L1D), a L1 instruction cache (L1I), a
unified level 2 cache (L2),***** and amainmemory.However, an L1V

is added to increase performance especially for workloads with low
OI. The figure also indicates the width Wi of the interface between
levels, which determines the bandwidth Bi of the interface together
with its clock frequency fclki, according to Bi � fclki �Wi. For

instance, the Sandy Bridge in [33] has a 384-bit interface and a
maximum bandwidth of 384 b/CC. In the case of DRAMs, BD is
given by RD � CD � fclkD �WD, where RD is 1 for SDR and 2 for

DDR, CD is the number of channels for the DRAM, fclk the clock
frequency, and W the word size. For the DRAM employed in the
Sandy Bridge in [33] CD � 2, fclkD � 0.8 GHz, andWD � 64, and

therefore BD is 25.6 GB/s.
A cache-aware roofline model [33], shown in Fig. 8, highlights the

main benefits of adopting amemory hierarchy similar to Fig. 7.When
data reside in main memory, OI� is around 2.50–6.02 FLOP/B
(depending on the DRAM technology), whereas if data reside in
an L2 (with WX � 64 b) OI� becomes 0.25 FLOP/B and a dedi-
cated L1V with WC;V � 356 b reduces OI� to 0.04 FLOP/B.

Furthermore, from Fig. 8 it can be deduced that keeping a processor
in a compute-bounded state for a given OI puts increasingly higher
requirements on the memory bandwidth when MTPCC (hence the
computational capabilities) is increased (e.g., an implementation
with lower MTPCC has a lower OI�). As a result, extremely high-
performance processors for DNNs are actually memory-bounded
except for very high OI [50].

A. Main Memory

The need for (at least) radiation-tolerant parts with solid flight
heritage limits the use of state-of-the-art memories. As a result, main
memories for space in ESAmissions lag behind commercial counter-
parts in terms of performance. For instance, state-of-the-art OBCs
typically employ single data rate (SDR) DRAM [72]. The SDR
DRAM tested in [25] (ISSI IS42S86400B-7TL) has 16 bits for data
I/O and achieves up to 166MHz. Therefore, its BD is 2.66 Gbps, i.e.,
two orders of magnitude less compared with the DDR3 DRAM
memories used in [33]. Faster DRAMs are also being considered,
as the DDR2 tested in [25] (IS43DR81280B-25DBLI), which has

Fig. 7 Possible memory hierarchy for a vector processor. Other cores and peripherals (not shown in figure) can be connected to the interconnect.

Fig. 8 Theoretical improvement for low OI workloads for matrices residing in L2 and L1V compared with SDR and DDR (single chip).

*****This is typically the case of multicore processors (not shown in the
figure), wheremore coreswith their ownL1 caches are connected to the L2 via
an interconnect.

562 DI MASCIO ETAL.

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

8 bits for I/O data and achieves up to 400 MHz. This means a BD of
6.4 Gbps, which is still more than one order of magnitude lower
compared with the DDR DRAM in [33].

1. EDAC Codes

In the space environment, DRAMs suffer from single event upsets
(SEUs) andmultiple bit upsets (MBUs) as SRAMs [73]. However, in
DRAMs most of the upsets happen in weakened cells [74]. Further-
more, compared with SRAMs, DRAMs are also more likely to suffer
from stuck bits (cells stuck to a value, mostly related to variable bit
retention [75]) and single event functional interrupts (SEFIs). The
effect of SEFIs in aDRAMranges from some tens of bits to a full chip
wrong per read cycle and can be recovered only with a chip reset or
sometimes with a full power cycle [74]. To detect and correct these
errors, EDAC codes are employed in the DRAM. Including EDAC
checkbits in DRAMs decreases the bandwidth, as also checkbits are
read and written, and increases latency, as the checkbits have to be
calculated before storing the data in memory and checked before
using the data read from thememory. ForDRAMs in space embedded
systems, typically Reed–Solomon (RS) codes are employed [51].
An RS�n; k� code takes a word of k symbols and generates a code
word of n symbols, where n � k� 2t (with 2t being the number of
check symbols). RS codes have a redundancy r � 2t∕k, where r is
typically 25 or 50%, meaning that they increase the number of bits
required to express the information by r. RS codes can correct errors
in up to t symbols [76]. Regarding the symbol size, conventional
organization ofDRAM-basedmemories uses several chips in parallel
to constitute a rank of the desired data width (e.g., 64 bits) [77]. It is
therefore a straightforward choice to use as symbol length the IO
width of a single chip.Wewill assume the chip to have an IOwidth of
8 bits and therefore employ a byte-based RS, although different
choices are possible. In this way, SEFIs can be masked and the failed
chip can be reset when it is less detrimental to functional availability.
For instance, in [51], 16 check bits or 32 check bits for 64 bits of data
are employed, meaning, respectively, RS(10,8) and RS(12,8).
RS comes with substantial penalties in terms of performance.

When adding RS with r � 25% and r � 50% to a memory module
with n chips, the average effective data bandwidth per chip becomes,
respectively, 75 and 50% of the original DRAM bandwidth. There-
fore, the bandwidth of the SDRDRAM in [25] with RS reduces from
2.66Gbps to 2.00Gbps (r � 0.25) and 1.33Gbps (r � 0.5), whereas
the bandwidth of the DDR2 reduces from 5.1 Gbps to 3.8 Gbps
(r � 0.25) and 2.6Gbps (r � 0.5). Furthermore, RS codes come also
with a substantial penalty in terms of latency. For instance, the
decoder proposed in [78] has a latency of L � n� 10t� 20 CCs.
Typically, critical paths of memory controllers (MCs) are deeper than
those of processors and run at lower frequency. For instance, the
length of the critical path reported in [79] ranges between 547 and 48
gates depending on the design complexity.Assuming 0.02 ns per gate
as for Ara [27], this limits the frequency in a range between 1.04GHz
and 91 MHz. Therefore, we assume that the decoder runs at half the
frequency of Ara and we partially compensate this with a doubled
data width between the MC and L2 compared with the one between
L2 and L1V. Therefore, WL1;L2 � WL2;MC∕�fCPU∕fMC�, where

fCPU and fMC are, respectively, the frequency of the vector processor
and the frequency of the MC. Therefore, the latency expressed in
terms of CCs of Ara, keeping into account that n � �1� r�k and
t � �r∕2�k, is LCPU � �fCPU∕fMC���1� r� � k� 6r � k� 20�.
Given that k � WL2;MC∕8 (as a symbol is composed of 8 bits) and

WL1;L2 � 32 � NL (following the rule of thumb reported in

Sec. IV.C.4), the final expression is

LCPU � 4NL�1� 6r�
�
fCPU
fMC

�
2

� 20
fCPU
fMC

(8)

It should be noted that the latency of this design has a quadratic
dependence on the ratio of the frequencies and only a linear
dependence on the number of lanes NL. Therefore, having a low
fCPU∕fMC ratio is very effective to help the scaling of performance
with the number of lanes. Substituting NL � 4, r � 0.25, and

fCPU∕fMC � 2, we estimate 200 CCs of additional latency seen

by the processor during reads due to the use of RS. This is a

significant increase (e.g., read latency of the DRAM chip around

20 ns [26], i.e., 15–20 CCs for fCPU � 1GHz), and therefore it may

be required to lower the level of information redundancy or not

applying EDAC altogether on vector data to achieve the required

level of performance.

2. Vulnerability of DNN Parameters

To evaluate the effect of not applying EDAC on the DRAM when

running a DNN, we estimate the effect of upsets on the parameters

residing in the DRAM for CloudNet.
According to [74], a 512 Mb SDR DRAM memory

(MMSD08512408S-Y) experiences 2.75e–11 upset/bit/day in

LEO. Therefore, 0.19 upsets/day are to be expected for coefficients

and feature maps residing in the DRAM (using the peak memory

reported in Sec. III). To assess the sensitivity to SEUs, we ran a fault

injection campaign on the DNN coefficients expressed in SP floating

point (expected to reside in the memory buffer) during the inference.

For each experiment a single error is injected and the accuracy of the

classification over 9201 input patches is checked. The metric

employed to estimate the accuracy is the overall accuracy (OA)

defined in [34] as

OA � TN� TP

#Pixels
(9)

where TN (true negatives) is the number of pixels correctly classified

aswithout clouds, TP (true positives) is the number of pixels correctly

classified as covered by clouds, and #Pixels is the total number of

pixels (therefore comprising also false negatives and false positives).

For a fault-free execution over the 9201 patches of the test set, the OA

is 96.5%. In the majority of the cases, injecting upsets in the input

images causes little or no damage to the accuracy of the DNN and the

OA usually does not go below 96.5%, except for when the bit flip

happens in the most significant bit (MSB) of the exponent. In this

case, a single bit flip can change a very small number in a very large

number and vice versa. For instance, 1.4293875e-05 (0x376FCFBA)

can be turned into 4.8639537e+33 (0x776FCFBA). Therefore, even

setting a very tight requirement on theOA, an SEU in a coefficient has

a 1 in 32 chance of causing the DNN to fail. Another large deviation

could take place when the bit flip happens in the sign bit and the data

have a large magnitude. This is not the case in CloudNet, as the

maximummagnitude found for the parameters is around 0.59. This is

also to be expected in other DNNs, as typically regularization tech-

niques that keep the magnitude of parameters low are employed to

avoid overfitting [43]. As an extreme case condition for the upset rate,

we ran also experiments with 10 upsets simultaneously. Also in this

casewe note that large deviations are present only if one of the upsets

is in the MSB of the exponent (e.g., OA � 61.3%). Assuming 0.19

upsets/day and that only upsets in theMSBof the exponentwill cause

a failure due to insufficient quality of service (QoS), we can expect

upsets to cause a failure due to SEU for insufficient QoS every

165.4 days.
Other DNN architectures may be more vulnerable to SEUs. For

instance, in [80] it is shown that the FC layers in the last layers of

CNNs aremorevulnerable comparedwith early convolutional layers.

