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Abstract: The effects of the post-deformation annealing on the microstructural evolution of hot rolled Al7075 matrix 
composites reinforced with CNTs and GNPs were investigated. The multi-pass hot rolling was applied on the stir cast 
samples. Annealing was then applied to the composites at 450 °C for 4 h. Microstructural evolution was examined by 
SEM, EDS, and EBSD techniques. EBSD data showed that the addition of 0.87 vol.% (GNPs + CNTs) significantly 
inhibited the occurrence of recrystallization. Also, in the composite with 0.96 vol.% CNTs, recrystallization was 
partially inhibited. Whereas, in composites with 0.92 vol.% of GNPs, the occurrence of recrystallization through 
particle stimulated nucleation (PSN) mechanism was significantly accelerated. The volume fraction of recrystallized 
grains depends significantly on the occurrence of PSN in the presence of reinforcements. The intensity and type of the 
main components of the texture as well as the FCC fibers depend on the type of reinforcement. 
Key words: annealing; composite; graphene nanoplates; carbon nanotubes; recrystallization; particle stimulated 
nucleation; texture 
                                                                                                             

 

 

1 Introduction 
 

Today, research on metal matrix composites 
(MMCs), especially aluminum matrix composites 
(AMMCs), has increased due to favorable 
mechanical and physical properties such as 
lightweight, good thermal and electrical 
conductivity, good corrosion and wear, and low 
thermal expansion coefficient. These features make 
AMMCs attractive to many applications [1,2]. 
MMCs can be produced through various methods 
such as electrochemical deposition as surface 
coating [3−5], compocasting, powder metallurgy 
and agitator casting. Preparation of MMCs through 
these techniques is associated with problems such 

as porosity formation, particle agglomeration, and 
adverse chemical reaction at the particle/matrix 
interface which reduces their mechanical  
properties [6,7]. 

To eliminate the mentioned problems, the  
use of hot rolling and severe plastic deformation 
(SPD) methods such as accumulative roll   
bonding (ARB), equal channel angular pressure 
(ECAP) and torsional extrusion (TE) has been 
proposed [1,8−12]. As reported [13,14], applying 
plastic deformation to the Al matrix composite 
containing CNTs can lead to uniform dispersion of 
CNTs in the matrix. Also, plastic deformation 
improves CNTs/Al interfacial bonding and 
eliminates porosity created during casting. In 
addition, it has been reported that due to the plastic 
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deformation, CNTs clusters are broken and CNTs 
orientations change [13,15,16]. It has been seen that 
plastic deformation through the ARB also reduces 
the size of CNTs reinforcements [16]. Recently, 
interest in the graphene-reinforced MMCs has 
increased due to their good electrical [17], 
mechanical [18] and thermal [19] properties. 

AMMCs containing graphene composites have 
been extensively studied. To prepare graphene- 
reinforced AMMCs, various techniques such as 
cryomilling followed by hot extrusion [20] and wet 
ball mill with hot press [21] have been used. 

It has been reported that hot rolling of 
AMMCs containing GNPs resulting from powder 
metallurgy leads to 30% increase in composite 
hardness [22]. Our studies show that to date no 
significant studies have been performed on the 
effect of post-deformation annealing on the 
microstructure evolution of CNTs and GNPs 
reinforced aluminum matrix composites. 

Accordingly, in the present study, the effects of 
post-deformation annealing on the microstructural 
evolution of hot-rolled Al7075 matrix composites 
reinforced with CNTs and GNPs were investigated. 
Also, the occurrence of PSN at the interface of 
reinforcement/matrix and the effect of the separate 
and simultaneous presence of CNTs and GNPs on 
texture evolution in post-deformation annealed 
composites were investigated. 
 
2 Experimental 
 

In the present study, Al7075 alloy was used as 
the matrix material with the chemical composition 
listed in Table 1. Figure 1 shows the electron 
microscopic micrographs of CNTs and GNPs 
reinforcements used in this work. 
 
Table 1 Chemical composition of Al7075 alloy (wt.%) 

Al Zn Mg Cu Fe Cr Mn Ti
Pb, Sn, 

Si, Ni

89.11 5.89 2.19 1.53 0.26 0.22 0.20 0.13 Bal.

