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Reinforcement Learning-Based Adaptive Optimal Flight
Control with Output Feedback and Input Constraints

Bo Sun ∗ and Erik-Jan van Kampen †

Delft University of Technology, Delft, The Netherlands, 2629 HS

I. Introduction

This note aims at improving the present incremental model-based global dual heurisitic programming algorithm

proposed in our recent work [1] by taking the output-feedback situation and input constraints into consideration.

Different from the common incremental model that is based on full-state feedback, an extended incremental model

utilizing previous input/output data is introduced to identify locally linearized system dynamics for nonlinear systems.

A non-quadratic performance function combined with a constrained-output actor network guarantees that the produced

control input command satisfies actuator saturation constraints. Through numerical simulations, the effectiveness and

the feasibility of the proposed method are verified.

Reinforcement learning (RL) has become a promising tool for improving autonomy in various types of aerospace

systems [1–6] because of its self-learning property sprouting from psychological and neuroscientific perspectives on

animal behaviour [7]. By interacting with the environment, RL can make a system learn optimal policies to achieve goals

with limited or no priori knowledge of its dynamics or environment, and have the capability of adapting to changing

situations [2, 7]. These advantages enable RL provide a normative solution to adaptive optimal control [8].

One branch of RL is adaptive dynamic programming (ADP), which is developed from dynamic programming (DP),

and it is performed in a forward-in-time way that allows for an online implementation [9]. ADP is often implemented

with artificial neural networks (ANNs) and the actor-critic scheme [10], leading to adaptive critic design (ACD) [11],

whose simple diagram is depicted in Fig. 1. ACDs not only handle the well-known "curse of dimensionality" [10], but

also have a stronger generalization capability to deal with nonlinearity [9, 12–15]. According to the information that the

critic network approximates, ACDs can generally be categorized into three groups as heuristic dynamic programming

(HDP) [16, 17], dual HDP (DHP) [11, 18], and global DHP (GDHP) [1, 9, 19].Among them, GDHP combines the

information utilized by HDP and DHP, i.e., the performance function and its derivatives. The conventional GDHP

utilizes a straight-forward form [19], where two kinds of outputs of the critic network share the same input and hidden

layers, which brings in couplings. Furthermore, due to the approximating property, inconsistent errors exist between

these outputs. Nevertheless, the structure with explicit analytical calculations proposed in [1] can overcome these

limitations and therefore it is investigated in this note.
∗PhD student, Control and Operations Department, Faculty of Aerospace Engineering, South Holland
†Assistant Professor, Control and Operations Department, Faculty of Aerospace Engineering, South Holland, AIAA member
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Fig. 1 The simple diagram of ACDs, where the actor network generates the control policy that is evaluated
by the critic network, and the model network is utilized to approximate system dynamics. Solid lines are the
feedforward flow of signals, the dashed line denotes the updating pathway. G and D respectively denotes the
system state and the control input, ĜC+1 is the estimated value of GC+1, and the subscript denotes the time instant.

Although [8] claims that RL can perform in a direct manner with no need of identifying the system dynamics, as

shown in Fig. 1, a third model module, next to the actor and critic networks, is often introduced to provide system

transition information and thus to speed up learning and increase the success ratio [16]. By convention, ACDs rely on

an ANN to approximate the global system dynamics [9, 16], which can be intractable to obtain for complex aerospace

systems and can face difficulties when changing conditions are encountered [1, 11, 18]. Consequently, an incremental

model (IM) is utilized in [1, 4, 6, 11, 18] to identify the locally linearized dynamics online so as to reduce the dependency

on global models. As an improved version of GDHP, the IM-based GDHP (IGDHP) has shown better performance in

optimal tracking control problems (OTCPs) in the full-state feedback (FSF) condition [1].

Nevertheless, for real systems, sometimes not only the system dynamics, but also the measurements of some internal

states are not available [17], which leads to output-feedback (OPFB) problems that cannot be tackled by the current

IGDHP method. Although some ADP algorithms have been developed for OPFB [4, 6, 20], these algorithms are derived

in a linear form with a quadratic performance function. These existing algorithms depend on solving a linear Riccati

equation, and therefore are unable to handle complex nonlinear demands in the optimal control task, such as input

constraints. However, handling input constraints is a common demand for control systems in many applications such

as aerospace systems [21, 22]. A non-quadratic performance function is introduced to cope with actuator saturation

constraints for optimal regulation control problems (ORCPs) [23], but cannot directly be applied to OTCPs [14].

