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GRAPH-TIME CONVOLUTIONAL NEURAL NETWORKS

Elvin Isufi and Gabriele Mazzola

ABSTRACT
Spatiotemporal data can be represented as a process over a graph,
which captures their spatial relationships either explicitly or implic-
itly. How to leverage such a structure for learning representations
is one of the key challenges when working with graphs. In this pa-
per, we represent the spatiotemporal relationships through product
graphs and develop a first principle graph-time convolutional neural
network (GTCNN). The GTCNN is a compositional architecture with
each layer comprising a graph-time convolutional module, a graph-
time pooling module, and a nonlinearity. We develop a graph-time
convolutional filter by following the shift-and-sum principles of the
convolutional operator to learn higher-level features over the product
graph. The product graph itself is parametric so that we can learn
also the spatiotemporal coupling from data. We develop a zero-pad
pooling that preserves the spatial graph (the prior about the data) while
reducing the number of active nodes and the parameters. Experi-
mental results with synthetic and real data corroborate the different
components and compare with baseline and state-of-the-art solutions.

Index Terms— Graph signal processing; graph neural networks;
graph-time neural networks; spatiotemporal learning.

1. INTRODUCTION
Multivariate temporal data provide unique challenges to the learn-
ing algorithms because of their intrinsic spatiotemporal dependencies.
These dependencies can be captured by a graph either explicitly such as
in sensor or social networks or implicitly such as in recommender sys-
tems. This graph represents the spatial coupling between data, which
translates into a tantamount graph-temporal coupling. The learning al-
gorithm should, therefore, be equipped with effective biases to exploit
this structure for learning spatiotemporal representations. Building on
recent advances in processing and learning over graphs [1,2], different
solutions have been proposed to learn from spatiotemporal data [3].
The key to learning is the algorithm’s ability to embed spatiotemporal
relations into its inner-working mechanisms.

Spatiotemporal graph-based models can be divided into hybrid and
fused. Hybrid models combine learning algorithms developed sepa-
rately for the graph domain and the temporal domain. They use graph
neural networks to extract higher-level spatial features and process the
latter with a temporal RNN, CNN, or variants of them. The works
in [4–6] use a graph convolutional neural network (GCNN) per times-
tamp followed by an LSTM. Instead, authors in [7] first use a temporal
RNN and then a GCNN. The works in [8–10] prefer temporal CNNs
since convolutions are easier to train and have fewer parameters. Fused
models force the graph structure into conventional spatiotemporal so-
lutions and provide a single strategy to jointly capture the spatiotem-
poral relationships. They substitute the parameter matrices in these
models with graph convolutional filters, which are at the core of GC-
NNs [11]. The work in [12] proposes a graph-based VARMA model to
learn spatiotemporal representations. The works [13, 14] consider the
RNN family, whereas [15] discusses also graph-based gating [16]. The
work in [17] builds replicas of the spatial graph, connects nodes at time
t with their replicas at time t− 1, and learns over this larger graph.

Hybrid models have the advantage that their spatial and tempo-
ral blocks are modular and can be implemented efficiently. But it re-
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mains unclear how to best interleave these blocks for learning from
spatiotemporal relationships. Instead, fused models capture naturally
these relationships as they have graph-time dependent inner-working
mechanisms. One effective way to represent spatiotemporal relation-
ships is to model the time as a graph (e.g., directed line); the evolution
as a time-varying signal over this graph [18]; and the overall data as
a time-invariant signal over the product graph between the spatial and
the temporal graph [19]. This solution has resulted useful to develop a
graph-time Fourier representation [20], autoregressive models [12,21],
and signal interpolation algorithms [22]. However, despite the success
of product graphs to capture spatiotemporal relations, learning solu-
tions over product graphs remain little explored.

In this paper, we develop a graph-time convolutional neural net-
work (GTCNN) that implements a compositional learning model,
where each layer performs convolutions over the product graph. Our
contribution is threefold:

C.1. We develop a graph-time convolutional module build from the
first principles of the convolution operator [18, 23] over a para-
metric product graph [24]. Working with first principles and
parametric product graphs allows learning the spatiotemporal
coupling from data and generalizes [17], which can be seen as
an order one convolutional filter over the Cartesian product.

C.2. We propose a recursive implementation of the graph-time con-
volutional module, which avoids working with large product
graphs. This recursive implementation has a linear cost in the
product graph dimensions and a constant number of parameters.

C.3. We develop a graph-time pooling module based on a zero-
padding strategy [25] to reduce the number of active nodes;
hence parameters. The advantage of zero-pad pooling is that it
preserves the original spatial graph structure in the deeper layers
and does not resort to coarsening or clustering techniques.

Numerical results with synthetic and three real datasets corroborate the
effectiveness of the proposed approach.