However, the dependence of the vulnerability of a bit on its position is

related to the format of the coefficients. For instance, in [81] theMSB

of the exponent is found to be the most critical bit of the SP model

coefficients also in CNNs and DNNs with LSTM layers. Further-

more, Ref. [80] shows that using half precision (HP) floating point

can increase robustness for some architectures compared with SP

floating point. Fixed point representation can mitigate the failure

mechanism described for floating point thanks to their limited range

[80].However, if the fixed point representation has a large integer part

(e.g., 1 bit for sign, 21 for the integer part, and 10 for the decimal part)

the robustness of the DNN can be severely reduced compared with

floating point representations [80].

DI MASCIO ETAL. 563

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

3. Proposed Solutions for DRAMs

While the effect of SEUs on parameters can be tolerated by the
intrinsic robustness ofDNNs, SEFIs produce an unpredictable number

of errors per CC and therefore require mitigation. According to data
from [74], a 512 Mb SDR DRAM memory (MMSD08512408S-Y)
experiences 1.33e−3 SEFI/device/day. To achieve the peak memory
required, 14 chips are required and therefore not including any EDAC
will produce a failure due to SEFIs every 53.7 days. This is unaccept-
able, as every inference after the SEFI is likely to have insufficientQoS
until the next reset of the failing chip. As a mitigation, DRAM chips
can be reset periodically. Assuming a reset every 2 h, the percentage of
failed inferences due to SEFIsWISEFI in the worst case is

WISEFI �
Failures�SEFI�
Total inferences

� ΔTrst

MTTFSEFI
� 0.16% (10)

The contribution towrong inferences of SEUs can be estimatedwith
a similar equation, where theMTTFSEU in the denominator is divided
by 0.03 to account for the discussion in Sec. V.A.2 on the vulnerable
bits of floating point coefficients and Trst is replaced with the time
required for a single inference Tinf . The value found is negligible
(two orders of magnitude less than the contribution of SEFIs). How-

ever, the final value of average reliabilityRavg � 1 −WISEU −WISEFI
(99.84%) can be not deemed enough for critical applications. The
availability instead depends also on the maintenance time after a reset.
If we assume amaintenance time of 30 s for each reset, we find that the
availability of the service is 99.58%, whereas a maintenance time of
300 sproduces anavailability of 95.83%.Bothvalues arebelow typical
requirements of dependable systems (e.g., [82]).
A tradeoff between RS and no EDAC is represented by simpler

EDAC codes. EDAC codes with lower redundancy, although they
cannot mask SEFIs, can still detect some of the wrong bits caused by
the SEFI. For instance, a parity bit per chip can detect an odd number
of errors in a chip, and it is possible to keep track of them with a
counter. When the number of errors from a chip exceeds a certain
threshold in a certain timewindow, theDRAMchip is reset to recover
from a probable SEFI. Assuming a threshold of three errors and an
equal probability that the SEFI will cause an even or odd number of
errors, the percentage of wrong inferences due to SEFIs is

WISEFI �
2�Nthr � 1�

MTTFSEFI∕ΔTinf

� 0.0009% (11)

Regarding SEUs, neglecting accumulation and MBUs, all the
upsets are detected. Therefore Rav � 99.9991%, which is a substan-
tial increment compared with employing no EDAC. There is a
substantial increment in availability too, with 99.9994 and
99.994%, respectively, for 30 and 300 s of unavailability per reset.
Table 3 summarizes the different EDAC and reset approaches

discussed to protect DRAMs for DNNs.

B. L1 Vector Cache

Many vector processors use L1 caching for instructions and
for scalar data, leaving vector data uncached (e.g., Ara [27]), as
historically locality in vector workloads was assumed to be less
pronounced compared with scalar workloads [83]. The work in [83]
characterizes temporal and spatial locality in compute-intensive vector

workloads and finds that caches can significantly improve the perfor-
mance of a vector processor. Furthermore, in [84] it is shown that
the use of caches helps masking memory latency, as increasing by
3.21× the latency of a memory access (from 14 CCs to 45 CCs)
roughly triplicates the mean delay per memory reference for a proc-
essor with uncached vector data and less than doubles the access time
for a processor with an L1 cache for vector data.
The following subsections will carry out a design exploration of

the L1V to assess which sizes, organizations, and write policies are
more efficient for vector processors.

1. Size

From Table 1, it is clear that the large matrices originating from
unrolling of convolutional layers (ranging from 3 to 41 MiB) do not
fit even in large L2 caches (e.g., 2 MiB [51]). This problem can be
addressed with tiling, as shown in Fig. 9. In this approach, two levels
of looping (shown in Fig. 9 with index i and j) select a subset of the
matrix–matrix multiplication that produces one of the

�
UV

b

��
N

b

�

tiles of the result, each composed of b × b elements. By increasing
the size of the cache, it is possible to work on larger matrix blocks
residing in the L1V. The subset of operations obtained in Fig 9b can
be decomposed into

�
CJK

b

�

segments, and the results of these segments can be accumulated to
generate the final result of the tile. The level (c) in Fig. 9 is where the
mapping to SGEMM (described in Sec. III.A.1) can be applied.
One of the possible implementations of SGEMM(Fig. 9d) is a loop

selecting themth column ofA0 and themth row ofA1 and generating
a matrix where thepth column is themth column ofA0multiplied by
A1mp. Vectorization is applied with a maximum vector length of VL,

with FMA (accumulate) operations between the vector A0m and a
scalar A1mp. A matrix representation of this implementation for a

2 × 2 example is shown below.†††††

A2 �
0
@A011A111 � A012A121 A011A112 � A012A121

A021A111 � A022A121 A021A112 � A012A122

1
A

�

0
BBB@

j j
A01A111 A01A112

j j

1
CCCA�

0
BBB@

j j
A02A121 A02A122

j j

1
CCCA

As we are interested in investigating the speed increase due to
the use of an L1V for small matrices, we will assume to be in
memory-bounded conditions (the computations happen in parallel
with part of the loads and stores, although with a shorter duration).
In these conditions, the execution time can be estimated as the time
required to read the matrices frommainmemory to the L1Vand the
time required to write to main memory the result a tile per time.
Loading a vector of length VL from main memory takes

TL;V � TLM � SE � VL

BM

where SE is the size of a single element of the vector, BM is the
bandwidth of themainmemory, and the latency of the first element of
thevector frommainmemory isTLM.

‡‡‡‡‡The time required to copy a

Table 3 Approaches suggested for applications
with different criticality levels (reliability/availability)

and achievable performance

Characteristic

Approach

No EDAC Parity RS

Reset strategy Periodic Threshold Optimal
λQoS 0.03λSEU � λSEFI λSEFI ≃ 0

Ravg Low Medium High

Availability Low Medium High
Performance High Medium Low

†††††A similar implementation of SGEMM is described in [85].
‡‡‡‡‡Matrices are assumed to be stored in row-major order, as this is the

order employed in the C language.

564 DI MASCIO ETAL.

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

row vector of length b from main memory to L1V is

TL;b � TL;V �
�
b

VL

�
� SE � b

BM

and the time required to read an entire b × b tile isTL;b×b � TL;b � b.
The time required to read a fringe b × b 0 tile with b 0 < b is instead

TL;b×b 0 �
�
TL;V �

�
b 0

VL

�
� SE � b 0

BM

�
� b

There are three possible implementations, depending onwhich tile

(of the coefficient, input feature, and output feature matrix) is kept

into the L1V during the innermost looping. Assuming that the output

feature matrix is kept in L1V, the time required during the loop on

CJK × b to load all the tiles in a CJK × b stripe of the CJK ×UV
input feature matrix (as shown in Fig. 9b) is

TL;CJK×b � TL;b×b �
CJK

b

whereas for a b × CJK stripe of the N × CJK matrix

TL;b×CJK � TL;b×b �
�
CJK

b

�
� Tb×b 0

where b 0 � �CJK�mod�b�. As every column has to bemultiplied for

every row, the total time spent reading the coefficient matrix is

TL;N×CJK � TL;b×CJK �
�
UV

b

�
� N

b

where the ceiling is required because all the matrix of the coefficient

is to be read again even if only one columnof the input feature is left to

be loaded. Similarly, the total time spent reading the CJK ×UV
matrix is instead

TL;CJK×UV �
�
TL;CJK×b �

�
UV

b

�
� Tb×b 0

CJK

b

��
N

b

�

with b 0 � �UV�mod�b�.
Similar equations can be derived for storing the result, substituting

the subscript L with S. Only the final result for each tile is written to
main memory; therefore the time to store all the results is

TS;N×UV �
�
TS;N×b �

�
UV

b

�
� TL;b×b 0 � N

b

�

with b 0 � �UV�mod�b�.
Considering the associate continuous functions (without modulo,

ceiling, and floor functions), it is possible to prove that the fastest
implementation is the one keeping in L1V the tile of the output
feature matrix. This is because this implementation does not require
loading and storing of the temporary tile of the output matrix during
accumulation.
To trade off the speed-up against the increase in size due to a larger

L1V, we consider the area efficiency in terms of FLOP/CC/GE for
matrix multiplications with matrices residing in L1V. To give a
realistic estimation of the cache size that maximizes the area effi-
ciency, we consider what the effect of adding an L1V to Ara would
be in terms of area. The area of Ariane and Ara ranges from 2228
for two lanes to 10,735 kGE for 16 lanes. As a worst case for
memory-bounded conditions, we assume 16 lanes (VL � 16), and
in this case the area without L1V is 10,735 GE. The area of the L1
cache is estimated as AL1V;GE � �6∕4�Nb, assuming 6T SRAM cells

and a GE corresponding to four transistors.
We will consider four cases comprising all the combinations of

memory with latency 50 CCs (representative of the latency without
RS) and 300 CCs (representative of the latency with RS) and with
bandwidths of 4 and 40 b/CC (respectively, representative of a
memory module with 4 SDR chips and 4 DDR chips). Table 4 shows
the results of this model. The main observations are that the optimal
size of L1V is much larger (256 KiB-1 MiB) than a typical L1D
(e.g., 16 KiB [51]) and that the most impacting factor on the area

a)

b)

c)

d)

Fig. 9 Example of tiling of a matrix–matrix multiplication. “Acc.” stands for accumulation.