 

Al7075 matrix composites with different 
amounts of CNTs and GNPs reinforcements were 
produced by stirring casting process. Table 2 shows 
the types of composites obtained from stir casting. 
Because both CNTs and GNPs are made of carbon, 

 

 
Fig. 1 SEM images of graphene nano-plates (GNPs) (a) 

and carbon nano-tubes (CNTs) (b) 

 
Table 2 Content of reinforcements in composites 
Specimen

No. 
Content of reinforcement 

1 0 

2 0.92 vol.% GNPs 

3 0.96 vol.% CNTs 

4 
0.87 vol.% (CNTs+GNPs) 

(with an equal volume ratio of reinforcements)

 

the volume fraction of carbon in the samples was 
measured using a carbon and sulfur analyzer, which 
is the most accurate carbon analyzer. Using EDX to 
measure carbon is not accurate because carbon is a 
light element and cannot be accurately quantified 
by EDX. During stir casting, the ingot temperature 
was first raised to 650 °C. The molten metal was 
mixed using a blade at 350 r/min. CNTs/GNPs 
reinforcements were mixed with powdered 
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aluminum at 70 r/min for 3 h. A mixture of 
reinforcements and aluminum powder 
(approximately 20 μm) was then injected into the 
molten Al7075 via argon gas. The slurry 
temperature was raised to 790 °C. Then, the 
resulting mixtures were poured into a steel mold 
beneath the alumina crucible. The cast composites 
were cut in length, width and thickness of 
100 mm  60 mm  20 mm. 

In the following, the annealing was performed 
at 450 °C for 4 h on the cast samples and then 
subjected to multi-pass hot rolling. Hot rolling was 
performed up to 10 passes at 450 °C until a 95% 
reduction in total thickness was achieved. The hot 
rolled composites were annealed at 450 °C for 4 h 
after deformation at 450 °C for 4 h. 

For scanning electron microscope (SEM), 
energy dispersive spectroscopy (EDS), and electron 
backscatter diffraction (EBSD) characterizations, 
the samples were abraded using sandpaper (from 
grades of 100 to 4000) followed by polishing with 
diamond paste up to 1 μm along with colloidal 
silica with size of 0.035 μm. FEI Quanta 450 
FEG-SEM equipped with orientation image 
microscopy (OIM) was used for microstructure 
analysis of rolling direction−normal direction 
(RD−ND section). TSL OIM EBSD analysis 
software package was used to analyze the EBSD 
patterns. Lower and higher magnifications of EBSD 
analysis were obtained using scan stage sizes of 1 
and 0.3 μm, respectively. The confidence index (CI) 
was >0.1 for all samples, if otherwise, the whole 
sample preparation and EBSD measurements were 
repeated again. A “clean-up” post processing took 
place in one or two steps, after EBSD measurement. 
In low magnifications, according to CI 
standardization (CI>0.1, grain tolerance angle 5°, 
minimum grain size 2 μm), the EBSD clean-up was 
done. Later, the neighbor orientation correlation 
took place (clean up level 4). CI standardization 
(CI>0.1, grain tolerance angle 5°, minimum grain 
size 2 μm) was also used for the EBSD clean-up 
process at higher magnifications. According to the 
ASTM standard, the Brinell hardness method was 
used to measure the hardness of composites made 
in the RD−TD section, which was performed using 
a 2.5 mm-diameter steel ball with a load of 312.5 N 
for 15 s. On average, 10 hardness measurements 
were considered as the final hardness of the 
samples.  

 
3 Results and discussion 
 
3.1 Microstructure characterization 
3.1.1 EDS analysis and SEM images 

Figure 2 shows the results of EDS analysis of 
post-deformation annealed samples with different 
volume fractions of reinforcement. This analysis 
shows that the second phase AlXFe particles (X: 3, 6) 
are present in the matrix of all processed 
composites (white particles). CNTs and GNPs 
clusters are also seen in the black and elongated 
shape phases. 

Figure 3 shows the SEM images of the 
post-deformation annealed samples. In composite 
samples, in addition to the distribution of AlXFe 
particles (X: 3, 6), parallel scattering of clustered 
CNTs and GNPs is observed in the matrix. 
According to the SEM analysis of the as-cast 
composites made in our previous research [23], 
cluster CNTs and GNPs were irregular. In addition, 
the second phases (Al2Cu particles) and 
reinforcements were randomly distributed in the 
matrix. 
3.1.2 EBSD analysis on recrystallization of ARBed 

composites 
Figure 4 shows the inverse pole figure (IPF) 

maps from the ND–RD sections of the post- 
deformation annealed composites. 