2. SIGNALS OVER PRODUCT GRAPHS

Consider an N × 1 multivariate signal xt collected over T time in-
stances in matrix X = [x1, . . . ,xT ], such as sensor recordings in a
sensor network. Signals in X have spatiotemporal relations, which
if fully-exploited serve as a powerful inductive bias to learn represen-
tations [26]. When signal xt has an (hidden) underlying structure, we
can represent its spatial relations through a spatial graph G = (V, E) of
N nodes in set V = {1, . . . , N} and |E| edges in set E ⊆ V×V . Signal
xt = [xt1, . . . , xtN ]> are a collection of values xti residing on node i
at time t. Likewise, we can capture the temporal relations by viewing
each row xi = [x1i, . . . , xTi]

> of X as a graph signal over the nodes
of a temporal graph GT = (VT , ET ) of T nodes VT = {1, . . . , T}
and |ET | edges ET = (t, t′). Set ET contains an edge if signals at
time instances t and t′ are related. Examples for GT are the directed
line graph that assumes signal xt depends only on the former instance
xt−1, the cyclic graph that accounts for periodicity, or any other graph
that encodes the temporal dependencies in X [1]. We will represent
graphs G and GT through their respective graph shift operator matrices
S ∈ RN×N and ST ∈ RT×T ; e.g., adjacency, Laplacians [1, 18].

Given graphs G and GT , we can capture the spatiotemporal rela-
tions in X through the product graph G� = GT � G = (V�, E�), where
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� =

Kronecker: S⊗ = ST ⊗ S⊗; |E⊗| = |ET ||E|
Cartesian: S× = ST ⊗ IN + IT ⊗ S; |E×| = T |E|+N |ET |
Strong: S� = S⊗ + S× |E�| = |E⊗|+ |E×|

Fig. 1: Product Graphs. Kronecker product: G⊗ = GT ⊗ G has the
grey edges. Cartesian product: G× = GT × G has only the red and
green edges. Strong product: G� = GT � G has all edges. Parametric
product: G� = GT � G has all edges of the strong and self loops if all
sij 6= 0 in (1).

the vertex set V� = VT × V is the Kronecker product between VT
and V while the edge set depends on the product [19–22, 27]. Typical
product graphs include the Kronecker, Cartesian, and strong product,
which are particular cases of a parametric product graph with the shift
operator

S� =

1∑
i=0

1∑
j=0

sij
(
SiT ⊗ Sj

)
(1)

where {sij} are scalars and “ ⊗ ” the Kronecker product [24]; see
Fig. 1. The parametric product graph captures the spatiotemporal cou-
pling with the four scalars sij . If all sijs are non-zero, the parametric
product graph has |E�| = |E�|+NT edges, which areNT mode edges
than the strong product because of self-loops (s00 6= 0).

Column-vectorizing X yields a product graph signal x� =
vec(X) ∈ RNT in which node i� ∈ V� represents the space-time
location (i, t) with value xti, i.e., the i�th entry of x�. Our goal is
to exploit the coupling product graph signal–product graph to learn
spatiotemporal representations in a form akin to temporal or graph
convolutional neural networks [11, 23].

3. GRAPH-TIME CONVOLUTIONAL NEURAL NETWORKS

A graph-time neural network is a compositional architecture of L lay-
ers each having a graph-time convolutional module, a graph-time pool-
ing module, and a nonlinearity. At layer `, we have as input a collection
of F`−1 graph signal features xg�,`−1 for g = 1, . . . , F`−1. These fea-
tures are the output of the previous layer and can be seen as a collection
of signals over the vertices of a product graph G�,`−1. Each input fea-
ture xg�,`−1 is processed in parallel by a bank of F` graph-time filters
Hfg
` (S�,`−1) to yield the aggregated (filtered) features

ufg�,` = Hfg
` (S�,`−1)xg�,`−1 for (f ; g) = 1, . . . , (F`;F`−1). (2)

Aggregated features ufg�,` obtained from a common input xg�,`−1 are
summed to form the higher-level linear features of layer `

uf�,` =

F`−1∑
g=1

ufg�,` =

F`−1∑
g=1

Hfg
` (S�,`−1)xg�,`−1 for f = 1, . . . , F`

(3)
which are again a collection of F` product graph signals. The linear
features uf�,` are input in parallel to the graph-time pooling module
ρ`(·;G�,`−1) to obtain the pooled features

zf�,` = ρ`
(
uf�,`;G�,`−1

)
for f = 1, . . . , F` (4)

which are vectors of dimensions N`T` with N`<N −̀1 and T`<T −̀1
being the number of spatial and temporal nodes at layer `, respectively.
Function ρ`(·;G�,`−1) signifies pooling is performed over the prod-
uct graph G�,`−1. The pooled features are passed to a nonlinearity

σ(·;G�,`) to produce a collection of F` higher-level nonlinear features
xf�,` which constitute the output of layer `,

xf�,` = σ`
[
zf` ;G�,`

]
for f = 1, . . . , F` (5)

where σ[·;G�,`] signifies the nonlinear function is performed over
graph G�,` obtained from pooling.