Although an augmented system is proposed for HDP in [14, 15] to tackle this limitation, introducing the reference signal

in addition to the tracking error into the actor and critic networks can slow down learning.

Motivated by overcoming the limitations existing in the current IGDHP method, this note first of all develops an

extended incremental model to deal with OPFB problems. Then, a non-quadratic performance function as well as

bounding actor network is introduced to handle input constraints. Finally, numerical simulations are executed to verify
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the novel IGDHP method.

II. Incremental Model with Output Feedback
The situation investigated in this note is that the system dynamics are unknown and only input/output information

can be acquired, so an incremental model is constructed to approximate the state transformation.

Consider an affine nonlinear discrete system represented by:

xC+1 = 5 (xC ) + 6(xC )u(xC ), (1)

yC = ℎ(xC ), (2)

where xC ∈ R=, uC ∈ R< and yC ∈ R? are the system state vector, control input vector and measurable output state vector

at the time instant C, respectively, 5 (xC ) ∈ R=, 6(xC ) ∈ R=×< and ℎ(xC ) denote the drift dynamics, input dynamics and

output dynamics of the system, respectively. It is assumed that 5 (xC ), 6(xC ) and ℎ(xC ) are Lipschitz continuous on their

domains. The nonlinear system is assumed to be both controllable and observable. For simplicity, u(xC ) is represented

by uC in the rest of this paper.

According to [1, 11], if the system is full-state feedback, around time instant C − 1, the nonlinear system (1) can

approximately be written into the following linear equation by taking the first order Taylor series expansion and omitting

second and higher-order terms:

xC+1 ≈ 5 (xC−1) + FC−1 (xC − xC−1) + 6(xC−1)uC−1 +GC−1 (uC − uC−1)

= xC + FC−1 (xC − xC−1) +GC−1 (uC − uC−1),
(3)

where FC−1 = m 5 T (xC−1)
mxC−1 ∈ R=×= and GC−1 =

m6T (xC−1)
mxC−1 ∈ R=×< are the state transition matrix and the input distribution

matrix, respectively. FC−1 and GC−1 are bounded due to the Lipschitz continuity of 5 (xC ) and 6(xC ) in Eq. (1).

Equation (3) can be rewritten as:

ΔxC+1 ≈ FC−1ΔxC +GC−1ΔuC . (4)

Similarly, the system output equation (2) can also be linearized using Taylor expansion around time instant C:

yC+1 ≈ yC +HC (xC+1 − xC ), (5)

where HC =
mℎT (xC )
mxt

∈ R?×= denotes the observation matrix. Equation (5) can be rewritten as:
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ΔyC+1 ≈ HCΔxC+1, (6)

To identify and control the new incremental model presented by Eqs. (4) and (6), the following two assumptions are

required.

Assumption 1 The linearization does not change the property of controllablity and observability of the original system

given by Eqs. (1) and (2), i.e. (FC−1,GC−1) is controllable and (FC−1,HC ) is observable.

Assumption 2 The system is deterministic within the range of " steps, where " ≥ =/?.

Remark 1 Assumption 2 is the prerequisite that the system can be identified via input/output data. It has practical

significance in that real systems are often influenced by stochastic factors such as measurement noises, unmodeled

states and unforeseen disturbances, while in a small range of time horizon, the impact is small enough to be ignored.

Assumption 2 can be satisfied when the sampling frequency is high enough.