DI MASCIO ETAL. 565

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

efficiency is the dimensions of the convolution. For each layer, one
cache size maximizes the area efficiency independently of latency
and bandwidth. This value decreases from 1 MiB to 256 KiB when
going from layers with largeU � V and smallC andN to layers with
smallU � V and largeC andN. Thismeans that processors intended
to run deeper CNNs can employ smaller caches with lower penalty.
However, the maximum area efficiency decreases going from layer 1
to layer 11 to layer 19.

2. Organization

The model in the previous section assumes that it is possible to
keep the tiles in L1V, avoiding that loading a vector of one of the tiles
causes the eviction of data belonging to one of the other tiles required.
Whether this happens or not depends on the cache organization and
an ineffective organization requires larger caches to allow the tiles to
reside in the cache during computations.
Data-parallel ISA extensions (also the RVVE [64]) typically sup-

port vector load and store operations with nonunit stride VS; i.e., two
contiguous elements of the vector are placed in noncontiguous
location separated by VS − 1 elements. According to the model in
[84], the fraction of nonunit strides in aworkload determines whether
organizations similar to those of scalar processors are enough to
achieve acceptable performance or organizations specific for vector
processors are required. One example of the latter is prime-mapped
caches [84], which have a conflict-free memory organization for
vectors with power-of-two strides. However, they have no advantage
against direct-mapped caches (the simplest cache organization for
scalar processor) when all the strides are unitary. In [53] the break-
down of vector access in terms of vector memory accesses for 20
benchmarks running on tree different vector machines (Cray90,
Alliant FX/8, Convex C3) is reported. The respective percentages
are 66.37%unit stride, 24.24%other strides, and 9.40% indexed (also
known as “scatter and gather” and also supported by the RVVE [64]).
The improvement with prime-mapped caches for a typical workload
with unit stride of 70% is 2× over the cacheless version, whereas the
improvement for direct mapped caches is below 1.5× [84].
Typical applications that require nonunit strides are fast Fourier

transform (FFT) and its inverse (IFT) [84]. FFT is employed in
several compute-intensive workloads. For instance, in [86] it is
proposed to speed-up CNN execution, as convolutions can be sub-
stituted by a sequence of FFT, elementwise multiplication, and IFT.
To investigate whether vector loads and stores with nonunit strides

are present in DNNs, we translated CloudNet into ARM NEON

assembly (which supports vector load and store strides of size
1,2,3,4,8) using TVM.§§§§§ The fraction of vector accesses for stride
1, stride 2, and stride 4 are, respectively, 97.13, 1.62, and 1.25%. No
accesses with stride 3 (supported in NEON) have been found. Trans-
lating other DNNs leads instead to only unit stride accesses. For
instance, translating the popular resnet18_v1 [41] model did not
produce nonunit stride accesses.
These findings suggest that, although in a first phase this problem

could be mitigated relying on certain choices of DNN architectures
and software implementation to reduce the fraction of nonunit vector
strides, in general different cache organizations are needed compared
with those typically employed for scalar processors.

3. Write Policy

A microarchitecture with separated scalar and vector data caches
requires a solution to handle memory coherence issues when data in
one of the two ismodified and an old value is read from the other. This
can be addressed with a write-through policy for L1V and L1D,
although this comes with substantial penalties especially in terms
of power [87], memory traffic [88], and performance [89].

VI. Conclusions

The recent shift of focus of the space industry from large GEO to
small LEO satellites opens up new challenges. Limited downlink data
rates and short communication windows typically allow the trans-
mission of just a fraction of the data generated by on-board sensors in
small LEO satellites. The efficiency of the downlink can be increased
with data compression and with data removal (e.g., removing images
that have a certain percentage of pixels covered with clouds). This
solution requires a dedicated processor that comes at relatively high
cost in terms of power (around 5W), which can be sustained only by
relatively large satellites. Furthermore, long periods without contact
with the base station require an on-board virtual operator, monitoring
the status of the satellite and making decisions when the communi-
cation with the ground station is not possible.
These challenges in terms of downlink efficiency and depend-

ability can be addressed with DNNs when it is possible to build
relatively large datasets (e.g., thousands of images or months of
telemetry). Therefore, there is a need for large, public, and standard-
ized datasets to be used as challenges for DNN architectures to

Table 4 Estimates of areaAtot [MGE] and area efficiency AE [FLOP/CC/MGE] for a 16-lane vector
processor with different sizes of L1V, main memory (latency and bandwidth), and maximum size

of the tile b × b when applying tiling to the layers of CloudNet

Characteristic 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB

b 40 60 84 120 168 240

Atot 11.5 12.3 13.9 17.0 23.3 35.9

Layer 1: C � 4; N � 16; J � K � 3; U � V � 192

AE�50;40� 1.06E� 0 1.44E� 0 1.91E� 0 2.35E� 0 2:44E� 0 2.34E� 0

AE�50;4� 4.09E − 1 5.44E − 1 7.23E − 1 8.59E − 1 8:82E − 1 8.28E − 1

AE�300;4� 1.57E − 1 2.14E − 1 2.84E − 1 3.48E − 1 3:59E − 1 3.44E − 1

AE�300;40� 2.06E − 1 2.83E − 1 3.76E − 1 4.68E − 1 4:86E − 1 4.71E − 1

Layer 11: C � 128, N � 256, J � K � 3, U � V � 24

AE�50;40� 4.04E − 1 1.58E� 0 2.03E� 0 2:40E� 0 2.33E� 0 2.08E� 0

AE�50;4� 2.62E − 1 5.97E − 1 7.65E − 1 8:72E − 1 8.43E − 1 7.33E − 1

AE�300;4� 6.48E − 2 2.35E − 1 3.01E − 1 3:54E − 1 3.43E − 1 3.05E − 1

AE�300;40� 7.09E − 2 3.11E − 1 3.99E − 1 4:78E − 1 4.63E − 1 4.17E − 1

Layer 19: C � 512, N � 1024, J � K � 3, U � V � 6

AE�50;40� 6.24E − 1 7.07E − 1 7:44E − 1 7.10E − 1 5.74E − 1 4.15E − 1

AE�50;4� 3.69E − 1 2.77E − 1 2:89E − 1 2.68E − 1 2.13E − 1 1.50E − 1

AE�300;4� 9.35E − 2 1.06E − 1 1:11E − 1 1.05E − 1 8.51E − 2 6.11E − 2

AE�300;40� 1.21E − 1 1.38E − 1 1:45E − 1 1.40E − 1 1.13E − 1 8.26E − 2

Peak values in bold.

§§§§§https://github.com/apache/incubator-tvm.

566 DI MASCIO ETAL.

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

https://github.com/apache/incubator-tvm
https://github.com/apache/incubator-tvm

be deployed in space applications. However, part of future LEO
satellites are planned to be launched in large constellations, making
large datasets more easily available in the future.
The analysis of the workloads associated with DNNs shows

that most parts are very compute-intensive and can be mapped to
matrix–matrix multiplications, for which DLP is the most efficient
microarchitectural solution to increase execution speed. Among the
data-parallel ISA extensions available, the RVVE is gaining momen-
tum because of its openness and efficiency. Although there are
already processors based on the RVVE, the software ecosystem of
the RVVE is in an early stage, as the ISA specifications are not frozen
yet. Therefore, during the early development of a RISC-V vector
processor, some adjustments may be required. This is a risk that can
be accepted given the long development times of space processors.
The analysis of the microarchitecture of a vector processor shows

possible criticalities both for computational capabilities and for the
memory hierarchy. For instance, the scalability with the number of
lanes can be an issue, especially for operations involving all of them.
The width of the bus interface has also been found to be a possible
bottleneck, and the use of an L1V has been suggested as a possible
mitigation approach. L1 caches for vector data maximize the area
efficiency when executing convolutional layers when their size is
around 256 KiB–1 MiB. Furthermore, the microarchitecture of the
scalar pipeline affects the performance for small OI, given the limited
issue rate of microarchitectures with low ILP. Furthermore, it is
possible to apply to decoupled vector and scalar pipelines different
approaches in terms of redundancy to reduce penalties in terms of
performance.
The relatively large size and the focus on high performance of

vector processors requires the identification of a radiation-tolerant
ASIC technologywith a technology node around 28 nm (considering
also the SER), whereas state-of-the-art processors in space systems
are typically still based on RHBD 65 nm technologies. Furthermore,
anASIC technologywithmultiported SRAMs is required for an area-
efficient implementation of the VRF.
Finally, this work investigated the performance and dependability

characteristics of the main memory, one of the most important
tradeoffs in space embedded systems. Demanding applications
(e.g., image classification) require a main memory with around 1
GiB capacity, which is more than the typical DRAM capacity
required in many space mission. When availability is not a primary
concern, EDAC codes for DRAMs with low redundancy and latency
can be employed to detect SEFIs and restart DRAM chips in non-
critical applications. In even less critical applications, periodic resets
of DRAM chips can be deemed sufficient. For critical applications
RS is still required. Therefore, some performance-demanding appli-
cations requiring high availability (e.g., online processing) may be
unfeasible.

Acknowledgments

This work was supported by the European Space Agency under
the NPI Program, Cobham Gaisler AB, and Delft University of
Technology.