In the last layer ` = L, we assume there is a single feature signal,
which we consider the output of the graph-time neural network. We
write this output compactly as

Φ
(
x�; S�;H

)
= σL

[
ρL

( FL−1∑
g=1

Hg
L(S�,L−1)xg�,L−1;G�,L−1

)]
(6)

to specify the dependence from the starting product graph S�, signal
x�, and parameters setH defining all graph-time filters in (3).

The above steps indicate that building a graph-time neural network
reduces to specifying the linear filtering module H(S�,`) [cf. (2)-(3)],
the pooling module ρ(·,G�,`) [cf. (4)], and the nonlinearity module
σ[·;G�,`] [cf. (5)]. Each of these modules can be generalized from
the corresponding ones developed for graph neural networks [28]. The
filtering module can be convolutional [11]; message passing [29], at-
tention [30], or even an edgenet-based [16]. Likewise, the pooling
module can be zero-pad [25], self-attention [31], or hierarchical (e.g.,
Kron reduction) [28]. The nonlinearity module can either be pointwise
(e.g., ReLU) or graph-adaptive [32]. We will develop on a graph-time
convolutional module with zero-pad pooling and pointwise ReLU non-
linearities. Our rationale is that convolutions allow for effective param-
eter sharing, inductive learning, and efficient implementation, while
zero-pad pooling and pointwise nonlinearities make the architecture
independent from graph-reduction techniques or other modules.

3.1. Graph-Time Convolutional Filtering

Following the shift-and-sum principle of the convolutional operator
[18,23], we define the output of a graph convolutional filter or orderK
over the parametric product graph S� as

u� =

K∑
k=0

hkS
k
�x� =

K∑
k=0

hk

( 1∑
i=0

1∑
j=0

sij(S
i
T ⊗ Sj)

)k
x� (7)

where h0, . . . , hK are the filter parameters. Expression (7) shifts-and-
sums signal x� via the shift operator S� over the parametric product
graph G� to obtain the output u�. Since G� captures graph-time lo-
cations, the shifts are now performed over the spatial graph G and
the temporal graph GT justifying the qualifier graph-time convolution
for operation (7).1 Defining the graph-time filtering matrix H(S�) =∑K
k=0 hkS

k
� allows writing (7) as u� = H(S�)x� [cf. (2)].

Contrasting (7) with the graph convolutional filter [11], we can see
that the graph-time convolutional filter aggregates at the space-time lo-
cation (i, t) information from space-time neighbors that are up to K
hops away over the product graph G�. This information is obtained
from the shifts S�x�, . . . ,S

K
� x�. The space-time location (i, t) in G�

receives in this way information from other space-time locations (j, τ)
that are up to K hops away in G� for j ∈ V and τ ∈ [T ]. In other
words, node i at time t receives present signal information {xjt} from
its spatial K−hop neighbors, and past information τ < t from itself
{xiτ} and its spatial neighbors {xjτ} that can be reached through a
path of length K in G�. Thus, the filter order K controls the spa-
tiotemporal locality of the graph-time convolutional filter (7).

1We can see the convolutional nature of (7) by particularizing the parametric
product graph to the Cartesian product. Then, setting N = 1 node for the spatial
graph with a self-loop and the temporal graph to the directed line, expression
(7) implements the temporal convolution. Setting T = 1 node for the temporal
graph with a self-loop, expression (7) reduces to a graph convolution.



Computation & recursive implementation. We now discuss the re-
cursive implementation of the proposed GTCNN to provide insights
on its computational complexity and scalability. While working with
the product graphs, we can exploit the sparsities in ST and S to reduce
the computational cost for the output (7). If parameters {sij} are fixed
(i.e., the product graph), we can work directly with S�, which has a
sparsity of order |E�|=NT+N |ET |+T |E|+|ET ||E|. Computing out-
put u� requires computing the shifts x

(k)
� = Sk�x�. For this, we can

use the well-know recursive implementation of shifting signals over a
graph [21,25,32] and write x

(k)
� =Sk�x� = S�x

(k−1)
� with x

(0)
� = x�;

hence, we can obtain the output u� with the linear cost O(K|E�|).
If parameters {sij} are to be learned (i.e., the product graph), com-

puting S� beforehand or using (7) can be unaffordable in large-scale
settings because of the powers of S� (cubic cost in NT ). To allow
scalability, we first expand all polynomials of order k and rearrange
the terms to write (7) as

u� =

K∑
k=0

hkS
k
�x� =

K∑
k=0

K̃∑
l=0

hkl
(
SlT ⊗ Sk

)
x� (8)

for some orders K and K̃ and parameters {hkl}. To compute output
u�, we need to compute all terms of the form x

(kl)
� = (SlT ⊗ Sk)x�.