It has been proved that for a deterministic observable system, the unmeasurable internal states (full states) can be

reconstructed uniquely with adequate previous observations and control inputs [4, 6, 20]. Therefore, provided the

input/output data over a sufficiently long time horizon, [C − # + 1, #], =/? ≤ # ≤ " , we can construct a new system

called the extended system. The extended system regards the previous increments of the input/output data as its system

states. It can determine the next output increment ΔyC+1 uniquely as follows:

ΔyC+1 ≈ FCΔyC ,# +G
C
ΔuC ,#

= F11,CΔyC + F12,CΔyC−1,#−1 +G11,CΔuC +G12,CΔuC−1,#−1,
(7)

where FC ∈ R?×# ? and G
C
∈ R?×#< are the transition matrix and input distribution matrix of the extended discrete

system, respectively, ΔuC ,# = [ΔuT
C ,ΔuT

C−1, · · · ,ΔuT
C−#+1]

T ∈ R#< and ΔyC ,# = [ΔyT
C ,ΔyT

C−1, · · · ,ΔyT
C−#+1]

T ∈ R# ?

are the measured input/output data from # previous steps, respectively, F11,C ∈ R?×? and F12,C ∈ R?×(#−1) ? are

partitioned matrices from �C , and G11,C ∈ R?×< and G12,C ∈ R?×(#−1)< are partitioned matrices from �
C
. Assume

that the generalised inverse of G11,C exists such that G−111,CG11,C = I< ∈ R<×<, where I< denotes the identity matrix and

the subscript < gives the dimensionality.

In this way, the original nonlinear system is approximated by a locally linear incremental model and a direct mapping

from the control input at the time instant C to the output at the time instant C + 1 is built. Then, a recursive least squares

(RLS) approach using a sliding window technique [17] is adopted to identify the matrices FC and G
C
online. Rewrite
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Eq. (7) in a vector form as:

ΔyC+1 ≈
[
Δy

T
C ,# Δu

T
C ,#

] 
FT
C

GT
C

 . (8)

Define YC =
[
Δy

T
C ,# ,Δu

T
C ,#

]T
∈ R# (?+<)×1, which is the input information of the extended incremental model

identification, and Θ
C
=

[
FC ,GC

]T ∈ R# (?+<)×?, which is the extended matrix to be determined using the RLS

algorithm. Therefore, the output prediction equation can presented as follows:

ΔŷC+1 = YT
C · Θ̂C , (9)

where Θ̂
C
=

[
F̂C , ĜC

]T is the approximated value of Θ
C
, and the symbol •̂ denotes the approximated/estimated value.

The sliding window is utilized to store historical data YC for determining Θ̂
C
in each time step, and the main

procedure of the RLS approach is given as follows [17]:

nC = ΔyT
C+1 − ΔŷT

C+1, (10)

Θ̂
C
= Θ̂

C−1 +
Cov

C−1YC

WRLS + YT
C CovC−1YC

nC , (11)

Cov
C
=
1

WRLS

(
Cov

C−1 −
Cov

C−1XCX
T
C CovC−1

WRLS + XT
C CovC−1XC

)
, (12)

where nC ∈ R? denotes the prediction error, Cov
C
∈ R(?+<)#×(?+<)# is the estimation covariance matrix , and WRLS

denotes the forgetting factor. As to initialization settings of the RLS approach, we set F̂0 = [I? , 0], and Ĝ0 as a zero

matrix. The covariance matrix is initialized as an identity matrix multiplied by a large positive value [6] and we choose

107 in this note, i.e., Cov0 = 10
7I(?+<)# .

III. Optimal Tracking Control Problem (OTCP)
This section deals with the input constraints in the OTCP by designing a non-quadratic function. The OTCP aims

to find the optimal control policy u∗C such that the system described by (1) and (2) can track the reference trajectory

yrefC ∈ R? in an optimal manner by minimizing a predefined performance function. Furthermore, the control input

must be constrained by a bound vector ub, i.e. |D8,C | ≤ Db8 for ∀Db8 > 0, 8 = 1, · · · , <, where D8,C and D18 denotes the

elements of uC and ub, respectively.

To simplify the derivation and implementation of the algorithm, the reference trajectory yrefC is supposed to satisfy

the following assumption [6]:
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Assumption 3 The reference signal is slow-varying in comparison to the system dynamics, such that the increment of

the reference signal between two time instants can be ignored.

Accordingly, considering Eq. (7), the output tracking error at the time instant C + 1 can be presented as:

eC+1 = yC+1 − yrefC+1

≈ yC + FCΔyC ,# +G
C
ΔuC ,# − (yrefC + ΔyrefC+1)

≈ eC + FCΔyC ,# +G
C
ΔuC ,#

≈ eC + FCΔeC ,# +G
C
ΔuC ,# .