References

[1] Lemley, J., Bazrafkan, S., and Corcoran, P., “Deep Learning for Con-
sumer Devices and Services: Pushing the Limits for Machine Learning,
Artificial Intelligence, and Computer Vision,” IEEE Consumer Elec-

tronics Magazine, Vol. 6, No. 2, 2017, pp. 48–56.
https://doi.org/10.1109/MCE.2016.2640698

[2] Schwank, J. R., Shaneyfelt,M.R., andDodd, P. E., “RadiationHardness
Assurance Testing of Microelectronic Devices and Integrated Circuits:
Radiation Environments, Physical Mechanisms, and Foundations for
Hardness Assurance,” IEEE Transactions on Nuclear Science, Vol. 60,
No. 3, 2013, pp. 2074–2100.
https://doi.org/10.1109/TNS.2013.2254722

[3] Wyrwas, E., “Proton Testing of AMD e9173 GPU,” 2019, https://nepp
.nasa.gov/files/30362/NEPP-TR-2019-Wyrwas-TR-19-022_AMD-
e9173-GPU-2019 June02-TN72682.pdf.

[4] DiMascio, S.,Menicucci, A., Gill, E., Furano, G., andMonteleone, C.,
“Leveraging the Openness and Modularity of RISC-V in Space,”

Journal of Aerospace Information Systems, Vol. 16, No. 11, 2019,
pp. 454–472.
https://doi.org/10.2514/1.I010735

[5] Zaruba, F., and Benini, L., “The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit

RISC-V Core in 22-nm FDSOI Technology,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, Vol. 27, No. 11, 2019,
pp. 2629–2640.

https://doi.org/10.1109/TVLSI.2019.2926114
[6] Li, X., Adve, S. V., Bose, P., and Rivers, J. A., “Architecture-Level Soft

Error Analysis: Examining the Limits of Common Assumptions,”

37th Annual IEEE/IFIP International Conference on Dependable Sys-

tems and Networks (DSN’07), IEEE Publ., Piscataway, NJ, 2007,

pp. 266–275.
https://doi.org/10.1109/DSN.2007.15

[7] Blacker, P., Bridges, C. P., and Hadfield, S., “Rapid Prototyping of
Deep Learning Models on Radiation Hardened CPUs,” 2019 NASA/

ESA Conference on Adaptive Hardware and Systems (AHS), IEEE
Publ., Piscataway, NJ, 2019, pp. 25–32.
https://doi.org/10.1109/AHS.2019.000-4

[8] Lai, L., and Suda, N., “Enabling Deep Learning at the IoT Edge,” 2018
IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), IEEE Publ., Piscataway, NJ, 2018, pp. 1–6.
https://doi.org/10.1145/3240765.3243473

[9] Furano, G., Meoni, G., Dunne, A., Moloney, D., Ferlet-Cavrois, V.,
Tavoularis, A., Byrne, J., Buckley, L., Psarakis, M., Voss, K.-O., and

Fanucci, L., “Towards the Use of Artificial Intelligence on the Edge in
Space Systems: Challenges and Opportunities,” IEEE Aerospace and

Electronic Systems Magazine, Vol. 35, No. 12, 2020, pp. 44–56.

https://doi.org/10.1109/MAES.2020.3008468
[10] Lentaris, G., Maragos, K., Stratakos, I., Papadopoulos, L., Papaniko-

laou, O., Soudris, D., Lourakis, M., Zabulis, X., Gonzalez-Arjona, D.,

and Furano, G., “High-Performance Embedded Computing in Space:

Evaluation of Platforms for Vision-BasedNavigation,” Journal of Aero-
space Information Systems, Vol. 15, No. 4, 2018, pp. 178–192.

https://doi.org/10.2514/1.I010555
[11] Pignol, M., “COTS-Based Applications in Space Avionics,” 2010

Design, Automation Test in Europe Conference Exhibition (DATE

2010), IEEE Publ., Piscataway, NJ, 2010, pp. 1213–1219.
https://doi.org/10.1109/DATE.2010.5456992

[12] Del Sozzo, E., Solazzo,A.,Miele,A., andSantambrogio,M.D., “On the
Automation of High Level Synthesis of Convolutional Neural Net-
works,” 2016 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), IEEE Publ., Piscataway, NJ, 2016,
pp. 217–224.
https://doi.org/10.1109/IPDPSW.2016.153

[13] Xi, S. L., Yao, Y., Bhardwaj, K., Whatmough, P., Wei, G.-Y., and
Brooks,D., “SMAUG:End-to-EndFull-StackSimulation Infrastructure

for Deep LearningWorkloads,” ACMTransactions on Architecture and

Code Optimization, Vol. 17, No. 4, 2020, pp. 1–26.

https://doi.org/10.1145/3424669
[14] Andersson, J., “Development of a NOEL-V RISC-V SoC Targeting

Space Applications,” 2020 50th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks Workshops (DSN-

W), IEEE Computer Soc., Los Alamitos, CA, 2020, pp. 66–67.

https://doi.org/10.1109/DSN-W50199.2020.00020
[15] “The RISC-V Instruction Set Manual Volume I: Unprivileged ISA,

Document Version 20190608-Base-Ratified,” RISC-V Foundation,
2019, https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.
pdf.

[16] Henry, C., “Geostationary Satellite Orders Bouncing Back,” 2020,
https://spacenews.com/geostationary-satellite-orders-bouncing-back/.

[17] Lal, B., Sylak-Glassman, E., Mineiro, M., Gupta, N., Pratt, L., and
Azari, A., “Global Trends in Space Volume 2: Trends by Subsector and

Factors that Could Disrupt Them,” Vol. 2, Inst. for Defense Analyses,
Science & Technology Policy Inst., IDA Paper P-5242, 2015, https://

www.ida.org/-/media/feature/publications/g/gl/global-trends-in-space-

volume-2-trends-by-subsector-and-factors-that-could-disrupt-them/
p5242v2.ashx.

[18] Maral, G., Bousquet, M., and Sun, Z., Satellite Communications Sys-
tems: Systems, Techniques and Technology, Wiley, Hoboken, NJ, 2020,
Chap. 1.

[19] Radtke, J., Kebschull, C., and Stoll, E., “Interactions of the SpaceDebris
Environment with Mega Constellations—Using the Example of the

OneWeb Constellation,” Acta Astronautica, Vol. 131, Feb. 2017,

pp. 55–68.
https://doi.org/10.1016/j.actaastro.2016.11.021

[20] Selva, D., and Krejci, D., “A Survey and Assessment of the Capabilities
of Cubesats for Earth Observation,” Acta Astronautica, Vol. 74, May

DI MASCIO ETAL. 567

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

https://doi.org/10.1109/MCE.2016.2640698
https://doi.org/10.1109/MCE.2016.2640698
https://doi.org/10.1109/MCE.2016.2640698
https://doi.org/10.1109/MCE.2016.2640698
https://doi.org/10.1109/MCE.2016.2640698
https://doi.org/10.1109/TNS.2013.2254722
https://doi.org/10.1109/TNS.2013.2254722
https://doi.org/10.1109/TNS.2013.2254722
https://doi.org/10.1109/TNS.2013.2254722
https://doi.org/10.1109/TNS.2013.2254722
https://nepp.nasa.gov/files/30362/NEPP-TR-2019-Wyrwas-TR-19-022_AMD-e9173-GPU-2019June02-TN72682.pdf
https://nepp.nasa.gov/files/30362/NEPP-TR-2019-Wyrwas-TR-19-022_AMD-e9173-GPU-2019June02-TN72682.pdf
https://nepp.nasa.gov/files/30362/NEPP-TR-2019-Wyrwas-TR-19-022_AMD-e9173-GPU-2019June02-TN72682.pdf
https://nepp.nasa.gov/files/30362/NEPP-TR-2019-Wyrwas-TR-19-022_AMD-e9173-GPU-2019June02-TN72682.pdf
https://nepp.nasa.gov/files/30362/NEPP-TR-2019-Wyrwas-TR-19-022_AMD-e9173-GPU-2019June02-TN72682.pdf
https://doi.org/10.2514/1.I010735
https://doi.org/10.2514/1.I010735
https://doi.org/10.2514/1.I010735
https://doi.org/10.2514/1.I010735
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/DSN.2007.15
https://doi.org/10.1109/DSN.2007.15
https://doi.org/10.1109/DSN.2007.15
https://doi.org/10.1109/DSN.2007.15
https://doi.org/10.1109/DSN.2007.15
https://doi.org/10.1109/AHS.2019.000-4
https://doi.org/10.1109/AHS.2019.000-4
https://doi.org/10.1109/AHS.2019.000-4
https://doi.org/10.1109/AHS.2019.000-4
https://doi.org/10.1109/AHS.2019.000-4
https://doi.org/10.1145/3240765.3243473
https://doi.org/10.1145/3240765.3243473
https://doi.org/10.1145/3240765.3243473
https://doi.org/10.1145/3240765.3243473
https://doi.org/10.1109/MAES.2020.3008468
https://doi.org/10.1109/MAES.2020.3008468
https://doi.org/10.1109/MAES.2020.3008468
https://doi.org/10.1109/MAES.2020.3008468
https://doi.org/10.1109/MAES.2020.3008468
https://doi.org/10.2514/1.I010555
https://doi.org/10.2514/1.I010555
https://doi.org/10.2514/1.I010555
https://doi.org/10.2514/1.I010555
https://doi.org/10.1109/DATE.2010.5456992
https://doi.org/10.1109/DATE.2010.5456992
https://doi.org/10.1109/DATE.2010.5456992
https://doi.org/10.1109/DATE.2010.5456992
https://doi.org/10.1109/DATE.2010.5456992
https://doi.org/10.1109/IPDPSW.2016.153
https://doi.org/10.1109/IPDPSW.2016.153
https://doi.org/10.1109/IPDPSW.2016.153
https://doi.org/10.1109/IPDPSW.2016.153
https://doi.org/10.1109/IPDPSW.2016.153
https://doi.org/10.1145/3424669
https://doi.org/10.1145/3424669
https://doi.org/10.1145/3424669
https://doi.org/10.1109/DSN-W50199.2020.00020
https://doi.org/10.1109/DSN-W50199.2020.00020
https://doi.org/10.1109/DSN-W50199.2020.00020
https://doi.org/10.1109/DSN-W50199.2020.00020
https://doi.org/10.1109/DSN-W50199.2020.00020
https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://spacenews.com/geostationary-satellite-orders-bouncing-back/
https://spacenews.com/geostationary-satellite-orders-bouncing-back/
https://www.ida.org/-/media/feature/publications/g/gl/global-trends-in-space-volume-2-trends-by-subsector-and-factors-that-could-disrupt-them/p5242v2.ashx
https://www.ida.org/-/media/feature/publications/g/gl/global-trends-in-space-volume-2-trends-by-subsector-and-factors-that-could-disrupt-them/p5242v2.ashx
https://www.ida.org/-/media/feature/publications/g/gl/global-trends-in-space-volume-2-trends-by-subsector-and-factors-that-could-disrupt-them/p5242v2.ashx
https://www.ida.org/-/media/feature/publications/g/gl/global-trends-in-space-volume-2-trends-by-subsector-and-factors-that-could-disrupt-them/p5242v2.ashx
https://www.ida.org/-/media/feature/publications/g/gl/global-trends-in-space-volume-2-trends-by-subsector-and-factors-that-could-disrupt-them/p5242v2.ashx
https://www.ida.org/-/media/feature/publications/g/gl/global-trends-in-space-volume-2-trends-by-subsector-and-factors-that-could-disrupt-them/p5242v2.ashx
https://www.ida.org/-/media/feature/publications/g/gl/global-trends-in-space-volume-2-trends-by-subsector-and-factors-that-could-disrupt-them/p5242v2.ashx
https://doi.org/10.1016/j.actaastro.2016.11.021
https://doi.org/10.1016/j.actaastro.2016.11.021
https://doi.org/10.1016/j.actaastro.2016.11.021
https://doi.org/10.1016/j.actaastro.2016.11.021
https://doi.org/10.1016/j.actaastro.2016.11.021
https://doi.org/10.1016/j.actaastro.2016.11.021
https://doi.org/10.1016/j.actaastro.2016.11.021