Exploiting the Kronecker product property (A⊗B)(C⊗D) = AC⊗
BD, we can write the latter as

x(kl)
� = (ST ⊗ IN )(IT ⊗ S)(Sl−1

T ⊗ Sk−1)x�. (9)

Thus, we can compute x
(kl)
� again recursively as

x(kl)
� = (ST ⊗ IN )(IT ⊗ S)x(k−1,l−1)

�

= (ST ⊗ IN )x(k,l−1)
�

(10)

with initialization x
(00)
� = x�. Recursion (10) implies we can compute

x
(kl)
� from x

(k−1,l−1)
� with a cost of orderO(T |E|+N |ET |) and since

we need to perform the latter for all k ∈ [K] and l ∈ [K̃], we have a
computational cost of order O(KT |E|+ K̃N |ET |), which is linear in
the product graph dimensions.

Note also that form (8) improves our control on the spatiotemporal
locality through orders K and K̃. A larger K implies more reach over
the spatial graph (i.e., SK ), while a larger K̃ implies more reach over
the temporal graph (i.e., SK̃T ). Both orders are design choices.

3.2. Graph-Time Pooling

Building upon [25], we propose a zero-pad graph-time pooling mod-
ule to reduce the dimensionality of the graph-time features without re-
sorting to any coarsening approach. This simple, yet non-trivial, gen-
eralization needs to account now for the spatiotemporal peculiarities
induced by the product graph. The pooling approach has three steps:
i) summarization; ii) slicing; iii) downsampling.
Summarization changes the signal value of a node with a summary
(e.g., max, mean) of the values in the local neighborhood. Given the
N`−1T`−1 convolutional features u�,`−1, graph S�,`−1, and defined
the reachability integer α`, we denote the summarized features as

v�,` = Γ(u�,`−1;α`; S�,`−1) (11)

which signifies the ith entry [v�,`]i is the summarization of signal val-
ues [u�,`−1]j from nodes j that are up to α` hops away, i.e., {j :
[Sk�,`−1]ij 6= 0 for some k ≤ α`}. Function Γ(·) can be, for instance,
max(·) or mean(·). Since the local neighborhood of a node in G�,`−1

includes also spatial nodes from different time instances, the features
in v�,` are summarized over both the graph and the temporal domain.
The N`−1T`−1 summarized features in v�,` can now be seen as an-
other product graph signal over graph G�,`−1.

Remark 1. Summarization is an implicit low-pass operation and the
type of product graph has an impact on its severity. If the product
is parametric or strong, summarization is performed over larger spa-
tiotemporal neighborhoods due to the inter-connections in different
time instances [cf. Fig. 1; grey edges]. This wide summarization leads
to a stronger low pass and reduces the signal variability. We limit the
local spatiotemporal neighborhood by using the Cartesian product [cf.
Fig. 1; green edges] in the summarization step. �

Slicing reduces the dimensionality across the temporal dimension.
Given the N`−1T`−1 summarized features v�,`, we de-vectorize it
into the union of T`−1 spatial graph signals[

v`,1, . . . ,v`,T`−1

]
= vec−1(v�,`)

where each v`,t is a spatial graph signal of dimension N`−1. Denoting
the slicing ratio at layer ` byR`, we keep from

[
v`,1, . . . ,v`,T`−1

]
one

column (or slice) every R`, resulting in the T` = dT`−1/R`e output
slices {w`,τ}. These output slices are vectorized back into the product
graph signal w�,` = vec

([
w`,1, . . . ,w`,T`

])
. Denoting the slicing

operation at layer ` as ∆`(·) : RN`−1T`−1 → RN`T` , we can write the
sliced features as

w�,` = ∆`

(
v�,`;R`

)
. (12)

I.e., slicing a product graph signal v�,` of dimensionsN`−1T`−1 yields
another product graph signal of dimensions N`−1T`, in which only
the temporal dimension is reduced. The product graph over which the
sliced signal w�,` resides can be built using the same rule we built the
initial product graph G� but with a smaller temporal graph of T` ≤
T`−1 nodes (e.g., a directed line containing fewer nodes).
Downsampling reduces the number of active nodes across the spatial
dimension from N`−1 to N` without modifying the underlying spatial
graph. This is done via zero-padding, i.e., we set to zero the value of
inactive nodes while preserving the value on the active ones. Given a
binary sampling matrix C` from the combinatorial set

C` = {C` ∈ {0, 1}N`T`×N`−1T`−1 : C`1 = 1,C>` 1 � 1}

we compute the downsampled features as

z�,` = C`w�,`. (13)

When [C`]ij = 1, it means the jth component of w�,` is selected and
stored in the ith entry of z�,`. Therefore, vector z�,` is a product graph
signal of dimensions N`T` residing over the active nodes N`−1T` of
the product graph G�,` obtained from the slicing step. The remaining
nodes in G�,` have a zero value.