As shown in Fig. 4, the average grain sizes 
(grains with misorientation angle greater than   
15 °) of Al7075, 0.92 vol.% GNP, 0.96 vol.% CNTs, 
0.87 vol.% (CNTs+GNPs) composites are about 55, 
28, 32, and 31 µm, respectively. After the post- 
deformation annealing, in the hybrid composite 
most of the grains were still elongated in the roll 
direction. This indicates that recrystallization is 
prevented in hybrid composites due to the 
simultaneous presence of CNTs+GNPs and the 
elongated morphology of the deformed grains has 
not changed much. But in other composites, the 
morphology of the grains is more equiaxed than 
that of the hybrid composite, and this may be due to 
the occurrence of recrystallization in them. The 
orientation gradient shown as the color change in 
the grains in Fig. 4(d) as evidence, shows that 
recrystallization has been prevented. Such gradients 
are not well present in the other IPF maps and they 
are completely missing in the sample without 
reinforcement (Fig. 4(a)). These assumptions were  
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Fig. 2 EDS analysis of ND–RD sections of post-deformation annealed Al7075 matrix composites with different volume 

fractions of reinforcements: (a) 0; (b) 0.92 vol.% GNPs; (c) 0.96 vol.% CNTs; (d) 0.87 vol.% (CNTs+ GNPs) 

 
supported using grain orientation spread (GOS) 
maps and GOS graphs that were represented in 
Figs. 5 and 6, respectively. GOS technique is used 
to identify the recrystallized grains from the 
unrecystallized ones. Because the recrystallized 
grains are strain-free, their GOS value is low. The 
threshold value for the GOS degree to recognize the 
recrystallized grains from the unrecystallized ones 
is <2° [24−26]. This value was adopted also in the 
current study. According to Figs. 5 and 6, composite 
reinforced with 0.92 vol.% GNPs includes the 
highest region fraction of blue pixels (GOS value 
<2°). So, the highest fraction of recrystallized 
grains belongs to the post-deformation annealed 
composite reinforced with 0.92 vol.% GNPs. The 
recrystallized fraction in the post-deformation 
annealed composite reinforced with 0.96 vol.% 
CNTs was lower than that of the post-deformation 
annealed Al7075. In composite reinforced with 
0.87 vol.% (CNTs+GNPs) the lowest fraction of 
recrystallized grains can be seen. Therefore, it is 
supported that the combination of both CNTs and 
GNPs in the matrix can significantly inhibit 
recrystallization. 

In spite of the sub-micrometer reinforcements 
which prevent the recrystallization, reinforcements 
(>1 μm) usually lead to stimulating the 

recrystallization by PSN mechanism during or after 
deformation [27−31]. Therefore, in the post- 
deformation annealed composite reinforced with 
0.92 vol.% GNPs, the reinforcement (>1 μm) 
causes PSN. 

As a result, the fraction of recrystallized grains 
in 0.92 vol.% GNPs reinforced composite increased 
compared to unreinforced Al7075. As reported in 
Ref. [32], distribution of reinforcements in the 
metal matrix can prevent grain boundary bulging 
and cause the crystallization to stop again by 
pinning the grain boundaries by Zener pining effect. 
Thus, in the post-deformation annealed hybrid 
composite the mechanism of Zener pinning effect 
overcame the PSN mechanism. Consequently, the 
fraction of the area recrystallized significantly 
reduced compared to the post-deformation annealed 
Al7075. The volume fraction of recrystallized 
grains through the PSN mechanisms in the vicinity 
of GNPs, CNTs, and the hybrid reinforcement 
(CNTs+GNPs) is different. The cause of this issue 
will be studied in the next research. 

As shown in Fig. 7, in the post-deformation 
annealed composite reinforced with GNPs, all 
adjacent particle grains have recrystallized, while in 
CNT reinforced composite only some recrystallized 
grains are seen in the vicinity of CNT cluster. The 
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Fig. 3 SEM images of ND–RD sections of post-deformation annealed Al7075 matrix composites with different volume 

fractions of reinforcements: (a−c) 0; (d−f) 0.92% GNPs; (g−i) 0.96% CNTs; (j−l) 0.87% (CNTs+GNPs) 

 

formation of recrystallized grains at the particle/ 
matrix interface is known as PSN recrystallization 
nuclei. This happened during the post-deformation 
annealing of the hot rolled composites. In the 
post-deformation annealed hybrid composite, no 
signs of recrystallized grains are observed in the 
vicinity of the particles. 

PSN is a mechanism of recrystallization in Al 
alloys containing hard reinforcing particles. 