(13)

Based on Assumption 3 and Eq. (13), the effect caused by the dynamics of reference signal is approximately shielded

between two sampling instants. Therefore, the original OTCP is transformed into an ORCP, so that the non-quadratic

performance function used in [12, 14, 15, 23] can be adopted to generate constrained control input.

Then the following performance function is introduced for this new input-constrained ORCP:

� (eC , uC ) =
∞∑
;=C

W;−C2(e; , u;), (14)

where W is the discount factor with 0 < W ≤ 1 and 2(e; , u;) is the one-step cost function that is defined as:

2(eC , uC ) = eT
C QeC + . (uC ), (15)

where Q ∈ R?×? is positive semi-definite and is set to be a diagonal matrix in this note, and . (uC ) is a positive-definite

integral function defined as:

. (uC ) = 2
<∑
8=1

∫ D8,C

0
D18k

−1 (h8/D18)'83h8 , (16)

where k(•) is a bounded element-wise function satisfying |k(•) | ≤ 1, and is a monotonic odd function with its derivative

bounded by a constant k" , i.e. | |3k(B)/3B | | ≤ k" , ∀B ∈ R, and '8 denotes the element of the positive definite weight

matrix R = diag( ['1, · · · , '<]) ∈ R<×<, in which diag(•) reshapes the vector to a diagonal matrix. Without loss of

generality, the well-known hyperbolic tangent function k(•) = tanh(•) is chosen as bounding function. Note that . (uC )

is positive definite since k−1 (•) is a monotonic odd function and R is positive definite. For simplicity, � (eC , uC ) is

denoted by �C and 2(eC , uC ) is denoted by 2C hereafter.

According to Bellman’s principle of optimality, the optimal performance function �∗C is time invariant and satisfies

the discrete-time Hamilton-Jacobi-Bellman (DTHJB) equation:

�∗C = minuC

(2C + W�∗C+1). (17)
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Differentiate the right-hand side of Eq. (17) along the control input uC and the following equation should be satisfied for

the optimal control u∗C [13]:
mcC
muC
+ W

meT
C+1

muC
_∗C+1 = 0. (18)

where _∗
C+1 =

m� ∗
C+1

meC+1 . Then substituting Eqs. (15) and (16) in Eq. (18) yields [12, 14, 23]:

D∗8,C = −D18 tanh(�∗8,C ), 8 = 1, · · · , <, (19)

and �∗
8,C

is given as:

�∗8,C =
W

2D18
'−18 6

T
8,11,C

_∗C+1, (20)

where 6
8,11,C

is the 8th column vector of G11,C . The control input D
∗
8,C

is bounded within its permitted range [−Db8 , Db8],

8 = 1, · · · , <. The nonquadratic cost (16) for u∗C is:

. (u∗C ) =
<∑
8=1
[D18W_∗TC+168,11,C tanh(�

∗
8,C ) + D218'8 ln(1 − tanh

2 (�∗8,C ))] . (21)

By substituting Eq. (21) into Eq. (17), the DTHJB equation becomes:

�∗C = eT
C QeC +

<∑
8=1
[D18W_∗TC+168,11,C tanh(�

∗
8,C ) + D218'8 ln(1 − tanh

2 (�∗8,C ))] + W�∗C+1. (22)

In this way, the original OTCP is recast as a new ORCP subject to input constraints. The DTHJB equation (22)

cannot be solved analytically in the generally nonlinear cases, and therefore the IGDHP algorithm is introduced to

iteratively solve the OTCP in the next section.

IV. IGDHP Implementation
The IGDHP algorithm is introduced in this section with the IM and ANNs facilitating the implementation: the IM

reflects the local dynamics of the nonlinear plant and the ANNs are utilized to build the critic network and the actor

network. The architecture of the IGDHP algorithm is shown in Fig. 2. The reference signal at the time instant C + 1, yref
C+1,

is unavailable at the time instant C. To obviate the need for this information, the actor and critic networks are updated

with the information from the time instants C and C − 1 [1, 15].