Downsampling through the sampling matrix C` requires dis-
cussing two main aspects. First, designing C` is to a large extent an
art and it needs to capture the physicality of the problem but also the
coupling between the higher-level features at layer ` and the spatial
graph. We consider C` to select the nodes with the highest degree
as [25]. Second, the set of active nodes in deeper layers is by defi-
nition a subset of the active nodes in the earlier layers. To track the
location of these active nodes we can consider the nested sampling
matrix D` = C` . . .C1 and use it for zero-padding. The sparsity of
C` and D` can be in turn used to compute the graph-time convolu-
tional filter output [cf. (7)] with a reduced shift operator like for the
conventional zero-pad pooling in GNNs; refer to [25, Sec. III-A] for
the technicalities of this implementation.

In summary, a GTCNN is an architecture in which each layer is
composed of a graph-time convolutional module defined by (7)-(8),
a graph-pooling module defined by (11)-(12)-(13), and a nonlinear-
ity module (5). The higher-level features of layer ` are input to the
successive layer as per (2) and propagated down the cascade until the
final GTCNN output [cf. (6)] is obtained, which is the joint graph-
time embedding. The embedded features are fed optionally to fully
connected layers and then to a loss function to learn the parameters in
H = {{hfgk` }; {sij,`}} comprising the coefficients of all convolutional
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Fig. 2: Comparison of the GCNN baseline with the non-parametric and
parametric GTCNN without pooling and with the parametric GTCNN
with pooling.

filters {hfgk` }, all parametric product graphs {sij,`}, and optionally of
the fully connected layers. Remark the parameters in H are indepen-
dent of the graph dimensions, while the cost of the GTCNN is linear
and governed by the graph-time convolutional filters.

4. NUMERICAL RESULTS

This section corroborates the performance of the GTCNN to provide
insights on its inner-working mechanisms and compare it with baseline
and state-of-the-art alternatives. We used ADAM to train all models
with decaying factors β1 = 0.9 and β2 = 0.999 [33]. The temporal
graph is the directed line.2

4.1. Source Localization

First, we consider a controlled synthetic experiment to highlight the
role of the GTCNN key components. The task consists of finding the
source of a diffusion process by observing a sequence of T graph sig-
nals xt, . . . ,xt+T for a random time instance t. The graph is an undi-
rected stochastic block model ofN = 100 nodes andC = 5 communi-
ties. The basic experimental setup is the same as in [25] but we consid-
ered 1, 200 data points to avoid duplicates with an 80%− 10%− 10%
split. For a fair comparison with the graph-only GCNN baseline, we
considered T successive signal realizations as features in the input
layer. All architectures have two layers and two filters per layer of
order two and are trained over 8, 000 epoch with a batch size of 100
samples. We evaluated features in F1, F2 ∈ {2, 4, 16, 32}, downsam-
pling sizes N1 ∈ {30, 75, 100} and N2 ∈ {10, 30, 50}, and temporal
windows T ∈ {1, 2, 3}; see [Supplement; Sec. I].

Fig. 2 compares the GTCNNs with parametric and non-parametric
product graphs [cf. Fig. 1], with and without pooling, and with the
baseline GCNN. We can see that accounting for the temporal domain
via the sparse connectivity of the product graph improves upon GCNN
solutions. Better results are achieved via the parametric product graph
and by the use of pooling as evidenced by the larger median value
and the smaller deviation of the right-most boxplot. Differently from
the others, the latter architecture has also no negative outliers, which
indicates it learned in all graphs and data splits. We attribute the latter
to the fact that the spatiotemporal coupling is learned in a sparse way
and to the zero-pad pooling that preserves the original spatial graph.

4.2. Forecasting

We now consider the task of forecasting future values of a multivariate
time-varying signal given a sequence of T past realizations. We used
the setting in [12] and considered the Molene dataset comprising 744
hourly temperature measurements across N = 32 stations in a region
of France; and the NOAA dataset comprising 8, 579 hourly tempera-
ture measurements across 109 in the U.S.. The loss function is the MSE

2Code available at https://github.com/gtcnnpaper.

Fig. 3: Root normalized MSE versus future prediction steps for the
different methods in the Molene dataset.