2012, pp. 50–68.
https://doi.org/10.1016/j.actaastro.2011.12.014

[21] OMeara, C., Schlag, L., and Wickler, M., “Applications of Deep
Learning Neural Networks to Satellite Telemetry Monitoring,” 2018

SpaceOps Conference, AIAA Paper 2018-2558, 2018.
https://doi.org/10.2514/6.2018-2558

[22] Tsitas, S., and Kingston, J., “6U CubeSat Design for Earth Observation
with 6.5m GSD, Five Spectral Bands and 14 Mbps Downlink,” Aero-
nautical Journal, Vol. 114, No. 1161, 2010, pp. 689–697.
https://doi.org/10.1017/S0001924000004176

[23] Gillette, A., Wilson, C., and George, A. D., “Efficient and Autonomous
Processing and Classification of Images on Small Spacecraft,” 2017

IEEE National Aerospace and Electronics Conference (NAECON),
IEEE Publ., Piscataway, NJ, 2017, pp. 135–141.
https://doi.org/10.1109/NAECON.2017.8268758

[24] Goward, S. N., Masek, J. G., Williams, D. L., Irons, J. R., and Thomp-
son, R. J., “The Landsat 7 Mission: Terrestrial Research and Applica-
tions for the 21st Century,” Remote Sensing of Environment, Vol. 78,
No. 1, 2001, pp. 3–12.
https://doi.org/10.1016/S0034-4257(01)00262-0

[25] Guertin, S. M., and Amrbar, M., “Single Event Testing of SDRAM,
DDR2 andDDR3Memories,” 2016 IEEERadiationEffects DataWork-

shop (REDW), IEEE Publ., Piscataway, NJ, 2016, pp. 1–7.
https://doi.org/10.1109/NSREC.2016.7891742

[26] “IS43/46DR81280B(L), IS43/46DR16640B(L) Datasheet,” Integrated
Silicon Solution, Inc. (ISSI), 2015, http://www.issi.com/WW/pdf/43-
46DR81280B-16640B.pdf.

[27] Cavalcante, M., Schuiki, F., Zaruba, F., Schaffner, M., and Benini, L.,
“Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector Proces-
sor with Multiprecision Floating-Point Support in 22-nm FD-SOI,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 28, No. 2, 2020, pp. 530–543.
https://doi.org/10.1109/TVLSI.2019.2950087

[28] Cappellone, D., Di Mascio, S., Furano, G., and Ottavi, A. M. M., “On
Board Satellite Telemetry Forecasting with RNN on RISC-V Based
Multicore Processor,” 2020 IEEE International Symposium on Defect

andFault Tolerance in VLSI andNanotechnology Systems (DFT), IEEE
Publ., Piscataway, NJ, 2020, pp. 1–6.
https://doi.org/10.1109/DFT50435.2020.9250796

[29] Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S., “Efficient Processing
of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the
IEEE, Vol. 105, No. 12, 2017, pp. 2295–2329.
https://doi.org/10.1109/JPROC.2017.2761740

[30] Luo, C., Li, X., Wang, L., He, J., Li, D., and Zhou, J., “How Does the
Data Set Affect CNN-based Image Classification Performance?” 2018
5th InternationalConference onSystems and Informatics (ICSAI), IEEE
Publ., Piscataway, NJ, 2018, pp. 361–366.
https://doi.org/10.1109/ICSAI.2018.8599448

[31] Phiri, D., and Morgenroth, J., “Developments in Landsat Land Cover
Classification Methods: A Review,” Remote Sensing, Vol. 9, No. 9,
2017, pp. 967.
https://doi.org/10.3390/rs9090967

[32] Williams, S., Waterman, A., and Patterson, D., “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Communica-
tions of the ACM, Vol. 52, No. 4, 2009, p. 65–76.
https://doi.org/10.1145/1498765.1498785

[33] Ilic, A., Pratas, F., and Sousa, L., “Cache-Aware Roofline Model:
Upgrading the Loft,” IEEE Computer Architecture Letters, Vol. 13,
No. 1, 2014, pp. 21–24.
https://doi.org/10.1109/L-CA.2013.6

[34] Mohajerani, S., and Saeedi, P., “Cloud-Net: An End-to-End Cloud
Detection Algorithm for Landsat 8 Imagery,” IGARSS 2019—2019

IEEE International Geoscience and Remote Sensing Symposium, IEEE
Publ., Piscataway, NJ, 2019, pp. 1029–1032.
https://doi.org/10.1109/IGARSS.2019.8898776

[35] Shelhamer, E., Long, J., and Darrell, T., “Fully Convolutional Networks
for Semantic Segmentation,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. 39, No. 4, 2017, pp. 640–651.
https://doi.org/10.1109/TPAMI.2016.2572683

[36] Bianco, S., Cadene, R., Celona, L., and Napoletano, P., “Benchmark
Analysis of Representative Deep Neural Network Architectures,” IEEE
Access, Vol. 6, Oct. 2018, pp. 64,270–64,277.
https://doi.org/10.1109/ACCESS.2018.2877890

[37] Abdelouahab,K., Pelcat,M., Sérot, J., andBerry, F., “AcceleratingCNN
inference on FPGAs: ASurvey,” 2018, http://arxiv.org/abs/1806.01683.

[38] Dumoulin, V., and Visin, F., “A Guide to Convolution Arithmetic for
Deep Learning,” arXiv preprint arXiv:1603.07285, 2016.

[39] Chellapilla, K., Puri, S., and Simard, P., “High Performance Convolu-
tional Neural Networks for Document Processing,” Tenth International

Workshop on Frontiers in Handwriting Recognition, edited by G.
Lorette, Univ. de Rennes 1, Suvisoft, La Baule (France), 2006, https://
hal.inria.fr/inria-00112631.

[40] Heinecke, A., Vaidyanathan, K., Smelyanskiy, M., Kobotov, A., Dubt-
sov, R., Henry, G., Shet, A. G., Chrysos, G., and Dubey, P., “Design and
Implementation of the Linpack Benchmark for Single and Multi-node
Systems Based on Intel® Xeon Phi Coprocessor,” 2013 IEEE 27th

International Symposium on Parallel and Distributed Processing,
2013, pp. 126–137.
https://doi.org/10.1109/IPDPS.2013.113

[41] He, K., Zhang, X., Ren, S., and Sun, J., “Deep Residual Learning for
Image Recognition,” 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), IEEE Publ., Piscataway, NJ, 2016,
pp. 770–778.
https://doi.org/10.1109/CVPR.2016.90

[42] Ioffe, S., and Szegedy, C., “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” arXiv preprint
arXiv:1502.03167, 2015.

[43] Phaisangittisagul, E., “An Analysis of the Regularization Between L2
and Dropout in Single Hidden Layer Neural Network,” 2016 7th

International Conference on Intelligent Systems, Modelling and Simu-

lation (ISMS), IEEE Publ., Piscataway, NJ, 2016, pp. 174–179.
https://doi.org/10.1109/ISMS.2016.14

[44] Lai, L., Suda, N., and Chandra, V., “Cmsis-nn: Efficient Neural Network
Kernels forArmCortex-mcpus,” arXivpreprint arXiv:1801.06601, 2018.

[45] Lee, C.-Y., Gallagher, P., and Tu, Z., “Generalizing Pooling Functions in
CNNs: Mixed, Gated, and Tree,” IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, Vol. 40, No. 4, 2018, pp. 863–875.
https://doi.org/10.1109/TPAMI.2017.2703082

[46] Cong, J., and Xiao, B., “Minimizing Computation in Convolutional
Neural Networks,”Artificial Neural Networks andMachine Learning—

ICANN 2014, edited byS. Wermter, C. Weber, W. Duch, T. Honkela,
P. Koprinkova-Hristova, S. Magg, G. Palm, and A. E. P. Villa, Springer
International Publishing, Cham, Switzerland, 2014, pp. 281–290.
https://doi.org/10.1007/978-3-319-11179-7_36.