PSN has an effective role in the formation of 

grain structure, texture evolution and therefore 
affects the mechanical properties [33,34]. The effect 
of reinforcement particle size and shape on the 
occurrence of PSN has been investigated by several 
researchers [27−31]. Occurrence of PSN in the 
vicinity of intermetallic coarse particles and its 
effect on the microstructural properties such as 
texture, grain refinement and mechanical  
properties in the Al−Zn−Mg−Cu alloy have been 
investigated [33,35]. 



Siavash IMANIAN GHAZANLOU, et al/Trans. Nonferrous Met. Soc. China 31(2021) 2250−2263 

 

2255
 

 

 
Fig. 4 Standard stereographic triangle and IPF maps measured on ND−RD sections of heat-treated Al7075 matrix 

composites with different volume fractions of reinforcements: (a) 0; (b) 0.92% GNPs; (c) 0.96% CNTs; (d) 0.87% 

(CNTs+ GNPs) (All samples are treated at the same temperatures and rolling reductions) 

 

In Al 7xxx alloys, silicon-rich and iron-rich 
phases such as α-AlFeSi and Al3Fe and particulates 
(>1 μm) can cause PSN [29]. The PSN nuclei form 
in the particle deformation zone (PDZ) next to the 
undeformable particulates. The PDZ is associated 
with a high density of dislocations and large 
misorientations created during deformation owing 
to the misfit strain between the matrix and 
undeformable particulates. In the PDZ, a high 
density of dislocations and a large incompatible 
strain provide the proper driving force for the 
nucleation of recrystallization and growth [29]. 
There is a relationship between the particle 
morphology and the shape of the PDZ formed and 
the strain level in the PDZ [36]. 

It has been reported [37] that in particles with 
high aspect ratio values, a larger strain gradient 

occurs compared to particles with lower aspect ratio 
values. Physically, CNTs have a positive coefficient 
of thermal expansion (CTE) value [38], on the other 
hand, GNPs have negative CTE values [39]. Due to 
this difference in CTE values of these two types of 
reinforcements a high CTE mismatch between the 
matrix and GNPs creates. As a result, a high density 
of misfit dislocations occurs during the post- 
deformation annealing. Thus, PDZ formed in the 
vicinity of GNPs is larger than that formed in the 
vicinity of the CNT. Accordingly, the incidence of 
PSN in the vicinity of GNPs is higher than that of 
CNTs, as seen in Fig. 7(b). During the post- 
deformation annealing of the hybrid composite, the 
combination of CNTs (with a positive CTE value) 
and GNPs (with a negative CTE value) can 
neutralize their PDZ. This reduces the driving force  
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Fig. 5 GOS maps of ND–RD sections of post-deformation annealed Al7075 matrix composites with different volume 

fractions of reinforcements: (a) 0; (b) 0.92% GNPs; (c) 0.96% CNTs; (d) 0.87% (CNTs+GNPs) 

 

of the occurrence of PSN in the hybrid composite, 
and as a result, the fraction of the recrystallized 
region in the hybrid composite is the lowest among 
other composites, as seen in Fig. 7(d)). 
3.1.3 Texture evolution 

Figure 8 shows the evolution of the texture of 
post-deformation annealed samples. The calculated 
main FCC fibers are shown in Fig. 9. Orientation 
distribution functions (ODFs) were measured under 
the same conditions as the IPF maps of the samples 
were prepared (Fig. 4). 

As reported in Refs. [40,41], in as-rolled Al 
alloys, the significant components of the texture 
which are generally related to the rolling texture are 
S, Brass and Copper, while the main texture 
components related to recrystallization textures are 

Rotated Goss, Goss and Cube. 
The presence of a strong Goss texture indicates 

the high formability of the material. 
No research has been done on the effect of 

CNTs and GNPs on the texture evolution of the Al 
matrix composites during the post-deformation 
annealing process. 

Addition of CNTs and GNPs to the Al7075 
matrix caused different texture evolution during the 
post-deformation annealing, which is evaluated 
below. The combination of particles with different 
morphologies (size, shape and aspect ratio) and 
physical properties (deformability, immutability and 
hardness) affects the evolution of material texture 
which is related to their reaction with slip plates, 
dislocations and grain boundaries [32]. 
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Fig. 6 GOS graphs of ND–RD sections of post-deformation annealed Al7075 matrix with different volume fractions of 

reinforcements: (a) 0; (b) 0.92% GNPs; (c) 0.96% CNTs; (d) 0.87% (CNTs+GNPs) (Recrystallization (rex) fractions= 

area fraction of grains with GOS<2°) 

 

The exact mechanisms about the effect of 
CNTs and GNPs on the evolution of the matrix 
composite texture are still unknown. In 
post-deformation annealed Al7075, the main texture 
components are S and Dillamore (Figs. 9(b, c)). It 
has been reported that in deformed A3003 alloy, the 
main texture components are Copper and  
Delamore [42]. Also, it has also been observed that 
when Al7075 is hot rolled at 175 °C, the main 
texture component S is formed [43]. 