Fig. 4: Root normalized MSE versus future prediction steps for the
different methods in the NOAA dataset.

between the one-step ahead prediction x̂t+1 and the true value xt+1

regularized by the norm-one of all parametric product graph coeffi-
cients s = vec({sfgij,`}) [cf. (1)], i.e., L = MSE(x̂t+1; xt+1)+β‖s‖1,
where β ≥ 0 is a scalar. We compared the GTCNN with: i) the lin-
ear models G-VARMA and GP-VAP [12]; ii) the gated graph-based
RNN (GGRNN) [15]; iii) the time-only LSTM. For the G-VARMA
and GP-VAP we used the parameters from [12], while for the GTCNN
and GGRNN we evaluated features F ∈ {2, . . . , 20}, orders K ∈
{2, . . . , 5}, observation windows T ∈ {3, 4, 5}, and norm-one spar-
sity weights β ∈ [0, 0.05]. For the LSTM we varied the number of
hidden units in {8, 16, 32, 64}. We also considered different learning
rates in [5× 10−4, 10−3].

Figs. 3 and 4 show the root normalized MSE (rNMSE) for up to
five steps ahead prediction for the Molene and the NOAA dataset, re-
spectively. For the Molene dataset, we can see that all graph-based ap-
proaches achieve a lower rNMSE than the LSTM. This is because the
dataset contains fewer training samples; thus, imposing an inductive
bias [26] through the product graph during learning is helpful. In fact,
the best performance is achieved by the linear graph models, while the
GTCNN performs the best among the neural network alternatives. For
the NOAA dataset, instead, we see the opposite trend: the neural net-
work solutions achieve a lower rNMSE compared with the linear graph
models. Since the NOAA dataset contains more training samples it al-
lows neural networks to learn more complicated representations. The
GTCNN achieves the best performance together with the LSTM, while
the GGRNN suffers when predicting more than three steps. Overall,
these results put the GTCNN as a valid alternative to learn represen-
tations with inductive spatiotemporal biases when both the number of
training samples is limited and large.

4.3. Earthquake classification

Lastly, we propose an experiment to find the epicenter of precursor-
based earthquakes [34]. Precursor-based detection relies only on wave
recordings up to 20 seconds before the strike but not on historical
trends. This is a challenging task and our main goal is to show how
the GTCNN can be used to approach the latter. We built a dataset from
the New Zeeland earthquake service (Supplement Sec. II).

Experimental setup. We considered 4, 633 seismic wave recordings
between 2016 and 2020 across 58 stations. These recordings are of

https://github.com/gtcnnpaper


Fig. 5: (Left) Graph structure among the seismic stations. (Right) Yel-
low dots are the earthquake epicentres; red nodes are stations with an
assigned label; white nodes are stations without a label.

LSTM GGRNN GTCNN0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ed

ia
n 

ac
cu

ra
cy

Fig. 6: Median accuracy distribution of the different stations in the
one-vs.-all experiment. We can see the GGRNN and the GTCNN have
more stations achieving median accuracies of more than 60%, where
the GTCNN has a few stations exceeding 65% of accuracy.

earthquakes with a magnitude between one and three and not further
than 200km from the closest station. The epicenter is assigned to one
of the seismic stations and in total there are 45 stations with assigned
labels each with approximately 175 earthquakes. The remaining 13
stations record the waves but do not have an assigned earthquake. We
built a geometric graph of N = 58 nodes and an edge exists if two
stations are within 170, 3km; like the Molene/NOAA graphs in [12].
Fig. 5 illustrates the graph and the earthquake distribution. The graph
signal consists of 20 timesteps of recording in the ten seconds before
the strike over all 58 stations. We compared again the GTCNN with
the LSTM and the GGRNN. All models are trained w.r.t. the cross-
entropy loss for 100 epochs with a batch size of 128, learning rate
10−3, and early stopping at 20 epochs. The results are averaged over
20 realizations. The GTCNN has three layers with grid-searched fea-
tures F1 = 4, F2 = 8, F3 = 12, filter orders K = 2, slicing ratios
R = 2, and active pooling nodes 100%, 90%, and 70% of the total
nodes in layers one, two, and three, respectively. The LSTM has 20
grid-searched hidden units, while the GGRNN has the same param-
eters as in [15]. We considered two experiments: one-vs-all binary
classification, which assigns the wave to a specific station or any of
the other 44 stations; all-vs-all 45 class classification scenario, which
assigns the wave to one of the 45 stations.

One-vs-all: In this setting, we balanced the dataset by considering
half of the points from the class of interest and the other half from all
remaining 44 stations. From Fig. 6 and Table 1, we can see that, while
all methods have a very similar statistical performance, the GTCNN
has a higher average value compared with the other alternatives.

All-vs-all: Since for the approximately 4, 5k data points a 45 class
classification problem is challenging, we measure the performance
with a radius-based accuracy metric. That is, if an earthquake has
as correct label station i, we consider a correct classification also a

Table 1: Performance of the different methods for the one-vs-all earth-
quake classification task. In brackets, it is shown the standard deviation
of the respective metric. See supplement for each class.