[47] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares,
F., Schwenk, H., and Bengio, Y., “Learning Phrase Representations
Using RNN Encoder-Decoder for Statistical Machine Translation,”
Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), Assoc. for Computational Linguistics,
Stroudsburg, PA, 2014, pp. 1724–1734.

[48] Graves, A., “Supervised Sequence Labelling with Recurrent Neural
Networks,” Ph.D. Dissertation, Technical Univ. of Munich, Munich,
2008.

[49] Graves,A.,Mohamed,A.-R., andHinton,G., “SpeechRecognitionwith
Deep Recurrent Neural Networks,” 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing, Inst. of
Electrical and Electronics Engineers, New York, 2013, pp. 6645–
6649.

[50] Jouppi,N. P., Young,C., Patil, N., Patterson,D.,Agrawal,G., Bajwa,R.,
Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Cantin, P.-L.,
Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B.,
Ghaemmaghami, T. V., Gottipati, R., Gulland,W., Hagmann, R., Ho, C.
R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A.,
Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D., Koch, A., Kumar,
N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K.,
Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller, K.,
Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omer-
nick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A.,
Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J., Stein-
berg, D., Swing,A., Tan,M., Thorson, G., Tian, B., Toma, H., Tuttle, E.,
Vasudevan, V., Walter, R., Wang, W., Wilcox, E., and Yoon, D. H., “In-
Datacenter Performance Analysis of a Tensor Processing Unit,”
SIGARCHComputer Architecture News, Vol. 45, No. 2, 2017, p. 1–12.
https://doi.org/10.1145/3140659.3080246

[51] Andersson, J., Hjorth, M., Johansson, F., and Habinc, S., “LEON
Processor Devices for Space Missions: First 20 Years of LEON in
Space,” 2017 6th International Conference on Space Mission Chal-

lenges for Information Technology (SMC-IT), IEEE Publ., Piscataway,
NJ, 2017, pp. 136–141.
https://doi.org/10.1109/SMC-IT.2017.31

[52] Lopez, D., Llosa, J., Ayguade, E., and Valero, M., “Impact on Perfor-
mance of Fused Multiply-Add Units in Aggressive VLIW Architec-
tures,” Proceedings of the 1999 International Conference on Parallel

Processing, IEEE Publ., Piscataway, NJ, 1999, pp. 22–29.
[53] Asanovic, K., and Wawrzynek, J., Vector Microprocessors, Univ. of

California, Berkeley, CA, 1998.
[54] Lee, S.-J., Park, S.-S., and Chung, K.-S., “Efficient SIMD Implementation

for Accelerating Convolutional Neural Network,” Proceedings of the 4th

568 DI MASCIO ETAL.

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

https://doi.org/10.1016/j.actaastro.2011.12.014
https://doi.org/10.1016/j.actaastro.2011.12.014
https://doi.org/10.1016/j.actaastro.2011.12.014
https://doi.org/10.1016/j.actaastro.2011.12.014
https://doi.org/10.1016/j.actaastro.2011.12.014
https://doi.org/10.1016/j.actaastro.2011.12.014
https://doi.org/10.1016/j.actaastro.2011.12.014
https://doi.org/10.2514/6.2018-2558
https://doi.org/10.2514/6.2018-2558
https://doi.org/10.2514/6.2018-2558
https://doi.org/10.2514/6.2018-2558
https://doi.org/10.1017/S0001924000004176
https://doi.org/10.1017/S0001924000004176
https://doi.org/10.1017/S0001924000004176
https://doi.org/10.1109/NAECON.2017.8268758
https://doi.org/10.1109/NAECON.2017.8268758
https://doi.org/10.1109/NAECON.2017.8268758
https://doi.org/10.1109/NAECON.2017.8268758
https://doi.org/10.1109/NAECON.2017.8268758
https://doi.org/10.1016/S0034-4257(01)00262-0
https://doi.org/10.1016/S0034-4257(01)00262-0
https://doi.org/10.1016/S0034-4257(01)00262-0
https://doi.org/10.1109/NSREC.2016.7891742
https://doi.org/10.1109/NSREC.2016.7891742
https://doi.org/10.1109/NSREC.2016.7891742
https://doi.org/10.1109/NSREC.2016.7891742
https://doi.org/10.1109/NSREC.2016.7891742
http://www.issi.com/WW/pdf/43-46DR81280B-16640B.pdf
http://www.issi.com/WW/pdf/43-46DR81280B-16640B.pdf
http://www.issi.com/WW/pdf/43-46DR81280B-16640B.pdf
http://www.issi.com/WW/pdf/43-46DR81280B-16640B.pdf
http://www.issi.com/WW/pdf/43-46DR81280B-16640B.pdf
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/DFT50435.2020.9250796
https://doi.org/10.1109/DFT50435.2020.9250796
https://doi.org/10.1109/DFT50435.2020.9250796
https://doi.org/10.1109/DFT50435.2020.9250796
https://doi.org/10.1109/DFT50435.2020.9250796
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/ICSAI.2018.8599448
https://doi.org/10.1109/ICSAI.2018.8599448
https://doi.org/10.1109/ICSAI.2018.8599448
https://doi.org/10.1109/ICSAI.2018.8599448
https://doi.org/10.1109/ICSAI.2018.8599448
https://doi.org/10.3390/rs9090967
https://doi.org/10.3390/rs9090967
https://doi.org/10.3390/rs9090967
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/L-CA.2013.6
https://doi.org/10.1109/L-CA.2013.6
https://doi.org/10.1109/L-CA.2013.6
https://doi.org/10.1109/L-CA.2013.6
https://doi.org/10.1109/L-CA.2013.6
https://doi.org/10.1109/IGARSS.2019.8898776
https://doi.org/10.1109/IGARSS.2019.8898776
https://doi.org/10.1109/IGARSS.2019.8898776
https://doi.org/10.1109/IGARSS.2019.8898776
https://doi.org/10.1109/IGARSS.2019.8898776
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/ACCESS.2018.2877890
https://doi.org/10.1109/ACCESS.2018.2877890
https://doi.org/10.1109/ACCESS.2018.2877890
https://doi.org/10.1109/ACCESS.2018.2877890
https://doi.org/10.1109/ACCESS.2018.2877890
http://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1806.01683
https://hal.inria.fr/inria-00112631
https://hal.inria.fr/inria-00112631
https://hal.inria.fr/inria-00112631
https://hal.inria.fr/inria-00112631
https://doi.org/10.1109/IPDPS.2013.113
https://doi.org/10.1109/IPDPS.2013.113
https://doi.org/10.1109/IPDPS.2013.113
https://doi.org/10.1109/IPDPS.2013.113
https://doi.org/10.1109/IPDPS.2013.113
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ISMS.2016.14
https://doi.org/10.1109/ISMS.2016.14
https://doi.org/10.1109/ISMS.2016.14
https://doi.org/10.1109/ISMS.2016.14
https://doi.org/10.1109/ISMS.2016.14
https://doi.org/10.1109/TPAMI.2017.2703082
https://doi.org/10.1109/TPAMI.2017.2703082
https://doi.org/10.1109/TPAMI.2017.2703082
https://doi.org/10.1109/TPAMI.2017.2703082
https://doi.org/10.1109/TPAMI.2017.2703082
https://doi.org/10.1007/978-3-319-11179-7_36
https://doi.org/10.1007/978-3-319-11179-7_36
https://doi.org/10.1007/978-3-319-11179-7_36
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1109/SMC-IT.2017.31
https://doi.org/10.1109/SMC-IT.2017.31
https://doi.org/10.1109/SMC-IT.2017.31
https://doi.org/10.1109/SMC-IT.2017.31
https://doi.org/10.1109/SMC-IT.2017.31

International Conference onCommunication and InformationProcessing,
Assoc. for Computing Machinery, New York, 2018, pp. 174–179.
https://doi.org/10.1145/3290420.3290444

[55] Flamand, E., Rossi, D., Conti, F., Loi, I., Pullini, A., Rotenberg, F., and
Benini, L., “GAP-8: ARISC-V SoC for AI at the Edge of the IoT,” 2018
IEEE 29th International Conference on Application-specific Systems,

Architectures and Processors (ASAP), IEEE Publ., Piscataway, NJ,
2018, pp. 1–4.
https://doi.org/10.1109/ASAP.2018.8445101.

[56] Peleg, A., and Weiser, U., “MMX Technology Extension to the Intel
Architecture,” IEEE Micro, Vol. 16, No. 4, 1996, pp. 42–50.
https://doi.org/10.1109/40.526924

[57] Thakkur, S., and Huff, T., “Internet Streaming SIMD Extensions,”
Computer, Vol. 32, No. 12, 1999, pp. 26–34.
https://doi.org/10.1109/2.809248

[58] Doolan, D. C., Tabirca, S., and Yang, L. T., “Mobile Parallel Comput-
ing,” 2006 Fifth International Symposium on Parallel and Distributed

Computing, IEEE Publ., Piscataway, NJ, 2006, pp. 161–167.
https://doi.org/10.1109/ISPDC.2006.33

[59] Gautschi, M., Schiavone, P. D., Traber, A., Loi, I., Pullini, A., Rossi, D.,
Flamand, E., Gürkaynak, F. K., and Benini, L., “Near-Threshold RISC-
VCoreWithDSPExtensions for Scalable IoTEndpoint Devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 25,
No. 10, 2017, pp. 2700–2713.
https://doi.org/10.1109/TVLSI.2017.2654506

[60] Dabbelt, D., Schmidt, C., Love, E., Mao, H., Karandikar, S., and
Asanovic, K., “Vector Processors for Energy-Efficient Embedded
Systems,” Proceedings of the Third ACM International Workshop on

Many-Core Embedded Systems, Assoc. for Computing Machinery,
New York, 2016, pp. 10–16.
https://doi.org/10.1145/2934495.2934497

[61] Stephens, N., Biles, S., Boettcher, M., Eapen, J., Eyole, M., Gabrielli,
G., Horsnell, M., Magklis, G., Martinez, A., Premillieu, N., Reid, A.,
Rico, A., and Walker, P., “The ARM Scalable Vector Extension,” IEEE
Micro, Vol. 37, No. 2, 2017, pp. 26–39.
https://doi.org/10.1109/MM.2017.35

[62] Shimizu, T., “Post-K Supercomputer with Fujitsu’s Original CPU,
A64FX Powered by Arm ISA,” 2018, https://www.fujitsu.com/global/
Images/post-k_supercomputer_with_fujitsu%
27s_original_cpu_a64fx_powered_by_arm_isa.pdf.