A. The critic network

The IGDHP technique makes use of both the approximation of performance function �̂C and its derivative with

respect to the network input eC , which is denoted by _̂C . As shown in Fig. 3, the critic network is utilized to approximate

the performance function (14) with the facilitation of an ANN, which employs a feedforward structure with single
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Fig. 2 The architecture of the IGDHP algorithm, where solid lines represent the feedforward flow of signals,
dashed lines are backpropagation pathways, and the thick arrows represent the weight transmission.

hidden layer as follows:

�̂C = wT
22,Cf(w

T
21,CeC ), (23)

where w21,C and w22,C are weight matrices between different layers and the activation function f is chosen to be a

sigmoid function. By taking the explicit analytical calculations [1], _̂C is given as:

_̂C =
m�̂C

meC
= w21,C (w22,C � f′(wT

21,CeC )), (24)

where � is the Hadamard product, a.k.a. the element-wise product, and f′(•) is the first order derivative of f(•).

Hidden layerInput layer Output layer

Explicit

Analytical

Calculations

te ˆ
tJ ˆ

t

1,c tw 2,c tw

Fig. 3 The architecture of the critic network, in which an ANN is utilized to approximate performance function
and then explicit analytical calculations are taken to compute first-order derivatives.
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Referring to the DTHJB equation (17), the approximation error of the performance function produced by the critic

network is given as:

421,C = �̂C−1 − 2C−1 − W�̂C , (25)

and the approximation error of the derivative is given as:

e22,C =
m (�̂C−1 − 2C−1 − W�̂C )

meC−1
= _̂C−1 −

m2C−1
meC−1

− W meC
meC−1

_̂C . (26)

The second item on the right hand side of Eq. (26) has an explicit calculation as follows:

m2C−1
meC−1

= 2QeC−1 + 2
muC−1
meC−1

[R(tanh−1 (uC−1 � u◦−1b ) � ub)], (27)

where muC−1
meC−1 is derived by the actor network in the next subsection, and u◦−1b stands for the element-wise inverse of the

vector ub. meC
meC−1 in the last item in Eq. (26) is composed of two parts [1, 9, 11]: one part is directly derived from the

incremental model (pathway 3.a), whereas the other part starts from the incremental model and uses the control input

uC−1 as the intermediate auxiliary (pathway 3.b):

mêC
meC−1

= I? + FT
11,C−2︸        ︷︷        ︸

pathway (3.0)

+ muC−1
meC−1

GT
11,C−2︸           ︷︷           ︸

pathway (3.1)

, (28)

where F11,C−2 ∈ R?×? is the upper-left partitioned matrix from FC−2 and G11,C−2 ∈ R?×< is the upper partitioned matrix

from G
C−2.

Accordingly, the overall error of the critic network combines two kinds of approximation error as:

�2,C = V
1
2
4221,C + (1 − V)

1
2
eT22,Ce22,C , (29)

where V is a scalar within a range of [0, 1].

The weights of the critic network are updated by a gradient-descent algorithm with a learning rate [2 to minimize

the overall error �2,C :

w2,C+1 = w2,C − [2
m�2,C

mw2,C
, (30)

and
m�2,C

mw2,C
=

m�̂C

mw2,C
·
m�2,C

m�̂C
+ m_̂C

mw2,C
·
m�2,C

m_̂C
= V

m�̂C

mw2,C
421,C + (1 − V)

m_̂C

mw2,C
e22,C , (31)

where m_̂2,C/mw2,C is the second-order mixed gradient of �̂C , and the detailed explicit calculations can be found in [1].
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B. The actor network

The pathway 3.b needs to compute muC−1
meC−1 , which cannot be calculated exactly. Consequently, an actor network is

introduced to produce the control input uC and to facilitate backpropagation.

In this note, the output layer of the actor network employs a bounded element-wise function as Eq. (16) to be the

activation function, and is multiplied by the bound vector u1 , so that the system control uC output of the actor network

is bounded within the constraints, as shown in Fig. 4. The actor network is also constructed as a single-hidden-layer

feedforward ANN:

uC = u1 � k(wT
02,Cf(w

T
01,CeC )), (32)

where w01,C and w02,C are weight matrices between different layers of the actor network.

Hidden layerInput layer Output layer

1,a tw 2,a tw
bu

tu
te

Fig. 4 The architecture of the actor network, in which the output is constrained by the bounded activation
function and the bound vector.