Model Accuracy Precision Recall F1
LSTM 0.52 (0.05) 0.53 (0.05) 0.53 (0.06) 0.50 (0.06)
GGRNN [15] 0.53 (0.04) 0.53 (0.05) 0.54 (0.06) 0.51 (0.05)
GTCNN 0.54 (0.04) 0.54 (0.05) 0.55 (0.06) 0.53 (0.05)
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Fig. 7: Radius-based accuracy results of the different models as a func-
tion of the distance from the correct station. I.e., a classification for an
earthquake with label station i is considered correct even if assigned to
a station that is within a given radius.

station within the radius. Another reason for such a choice is that
several earthquakes have their epicenters far from any station (e.g.,
70km) or between two or more stations. We considered a split of
60% − 20% − 20%. From Fig. 7, we can see that graph-based meth-
ods perform better than the LSTM highlighting again the impact of this
prior when the problem is challenging. As we increase the radius, the
performance of all approaches increases with the GTCNN achieving
a slightly better result. Note that even by increasing the radius just
to 3km the GTCNN shows the biggest jump, which indicates it has
assigned several epicenters to stations close to the true label.

We may still correctly argue the reported performance is still far
from satisfactory. Reasons for these are multiple (station distribution
across the country; the match between the spatial graph and wave prop-
agation; use of only the vertical velocity of the wave), but they, how-
ever, show promise for the GTCNN and the other graph-based solu-
tions; and in the one-vs-all accuracy (Fig. 6) we have also seen accura-
cies for particular stations up to 80%; see Supplement Sec. II.

5. CONCLUSIONS

We proposed a graph-time convolutional neural network to learn spa-
tiotemporal dependencies with a convolutional prior over both the
graph and temporal domain. The spatiotemporal data are first trans-
formed into a static signal over a larger product graph between the
spatial relationship graph and the temporal relationship graph. The
product graph is parametric such that we can learn the spatiotemporal
coupling directly from the data. The convolutional module follows the
first principles of the convolution operator and builds the output as a
shift-and-sum of the input signal over the product graph. A graph-time
pooling module is proposed based on spatial zero-padding to preserve
the spatial graph-prior in the deeper layers and with a temporal slicing
to reduce the dimension across time. We corroborated the GTCNN
on classification and regression tasks showcasing its ability to learn
spatiotemporal representations. By providing a new alternative to
learn from temporal data, the GTCNN opens the doors to a novel
research stream including applications from different scientific disci-
plines. Future work will consider parallelization of the GTCNN to
handle large-scale graphs and theoretical advances to shed light on the
capability of the GTCNN to discriminate graphs in a spatiotemporal
manner.
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Supplementary material
This document contains the supplementary material of the paper
Graph-Time Convolutional Neural Networks. Section 1 analyzes of
the different graph convolutional neural network (GTCNN) compo-
nents in the source localization dataset. Section 2 provides details
about the earthquake labeling experiment and the dataset analysis.

1. SOURCE LOCALIZATION
In this section, we analyze the impact of the type of product graph and
pooling on the GTCNN.
Product graph. We start with a GTCNN of two layers of F1 = F2 =
2 and two filters per layer of orders K = 2. Our rationale is that this
minimalistic architecture allows understanding better how much the
product graph aids learning: i) considering more features per layer will
lead to a more complex network that may overfit; and ii) the results are
independent of pooling, which we analyze next.

Table 1: Mean accuracy (std. dev.) of the GTCNN with different
product graphs compared with the baseline GCNN.

Model T = 1 T = 2 T = 3
GCNN (baseline) 0.64 (0.16) 0.42 (0.21) 0.44 (0.28)
GTCNN Cartesian n/a 0.65 (0.19) 0.66 (0.19)
GTCNN Strong n/a 0.63 (0.20) 0.67 (0.17)
GTCNN Parametric n/a 0.68 (0.18) 0.69 (0.20)

We ignored the GTCNN with the Kronecker product since this ar-
chitecture does not have a connected product graph. As a baseline, we
considered a GCNN working with the time-varying signal of window
T as multiple features over the nodes. This comparison is shown in Ta-
ble 1. The parametric GTCNN achieves the highest mean performance
but there is no significant difference with the strong product GTCNN.
These two results suggest the temporal relations between neighboring
nodes aid learning. Contrarily, if the product graph is not used and
the baseline graph convolutional neural network (GCNN) is employed,
we see the performance degrades substantially. This is because such
a network fails more often to learn from particular graph realizations
and data splits, especially, when T ≥ 2. We attribute the latter to the
fact that this procedure is not exploiting the physicality of the problem
to capture spatiotemporal relations in a sparse manner but rather treats
them as a union of features.
Pooling. We now investigate the effects of pooling in the GTCNN.
We considered the two-layered parametric GTCNN with a temporal
window T = 2. The temporal slicing ratios are R1 = 1 and R2 = 2,
i.e., all instances are kept in the first layer and only half in the second
layer. Initially, we analyze the pooling effects in the second layer for
a different number of features F2 ∈ {2, 4, 6, 16, 32}, and active nodes
N2 ∈ {10, 30, 50}. From Fig. 1, we can see the highest performance
is achieved when F2 ≥ 16 and N2 ≥ 30. This indicates that, when
the GTCNN is equipped with a higher expressive power (more filters),
it can allow for a more drastic pooling in the second layer without
affecting the performance. Remark in the latter setting, the GTCNN
has also fewer outliers (i.e., cases where it cannot learn), indicating
more robustness to graph realizations and data splits.