[63] Lee, Y., Ou, A., Schmidt, C., Karandikar, S.,Mao, H., andAsanovic, K.,
“The Hwacha Microarchitecture Manual, Version 3.8.1,” Electrical
Engineering and Computer Sciences Dept., Univ. of California TR
UCB/EECS-2015-263, Berkeley, CA, 2015, https://www2.eecs
.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-263.html.

[64] “RISC-V ‘V’ Vector Extension, Version 0.9,” 2020, https://github.
com/riscv/riscv-v-spec/releases/download/0.9/riscv-v-spec-0.9.pdf
[retrieved 2 July 2020].

[65] Chen, C., Xiang,X., Liu, C., Shang,Y., Guo, R., Liu, D., Lu,Y., Hao, Z.,
Luo, J., Chen, Z., Li, C., Pu, Y., Meng, J., Yan, X., Xie, Y., and Qi, X.,
“Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-of-
Order 64-Bit High Performance RISC-V Processor with Vector Exten-
sion : Industrial Product,” 2020 ACM/IEEE 47th Annual International

Symposium on Computer Architecture (ISCA), IEEE Publ., Piscataway,
NJ, 2020, pp. 52–64.
https://doi.org/10.1109/ISCA45697.2020.00016

[66] Louis,M. S., Azad, Z., Delshadtehrani, L., Gupta, S.,Warden, P., Reddi,
V. J., and Joshi, A., “Towards Deep learning Using TensorFlow Lite on
RISC-V,” Third Workshop on Computer Architecture Research with

RISC-V (CARRV), 2019, Paper 7, https://carrv.github.io/2019/papers/
carrv2019_paper_7.pdf.

[67] Lee, Y., Waterman, A., Avizienis, R., Cook, H., Sun, C., Stojanović, V.,
and Asanović, K., “A 45 nm 1.3 GHz 16.7 Double-Precision GFLOPS/
WRISC-V Processor with Vector Accelerators,” ESSCIRC 2014—40th

European Solid State Circuits Conference (ESSCIRC), IEEE Publ.,
Piscataway, NJ, 2014, pp. 199–202.
https://doi.org/10.1109/ESSCIRC.2014.6942056

[68] Mukherjee, S. S., Weaver, C., Emer, J., Reinhardt, S. K., and Austin, T.,
“ASystematicMethodology toCompute theArchitectural Vulnerability
Factors for a High-Performance Microprocessor,” Proceedings. 36th

Annual IEEE/ACM International Symposium on Microarchitecture,

2003. MICRO-36, IEEE Publ., Piscataway, NJ, 2003, pp. 29–40.
https://doi.org/10.1109/MICRO.2003.1253181

[69] Ebrahimi,M., Evans, A., Tahoori, M. B., Costenaro, E., Alexandrescu,
D., Chandra, V., and Seyyedi, R., “Comprehensive Analysis of
Sequential and Combinational Soft Errors in an Embedded Processor,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, Vol. 34, No. 10, 2015, pp. 1586–1599.
https://doi.org/10.1109/TCAD.2015.2422845

[70] Hubert, G., Artola, L., and Regis, D., “Impact of Scaling on the
Soft Error Sensitivity of Bulk, FDSOI and FinFET Technologies
due to Atmospheric Radiation,” Integration, Vol. 50, June 2015,
pp. 39–47.
https://doi.org/10.1016/j.vlsi.2015.01.003

[71] Gaisler, J., “A Portable and Fault-Tolerant Microprocessor Based on the
SPARC v8 Architecture,” Proceedings International Conference on

Dependable Systems and Networks, IEEE Publ., Piscataway, NJ,
2002, pp. 409–415.
https://doi.org/10.1109/DSN.2002.1028926

[72] “OSCAR OBC,” Airbus, 2018, https://www.airbus.com/content/dam/
products-and-solutions/space/spacecraft-equipment/sce-datasheets/
Publication-sce-oscar.pdf.

[73] Petit, S., David, J. P., Falguere, D., Duzellier, S., Inguimbert, C., Nuns,
T., and Ecoffet, R., “Memories Response to MBU and Semi-Empirical
Approach for SEE Rate Calculation,” IEEE Transactions on Nuclear

Science, Vol. 53, No. 4, 2006, pp. 1787–1793.
https://doi.org/10.1109/TNS.2006.872153

[74] Samaras, A., Bezerra, F., Lorfevre, E., and Ecoffet, R., “CARMEN-2: In
Flight Observation of Nondestructive Single Event Phenomena on
Memories,” 2011 12th European Conference on Radiation and Its

Effects on Components and Systems, IEEE Publ., Piscataway, NJ,
2011, pp. 839–848.
https://doi.org/10.1109/RADECS.2011.6131314

[75] Bacchini, A., Furano, G., Rovatti, M., and Ottavi, M., “Total Ionizing
Dose Effects on DRAM Data Retention Time,” IEEE Transactions on

Nuclear Science, Vol. 61, No. 6, 2014, pp. 3690–3693.
https://doi.org/10.1109/TNS.2014.2365532

[76] Kumar, A., and Sawitzki, S., “High-Throughput and Low-Power Archi-
tectures for Reed Solomon Decoder,” Conference Record of the Thirty-
Ninth Asilomar Conference on Signals, Systems and Computers, IEEE
Publ., Piscataway, NJ, 2005, pp. 990–994.
https://doi.org/10.1109/ACSSC.2005.1599906

[77] Udipi, A. N., Muralimanohar, N., Chatterjee, N., Balasubramonian, R.,
Davis, A., and Jouppi, N. P., “Rethinking DRAM Design and Organi-
zation for Energy-Constrained Multi-Cores,” SIGARCH Computer

Architecture News, Vol. 38, No. 3, 2010, p. 175–186.
https://doi.org/10.1145/1816038.1815983

[78] Hanho, L., “High-Speed VLSI Architecture for Parallel Reed-Solomon
Decoder,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 11, No. 2, 2003, pp. 288–294.
https://doi.org/10.1109/TVLSI.2003.810782

[79] Shayan, Y. R., and Le-Ngoc, T., “A Cellular Structure for a Versatile
Reed-Solomon Decoder,” IEEE Transactions on Computers, Vol. 46,
No. 1, 1997, pp. 80–85.
https://doi.org/10.1109/12.559805

[80] Li, G., Hari, S. K. S., Sullivan, M., Tsai, T., Pattabiraman, K., Emer, J.,
andKeckler, S.W., “UnderstandingError Propagation inDeepLearning
Neural Network (DNN) Accelerators and Applications,” Proceedings

of the International Conference for High Performance Computing,

Networking, Storage and Analysis, Assoc. for Computing Machinery,
New York, 2017.
https://doi.org/10.1145/3126908.3126964

[81] Zhang, Z., Huang, L., Huang, R., Xu,W., and Katz, D. S., “Quantifying
the Impact of Memory Errors in Deep Learning,” 2019 IEEE

International Conference on Cluster Computing (CLUSTER), IEEE
Publ., Piscataway, NJ, 2019, pp. 1–12.
https://doi.org/10.1109/CLUSTER.2019.8890989

[82] Kosinski, B., and Dodson, K., “Key Attributes to Achieving >99.99
Satellite Availability,” 2018 IEEE International Reliability Physics

Symposium (IRPS), IEEE Publ., Piscataway, NJ, 2018, pp. 6A.3-1–
6A.3-10.
https://doi.org/10.1109/IRPS.2018.8353620

[83] Gee, J. D., and Smith, A. J., “Vector Processor Caches,” Electrical
Engineering and Computer Sciences Dept., Univ. of California, TR
UCB/CSD-92-707, Berkeley, CA, Oct. 1992, http://www2.eecs
.berkeley.edu/Pubs/TechRpts/1992/6251.html.

[84] Yang, Q., “Introducing a New Cache Design into Vector Com-
puters,” IEEE Transactions on Computers, Vol. 42, No. 12, 1993,
pp. 1411–1424.
https://doi.org/10.1109/12.260632

[85] “RISC-V ‘V’Vector Extension, Version 0.8,” 2019, https://github.com/
riscv/riscv-v-spec/releases/download/0.8/riscv-v-spec-0.8.pdf
[retrieved 5 Nov. 2020].