It is noted that the control input uC outputted by the actor network is directly introduced to the IM and the real

system, and that the actor network performs as a global approximation, so muC−1
meC−1 =

muC

meC given the same actor weights. The

actor network is supposed to approximate a target control input utar
C−1 which is obtained by substituting _̂C into Eq. (20)

and then Eq. (19) as follows:

utar
C−1 = −ub � tanh(�̂C−1), (33)

and

�̂C−1 =
W

2
u◦−1b � (R−1GT

11,C−2_̂C ). (34)

It can be seen that both the target control input utar
C−1 and the real control input uC are bounded by ub. Therefore, the actor

network is aiming at minimizing the following error:

�0,C =
1
2

eT
0,Ce0,C , (35)

10



where

e0,C = uC−1 − utar
C−1. (36)

As illustrated in Fig. 2, the actor weights are updated along the 4th pathway with a learning rate [0:

w0,C+1 = w0,C − [0
m�0,C

mw0,C
= w0,C − [0

muC
mw0,C

e0,C (37)

V. Flight Control Simulation
In order to assess the performance of the developed novel IGDHP algorithm, the longitudinal dynamics of a nonlinear

aircraft [1, 24, 25] are taken into account. The initial altitude and speed of the aircraft are set to be 15000 ft and 600 ft/s,

respectively, based on which, the aerodynamic model is trimmed. To simply and clearly compare different methods, only

short period control is considered and the elevator deflection command is artificially bounded within [−5 deg, 5 deg].

The control system, discretized with a sampling frequency of 100 Hz, targets for controlling the angle of attack (AOA)

of the aircraft to track a sinusoidal signal, namely Uref = 10 sin(0.5C) deg.

Zero-mean white noises with standard deviation of 4 × 10−2 deg and 1.8 × 10−3 deg are added onto the bounded

elevator deflection command and measured AOA, respectively. A 3211 disturbance signal is employed to kick off the

learning at the beginning so as to better satisfy the persistent excitation (PE) condition [1, 19]. Three methods are

utilized for comparison, namely GDHP with input constraints, IGDHP with input constraints, and IGDHP without input

constraints. All methods are implemented in the OPFB condition with the sliding window width of 3. GDHP employs a

model network with preivious states and control inputs as its inputs to approximate system dynamics, whereas IGDHP

approaches utilize an incremental model. All ANNs adopt the fully connected feed-forward architecture with a single

hidden layer. The number of hidden layer neurons is 10 for the actor and critic networks and 20 for the model network.

All weights are initialized randomly within [−0.1, 0.1] to decrease the impact of initialization. For IGDHP without

input constraints, the performance function is set to a quadratic form and the output layer of the actor network employs

a unit linear activation function. To compare the robustness of these approaches, Monte Carlo simulations are also

conducted, and the randomness is introduced by aforementioned noises and initial weights. A concept of success ratio

[1, 11, 16] is introduced to indicate the performance. A successful implementation in this note is defined by the tracking

errors remaining within [−4 deg, 4 deg] after the first 20 seconds. The simulations are carried out on a Intel Core

i7-8550U @ 1.80 GHz processor, and 8 GB RAM.

The comparison of AOA trajectories and tracking error is illustrated in Fig. 5. It can be seen that although all

methods can follow the reference after short online learning stage, GDHP with input constraints takes more time to

get satisfying performance and the tracking error is the largest overall. The reason causing this phenomenon lies in

that GDHP utilizes a model network to identify the global system model which requires more data to update weights.
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Without well approximated dynamics, the control policy cannot be appropriately generated, which in turn can have

impacts on identification of the global model, i.e. Assumption 2 is not satisfied. A detailed view can be found in Fig. 6,

which shows the weights between the input layer and hidden layer of the actor network w01. The update of w01 requires

the information from the critic network, system dynamics and actor network, and therefore the trajectory of w01 can be

used to indicate the overall learning performance. It is clearly shown in Fig. 6 that the learning of GDHP is slower in

comparison to the IGDHP methods, which results in a more conservative policy at the beginning stage, as presented in

Fig. 7. Furthermore, due to the inaccurate information regarding system state transition, GDHP has the lowest success

ratio for 1000 Monte Carlo simulations, which is merely 46.4%, compared with 99.4% and 98.0% for IGDHP with and

without input constraints, respectively.