Next, we analyze the effects of pooling in the first layer. From the
earlier results, we fix F2 = 16 features and N2 = 30 active nodes
and test for F1 ∈ {2, 4, 16, 32} and N1 ∈ {30, 75, 100} to have
N1 ≥ N2. From Fig. 2, we can see the performance degrades when
more filters are considered in the first layer. This is because the network
with F2 = 16 filters has already sufficient discriminatory power for the
dataset at hand and increasing it further leads to overfitting. From the
pooling perspective, these results indicate that all nodes (N1 = 100)
should be kept in the first layer (higher median and lower spread). This
is not entirely surprising since the first layer learns lower-level repre-
sentations and exploits all data. The latter observation is particularly

Fig. 1: Accuracy versus the number of active nodes in the second layer
of the GTCNN for different features. The first layer has F1 = 2 fea-
tures and N1 = 100 active nodes. The GTCNN performs better when
its expressive power (higher F2) increases and requires fewer active
nodes in the second layer (lower N2).

Fig. 2: GTCNN performance for different downsampling nodes and
features in the second layer.

visible for F1 = 2 when the network is less prone to overfitting. In
conclusion, these results indicate the GTCNN may require all lower
level features in the input layer to learn the intermediate representa-
tion but can sacrifice a large portion of active nodes in the next layer
without affecting the performance.

2. EARTHQUAKE CLASSIFICATION

Dataset. We extracted 90, 000 initial recordings between 2016 and
2020 over 58 seismic stations; Fig. 3. The signal is the weak mo-
tion measured along the vertical axis at 100Hz. We kept only those
recordings for which the magnitude was between one and three [cf.
Fig. 4 (left)] and the depth smaller than 200 km [cf. Fig. 4 (right)].
This resulted into a more uniform distribution with 87, 000 recordings.
We further discarded those datapoints for which one of the stations
was inactive and retained those earthquakes for which the epicentre
was within 75km from the closest station, leaving to approximately
70, 000 datapoints; Fig. 5 (top). The dropped recordings are mostly in
the ocean.

We further analyzed the number of assigned earthquakes per sta-
tion Fig. 5 (bottom). There was one station with no earthquakes as-
signed; several stations with less than 100; and 27 stations with more
than 1, 000. This distribution leads to an unbalanced dataset, which
was prioritising the majority classes even by using conventional learn-
ing approaches for unbalanced datasets. To achieve a more balanced
dataset, we discarded those stations with less than 150 earthquakes and
undersampled randomly the recorded seismic waves in those stations
containing more than 1, 000 recordings. This led to the final dataset
comprising 4, 633 recordings assigned to 45 stations (out of the 58
available), while the graph remains defined over the N = 58 stations.

Graph construction. We built a geometric graph following the great-
circle distance strategy with an edge if the distance between two sta-
tions is smaller than 170, 3 km. We further weighted the graph by
setting the edge weights as Aij = e−d(i,j)/d̄, where d(i, j) is the
great-circle distance between stations i and j and d̄ is the average dis-
tance. Refer to Fig. 5 in the main document.



Fig. 3: Earthquake Epicentre Distribution. Each yellow point repre-
sents an earthquake.
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Fig. 4: (Left) Magnitude Distribution. (Right) Depth Distribution.

One-vs-all. Fig. 6 shows the boxplot distributions for the different
classes. We can see the GTCNN can reach a median accuracy of about
60% in 11 cases and also hitting up to 70% in a few of them. Never-
theless, the scarcity of the data, the uneven spatial distribution of the
earthquakes, and difficulty of working with recordings before the ac-
tual earthquake make it difficult for all methods to achieve far superior
accuracies. Further research will be based on this aspect and assessing
the role of the graph for this setting.

Fig. 5: (Top) Distribution of the epicenter distance from the closest
station. (Bottom) Number of assigned earthquakes per station.
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Fig. 6: Accuracies of the proposed GTCNN and alternatives GGRNN
and LSTM for the different positive classes (stations) in the one-vs-all
classification.
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