[86] Abtahi, T., Shea, C., Kulkarni, A., and Mohsenin, T., “Accelerating
Convolutional Neural Network With FFT on Embedded Hardware,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 26, No. 9, 2018, pp. 1737–1749.
https://doi.org/10.1109/TVLSI.2018.2825145

DI MASCIO ETAL. 569

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

https://doi.org/10.1145/3290420.3290444
https://doi.org/10.1145/3290420.3290444
https://doi.org/10.1145/3290420.3290444
https://doi.org/10.1145/3290420.3290444
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1109/40.526924
https://doi.org/10.1109/40.526924
https://doi.org/10.1109/40.526924
https://doi.org/10.1109/40.526924
https://doi.org/10.1109/2.809248
https://doi.org/10.1109/2.809248
https://doi.org/10.1109/2.809248
https://doi.org/10.1109/2.809248
https://doi.org/10.1109/ISPDC.2006.33
https://doi.org/10.1109/ISPDC.2006.33
https://doi.org/10.1109/ISPDC.2006.33
https://doi.org/10.1109/ISPDC.2006.33
https://doi.org/10.1109/ISPDC.2006.33
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1145/2934495.2934497
https://doi.org/10.1145/2934495.2934497
https://doi.org/10.1145/2934495.2934497
https://doi.org/10.1145/2934495.2934497
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu%27s_original_cpu_a64fx_powered_by_arm_isa.pdf
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu%27s_original_cpu_a64fx_powered_by_arm_isa.pdf
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu%27s_original_cpu_a64fx_powered_by_arm_isa.pdf
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu%27s_original_cpu_a64fx_powered_by_arm_isa.pdf
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu%27s_original_cpu_a64fx_powered_by_arm_isa.pdf
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu%27s_original_cpu_a64fx_powered_by_arm_isa.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-263.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-263.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-263.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-263.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-263.html
https://github.com/riscv/riscv-v-spec/releases/download/0.9/riscv-v-spec-0.9.pdf
https://github.com/riscv/riscv-v-spec/releases/download/0.9/riscv-v-spec-0.9.pdf
https://github.com/riscv/riscv-v-spec/releases/download/0.9/riscv-v-spec-0.9.pdf
https://github.com/riscv/riscv-v-spec/releases/download/0.9/riscv-v-spec-0.9.pdf
https://github.com/riscv/riscv-v-spec/releases/download/0.9/riscv-v-spec-0.9.pdf
https://github.com/riscv/riscv-v-spec/releases/download/0.9/riscv-v-spec-0.9.pdf
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.1109/ISCA45697.2020.00016
https://carrv.github.io/2019/papers/carrv2019_paper_7.pdf
https://carrv.github.io/2019/papers/carrv2019_paper_7.pdf
https://carrv.github.io/2019/papers/carrv2019_paper_7.pdf
https://carrv.github.io/2019/papers/carrv2019_paper_7.pdf
https://carrv.github.io/2019/papers/carrv2019_paper_7.pdf
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1109/TCAD.2015.2422845
https://doi.org/10.1109/TCAD.2015.2422845
https://doi.org/10.1109/TCAD.2015.2422845
https://doi.org/10.1109/TCAD.2015.2422845
https://doi.org/10.1109/TCAD.2015.2422845
https://doi.org/10.1016/j.vlsi.2015.01.003
https://doi.org/10.1016/j.vlsi.2015.01.003
https://doi.org/10.1016/j.vlsi.2015.01.003
https://doi.org/10.1016/j.vlsi.2015.01.003
https://doi.org/10.1016/j.vlsi.2015.01.003
https://doi.org/10.1016/j.vlsi.2015.01.003
https://doi.org/10.1016/j.vlsi.2015.01.003
https://doi.org/10.1109/DSN.2002.1028926
https://doi.org/10.1109/DSN.2002.1028926
https://doi.org/10.1109/DSN.2002.1028926
https://doi.org/10.1109/DSN.2002.1028926
https://doi.org/10.1109/DSN.2002.1028926
https://www.airbus.com/content/dam/products-and-solutions/space/spacecraft-equipment/sce-datasheets/Publication-sce-oscar.pdf
https://www.airbus.com/content/dam/products-and-solutions/space/spacecraft-equipment/sce-datasheets/Publication-sce-oscar.pdf
https://www.airbus.com/content/dam/products-and-solutions/space/spacecraft-equipment/sce-datasheets/Publication-sce-oscar.pdf
https://www.airbus.com/content/dam/products-and-solutions/space/spacecraft-equipment/sce-datasheets/Publication-sce-oscar.pdf
https://www.airbus.com/content/dam/products-and-solutions/space/spacecraft-equipment/sce-datasheets/Publication-sce-oscar.pdf
https://www.airbus.com/content/dam/products-and-solutions/space/spacecraft-equipment/sce-datasheets/Publication-sce-oscar.pdf
https://doi.org/10.1109/TNS.2006.872153
https://doi.org/10.1109/TNS.2006.872153
https://doi.org/10.1109/TNS.2006.872153
https://doi.org/10.1109/TNS.2006.872153
https://doi.org/10.1109/TNS.2006.872153
https://doi.org/10.1109/RADECS.2011.6131314
https://doi.org/10.1109/RADECS.2011.6131314
https://doi.org/10.1109/RADECS.2011.6131314
https://doi.org/10.1109/RADECS.2011.6131314
https://doi.org/10.1109/RADECS.2011.6131314
https://doi.org/10.1109/TNS.2014.2365532
https://doi.org/10.1109/TNS.2014.2365532
https://doi.org/10.1109/TNS.2014.2365532
https://doi.org/10.1109/TNS.2014.2365532
https://doi.org/10.1109/TNS.2014.2365532
https://doi.org/10.1109/ACSSC.2005.1599906
https://doi.org/10.1109/ACSSC.2005.1599906
https://doi.org/10.1109/ACSSC.2005.1599906
https://doi.org/10.1109/ACSSC.2005.1599906
https://doi.org/10.1109/ACSSC.2005.1599906
https://doi.org/10.1145/1816038.1815983
https://doi.org/10.1145/1816038.1815983
https://doi.org/10.1145/1816038.1815983
https://doi.org/10.1145/1816038.1815983
https://doi.org/10.1109/TVLSI.2003.810782
https://doi.org/10.1109/TVLSI.2003.810782
https://doi.org/10.1109/TVLSI.2003.810782
https://doi.org/10.1109/TVLSI.2003.810782
https://doi.org/10.1109/TVLSI.2003.810782
https://doi.org/10.1109/12.559805
https://doi.org/10.1109/12.559805
https://doi.org/10.1109/12.559805
https://doi.org/10.1109/12.559805
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1109/CLUSTER.2019.8890989
https://doi.org/10.1109/CLUSTER.2019.8890989
https://doi.org/10.1109/CLUSTER.2019.8890989
https://doi.org/10.1109/CLUSTER.2019.8890989
https://doi.org/10.1109/CLUSTER.2019.8890989
https://doi.org/10.1109/IRPS.2018.8353620
https://doi.org/10.1109/IRPS.2018.8353620
https://doi.org/10.1109/IRPS.2018.8353620
https://doi.org/10.1109/IRPS.2018.8353620
https://doi.org/10.1109/IRPS.2018.8353620
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/6251.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/6251.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/6251.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/6251.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/6251.html
https://doi.org/10.1109/12.260632
https://doi.org/10.1109/12.260632
https://doi.org/10.1109/12.260632
https://doi.org/10.1109/12.260632
https://github.com/riscv/riscv-v-spec/releases/download/0.8/riscv-v-spec-0.8.pdf
https://github.com/riscv/riscv-v-spec/releases/download/0.8/riscv-v-spec-0.8.pdf
https://github.com/riscv/riscv-v-spec/releases/download/0.8/riscv-v-spec-0.8.pdf
https://github.com/riscv/riscv-v-spec/releases/download/0.8/riscv-v-spec-0.8.pdf
https://github.com/riscv/riscv-v-spec/releases/download/0.8/riscv-v-spec-0.8.pdf
https://github.com/riscv/riscv-v-spec/releases/download/0.8/riscv-v-spec-0.8.pdf
https://doi.org/10.1109/TVLSI.2018.2825145
https://doi.org/10.1109/TVLSI.2018.2825145
https://doi.org/10.1109/TVLSI.2018.2825145
https://doi.org/10.1109/TVLSI.2018.2825145
https://doi.org/10.1109/TVLSI.2018.2825145

[87] Wang, S., Hu, J., and Ziavras, S. G., “On the Characterization of Data
Cache Vulnerability in High-Performance Embedded Microproces-
sors,” 2006 International Conference on EmbeddedComputer Systems:
Architectures, Modeling and Simulation, IEEE Publ., Piscataway, NJ,
2006, pp. 14–20.
https://doi.org/10.1109/ICSAMOS.2006.300803

[88] Sadler, N. N., and Sorin, D. J., “Choosing an Error Protection Scheme
for a Microprocessor’s L1 Data Cache,” 2006 International Conference
on Computer Design, IEEE Publ., Piscataway, NJ, 2006, pp. 499–505.
https://doi.org/10.1109/ICCD.2006.4380862

[89] Fernández, M., Gioiosa, R., Quiñones, E., Fossati, L., Zulianello, M.,
and Cazorla, F. J., “Assessing the Suitability of the NGMP Multi-Core
Processor in the Space Domain,” Proceedings of the Tenth ACM

International Conference on Embedded Software, Assoc. for Comput-
ing Machinery, New York, 2012, pp. 175–184.
https://doi.org/10.1145/2380356.2380389

Z. Sunberg
Associate Editor

570 DI MASCIO ETAL.

D
ow

nl
oa

de
d

by
 T

U
 D

E
L

FT
 o

n
Se

pt
em

be
r

24
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

09
16

https://doi.org/10.1109/ICSAMOS.2006.300803
https://doi.org/10.1109/ICSAMOS.2006.300803
https://doi.org/10.1109/ICSAMOS.2006.300803
https://doi.org/10.1109/ICSAMOS.2006.300803
https://doi.org/10.1109/ICSAMOS.2006.300803
https://doi.org/10.1109/ICCD.2006.4380862
https://doi.org/10.1109/ICCD.2006.4380862
https://doi.org/10.1109/ICCD.2006.4380862
https://doi.org/10.1109/ICCD.2006.4380862
https://doi.org/10.1109/ICCD.2006.4380862
https://doi.org/10.1145/2380356.2380389
https://doi.org/10.1145/2380356.2380389
https://doi.org/10.1145/2380356.2380389
https://doi.org/10.1145/2380356.2380389