In reinforced composite with 0.92 vol.%  
GNPs, the main texture components are Copper, 
Rotated Cube, and Brass, and the intensity of 
texture components is the lowest among all samples 
(Figs. 9(b, c)) due to its highest recrystallized area 
among all samples (Figs. 5(b) and 6(b)). In the 

accumulative roll bonded Al−Al2O3−ZrC composite, 
the Rotated Cube was the main component of the 
texture [12]. In composite reinforced with 
0.96 vol.% CNTs, in addition to a very strong Cube 
texture component, which does not appear in fibers 
but is quite evident in ODF plots (Fig. 8), the main 
components of texture are S, Copper, and Brass 
(Fig. 9(b)). In hybrid composite, the texture 
components are usually S and Brass, which are 
attributed to the typical texture components of 
deformed Al alloys. This means that the highest 
thermal stability of the microstructure is related to 
the hybrid composite whose microstructure has 
changed slightly during the post-deformation 
annealing, while the thermal stability of the 
composite reinforced with 0.92 vol.% GNPs was 
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Fig. 7 GOS maps in vicinity of clustered reinforcements of post-deformation annealed Al7075 matrix composites with 

different volume fractions of reinforcements: (a) 0; (b) 0.92% GNPs; (c) 0.96% CNTs; (d) 0.87% (CNTs+GNPs) 

 
the lowest. Using IPF and GOS analysis, it was 
confirmed that despite the 0.92 vol.% GNPs 
composite, in the hybrid composite, most of the 
grains are still pancaked and non-recrystallized 
during post-deformation annealing. 

During post-deformation annealing, in the 
Al7075 alloy and in the composite reinforced with 
0.92 vol.% GNPs texture evolution occurred via β 
and τ fibers. 

The same results were obtained during the hot 
rolling of the Al−Mg−Si−Cu alloy [44]. In the post- 
deformation annealed 0.96 vol.% CNTs reinforced 
composite and in the hybrid composite, β fibers 
play the most important role in texture formation 
(Fig. 9(b)). 

Weak textures in the post-deformation 
annealed composite reinforced with 0.92 vol.% 
GNPs are due to the occurrence of PSN as shown 
by GOS maps (Fig. 7). 

The different orientations that are formed 
during rolling weaken the deformation texture and 
thus affect the mechanical properties [29]. 

The addition of SiC and CNT reinforcements 
into the matrix as well as the second phase 
precipitation during the friction stirring process 
weakens the texture components through the PSN 
mechanism and the Zener pinning effect [45]. 
Texture weakening can be attributed to preventing 
grain rotation alongside reinforcing clusters where 
high dislocation densities and large lattice rotations 
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Fig. 8 ODFs of post-deformation annealed samples 

 

occur, so grain rotation is limited. Therefore, 
rotation of the grains in the same orientations as the 
whole matrix is prohibited in such areas, thus it 
weakens the texture [46−48]. These are the reasons 
for the weakening of the texture in the 0.92 vol.% 
GNPs reinforced composite compared to the 
unreinforced Al7075. 

 
3.2 Effect of CNTs and GNPs on hardness of 

processed composites 
Figure 10 shows the Brinell hardness of 

samples subjected to post-deformation annealing. 
As can be seen, the hardness of the composites 
increases with the addition of GNPs, CNTs, and 
GNPs+CNTs (hybrid) in the matrix. The  
increasing difficulty is due to the strengthening 
mechanisms [49−51]. During the post-deformation 
annealing, the reinforcements increase the 
dislocation density in the matrix/interface particles 
for the following reasons: (1) strain incompatibility 

between the matrix and the reinforcements leading 
to the geometrically necessary dislocations at the 
interface (elastic modulus mismatch), (2) the 
difference in CTE between the matrix and the 
reinforcements during cooling (CTE mismatch),  
(3) the addition of reinforcements due to pinning of 
the grain boundary, accelerates grain refinement 
(Hall−Patch), and (4) with the presence of 
reinforcements in the matrix dislocation pileup 
occurs in their vicinity (Orowan ring) [1,10]. 
Another reason for the increase in hardness can be 
the transfer of applied load from the matrix to the 
reinforcements (load transfer) [49]. 