As to IGDHP methods, after the weights have converged, both methods have a similar tracking performance, which

is better than that of GDHP. Nevertheless, the developed IGDHP with input constraints has a slightly higher success

ratio, and the benefit is brought by the collective effect of the non-quadratic performance function and the bounded actor

network. With these measures, input constraints can be overcome. As shown in Fig. 6, it is clear that the weight update

of IGDHP without input constraints can be more radical at the beginning when the policy has not converged yet. During

this exploration stage, IGDHP without input constraints performs similar to "bang-bang" control, with larger control

command that easily causes overshoot and oscillation. To further investigate the influence of the measures to deal with

input constraints, the policies directly produced by the actor network are compared between the IGDHP methods with

and without input constraints. As presented in Fig. 8, given the random data of AOA and its reference within the range

of [−2 deg, 2 deg], the methods can plot a mesh surface to illustrate their learned policy at 8s. Compared to IGDHP

with input constraints that has a smooth surface, IGDHP without input constraints has a sharper surface and tends to

produce a large control command. The learned policy of GDHP with input constraints is similar to that of IGDHP with

input constraints, and therefore its plot is omitted.
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Fig. 5 The tracking performance of the online AOA tracking control task. Three methods are compared and
IGDHP with input constraints is the contribution of this note.

To further verify the robustness of the designed control approach when tracking fast-varying reference signals,
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Fig. 6 The weights between the input layer and hidden layer of the actor network, w01. The plots of three
approaches are presented, and the middle one refers to the proposed approach that is the contribution of this
note.
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Fig. 7 The deflection command of elevator. The plots of three approaches are presented, and the middle one
refers to the proposed approach that is the contribution of this note.
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Fig. 8 The change of the policy directly produced by the actor network from the initial stage to 8c s. The
first subfigure is the random initial policy, and the middle subfigure refers to the proposed approach that is the
contribution of this note.

a simulation experiment in which the frequency of the reference signal keeps increasing is performed. The initial

reference frequency is the same as the one in the above simulation experiments, and the control input is bounded within

[−25 deg, 25 deg]. As illustrated in Fig. 9, after the initial exploration stage, the controlled AOA can track the given

reference signal when it is slow-varying, and the tracking error is growing as the reference frequency is increasing.

Specifically, when the reference frequency is around 5.3 times of the initial value, the tracking error for the first time
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exceeds 2 deg, and when the reference frequency is near 7.0 times of the initial value, the tracking error starts exceeding

4 deg. The results clarify the significance of Assumption 3 to a certain extent. Besides, it is noted that at the final stage

of the simulation, the control input comes close to the input constraints but does not exceed the bound. Due to the

existence of input constraints, when the reference frequency is too high, the aircraft cannot successfully complete the

tracking task and the tracking error is large. Nevertheless, the simulation results demonstrate the developed IGDHP

with input constraints is robust to the reference signal within a range of frequencies.
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Fig. 9 The tracking performance of the developed IGDHP with input constraints when tracking a reference
signal with its frequency keeping increasing.

VI. Conclusions
This note improves the current incremental model-based global dual heuristic programming (IGDHP) method for

more complex application scenarios, including dealing with output feedback (OPFB) and input constraints. Different

from the GDHP method that utilizes a neural network to identify the global system dynamics, the developed novel

IGDHP method exploits an extended incremental model to approximate locally linear system dynamics via the previous

input/output data at several previous time instants. The numerical simulation shows that the developed novel IGDHP

method outperforms GDHP in convergent speed of parameters, tracking precision, and success ratio. Moreover, the input

saturation constraint is overcome by combining a non-quadratic performance function and bound activation function in

the output layer of the actor network. The original IGDHP method employs quadratic performance function and unit

linear activation function, and compared to it, the developed novel IGDHP method has a smoother policy surface and

slightly higher success ratio. In addition, through a simulation experiment, the robustness of the developed IGDHP

with input constraints is verified for reference signals with a range of frequencies. The simulation results collectively

demonstrate the effectiveness and the feasibility of the proposed method. Further research on better satisfying persistent

excitation (PE) condition so as to achieve a non-failure control is recommended.
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