During the recrystallization of metals, the 
hardness decreases due to the elimination of 
dislocations [32]. Therefore, among the samples, 
the highest hardness due to the lowest 
recrystallization level belongs to the hybrid 
composite that is seen in Figs. 5 and 6. The 
hardness of 0.96 vol.% CNT reinforced composite 
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Fig. 9 Intensity of FCC fibers of post-deformation annealed samples: (a) α-fiber; (b) β-fiber; (c) τ-fiber 
 

 

Fig. 10 Brinell hardness of post-deformation annealed 

samples 

 
was lower than that of hybrid composites because 
the recrystallization region of 0.96 vol.% CNT 
reinforced composite was higher than that of hybrid 
composites. Although 0.92 vol.% GNP reinforced 
composite has the highest level of recrystallization, 

the hardness of 0.92 vol.% GNP reinforced 
composite is higher than that of unreinforced 
Al7075. This is because the grain size of 0.92 vol.% 
GNP reinforced composite (28 µm) is less than that 
of unreinforced Al7075 (55 µm). 

By adding 1.5 wt.% nano-sized SiC to A357 
alloy using electromagnetic stir casting, the 
hardness, yield strength and tensile strength of the 
prepared composite are significantly increased [52]. 
The presence of yttrium with grain refinement and 
precipitation mechanisms improves the mechanical 
properties of spark plasma sintered AA2024 matrix 
composites [53]. By incorporating GNPs in 
Al−Si−Cu matrix composites, mechanical 
properties are enhanced through dislocation 
strengthening, load transfer strengthening, and grain 
refinement strengthening mechanisms [54]. The 
addition of TiB2 nanoparticles to Al−10Si−Mg 
using selective laser melting leads to increase of 
mechanical properties by grain refinement 
mechanism [55]. 
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4 Conclusions 
 

(1) EBSD data showed that fraction of the 
recrystallization depends on the occurrence of PSN 
at the reinforcements/matrix interface. GOS maps 
showed the occurrence of PSN in all grains in the 
vicinity of GNPs due to the high CTE mismatch 
between the GNPs and the matrix. Addition of both 
CNTs and GNPs in the matrix significantly resulted 
in the inhibition of crystallization during the post- 
deformation annealing. 

(2) In Al7075, the main components of texture 
were S and Dillamore, and texture evolution 
occurred via β and τ fibers. In composite reinforced 
with 0.92 vol.% GNP, the main components of 
texture were Copper, Rotated Cube and Brass. In 
this sample, β and τ fibers play an important role in 
texture evolution during the post-deformation 
annealing process. By adding 0.96 vol.% CNTs, in 
addition to very strong Cube texture, the substantial 
components of texture including S, Copper, and 
Brass, and texture evolution occurred via β fiber. In 
the hybrid composite, which had the lowest 
recrystallized grains among the samples, the texture 
components were typically Brass and S. During the 
post-deformation annealing of the hybrid composite, 
β fiber played the most important role in texture 
formation. 

(3) According to GOS maps and texture data, 
the highest microstructural thermal stability is 
related to hybrid composites. The thermal stability 
of the microstructure was the lowest in the 
composite reinforced with 0.92 vol.% GNP. 

(4) The addition of CNTs, GNPs and hybrid 
reinforcements in the matrix increased the hardness 
and maximum hardness of the hybrid composite 
was due to its minimum recrystallization fraction. 
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摘  要：研究变形后退火对碳纳米管(CNTs)和石墨烯纳米片(GNPs)增强热轧 Al7075 基复合材料显微组织演变的

影响。对搅拌铸造样品进行多道次热轧，然后在 450 °C 下退火 4 h。采用 SEM、EDS 和 EBSD 技术观察材料的显

微组织演变。EBSD 数据显示，添加体积分数(下同)为 0.87%的 GNPs 和 CNTs 可明显抑制再结晶的发生。当添加

0.96%的 CNTs 时，再结晶受到部分抑制。而当添加 0.92%的 GNPs 时，明显加快了粒子激发形核(PSN)机制导致

的再结晶。在有增强相存在的情况下，再结晶晶粒的体积分数与 PSN 的产生有显著的关系。主要织构的强度和类

型都取决于增强相的种类。 

关键词：退火；复合材料；石墨烯纳米片；碳纳米管；再结晶；粒子激发形核；织构 

 (Edited by Xiang-qun LI) 




