
 
 

Delft University of Technology

Experience Report on Soft and Project Skills Building through Repetition

Devroey, Xavier; Amrani, Moussa; Vanderose, Benoît

DOI
10.1145/3472673.3473959
Publication date
2021
Document Version
Final published version
Published in
EASEAI 2021 - Proceedings of the 3rd International Workshop on Education through Advanced Software
Engineering and Artificial Intelligence, co-located with ESEC/FSE 2021

Citation (APA)
Devroey, X., Amrani, M., & Vanderose, B. (2021). Experience Report on Soft and Project Skills Building
through Repetition. In A. Vescan, C. Serban, J. Henry, & U. Praphamontripong (Eds.), EASEAI 2021 -
Proceedings of the 3rd International Workshop on Education through Advanced Software Engineering and
Artificial Intelligence, co-located with ESEC/FSE 2021 (pp. 9-14). (EASEAI 2021 - Proceedings of the 3rd
International Workshop on Education through Advanced Software Engineering and Artificial Intelligence, co-
located with ESEC/FSE 2021). ACM. https://doi.org/10.1145/3472673.3473959
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3472673.3473959
https://doi.org/10.1145/3472673.3473959


Experience Report on Soft and Project Skills Building through
Repetition

Xavier Devroey

x.d.m.devroey@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Moussa Amrani

moussa.amrani@unamur.be

Faculty of Computer Science,

Namur Digital Institute (NaDI),

University of Namur

Namur, Belgium

Benoît Vanderose

benoit.vanderose@unamur.be

Faculty of Computer Science,

Namur Digital Institute (NaDI),

University of Namur

Namur, Belgium

ABSTRACT

Acquiring soft and project skills during their studies is of para-

mount importance for computer science students to integrate large

development teams after graduating. Project-oriented learning of-

fers interesting opportunities for teachers to tutor students, and

allows them to acquire and train those skills in addition to the core

topics of the course. However, since most existing curricula require

courses to be as independent as possible (for organizational rea-

sons for instance), some topics are covered in different courses in

slightly different ways. This repetition is interesting for understand-

ing difficult notions appropriately, but may also hamper students’

understanding when closely related concepts are embedded in dif-

ferent ways.We report here on our teaching approach: we propose a

series of projects that share a common theme, in order to (i) provide

a transversal understanding of common notions seen in separate

courses, and (ii) introduce soft and project skills in a progressive

way, enabling students to iteratively experience and learn skills

that are necessary for professional life. We report on the results

of interviews conducted with the students and extract valuable

lessons for reproducing this approach in different curricula.

CCS CONCEPTS

• Social and professional topics → Software engineering ed-

ucation.

KEYWORDS

software engineering education, project skills, soft skills

ACM Reference Format:

Xavier Devroey, Moussa Amrani, and Benoît Vanderose. 2021. Experience

Report on Soft and Project Skills Building through Repetition. In Proceedings

of the 3rd International Workshop on Education through Advanced Software

Engineering and Artificial Intelligence (EASEAI ’21), August 23, 2021, Athens,

Greece. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3472673.

3473959

EASEAI ’21, August 23, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8624-1/21/08.
https://doi.org/10.1145/3472673.3473959

1 INTRODUCTION

Beyond the various notions studied during a full Computer Science

curriculum, the practice of Software Engineering and Computer

Science requires soft skills and project skills that are expected from

students after graduation to integrate development teams of large

projects [1, 6, 27]. Among others, teamwork requires communica-

tion skills, domain and technical analysis, as well as mastering code

version control and tasks automation (e.g., testing and code quality

measuring, version control, continuous integration, etc.). Adopting

project-oriented learning [20, 24] provides an adequate playground

for introducing such skills, giving students an early intuition of

the challenges and technologies, before studying those topics more

extensively.

Typically, Computer Science curricula [7] are decomposed into

a Bachelor, that focuses on fundamental topics for programming

(algorithms and data structures, imperative and object-oriented

programming, databases, etc.) and on acquiring general-purpose

knowledge (mathematics, economy, etc.); and aMaster that includes

advanced software engineering topics. Nowadays, universities also

emphasize project-oriented learning to enhance the understanding

of the targeted topics, train critical thinking, provide realistic case

studies that go beyond toy examples, and prepare student for their

professional life in industry. However, these projects tend to con-

sume a significant time from professors and teaching assistants to

design and test before submitting them to students, then to super-

vise students during the semester (answering theoretical questions

as well as technical ones), and finally to grade the students’ work.

Another difficulty is that courses are often required to be inde-

pendent of each other, or at least loosely coupled, to allow students

to customize their study program. As a consequence, some topics

are covered in different courses in slightly different ways. This

repetition is interesting as it allows students to understand difficult

notions [8] from different angles. However, this repetition might

also hamper the students’ understanding when closely related no-

tions are embedded in different courses and projects in different

ways, without making explicit the links between the underlying

fundamental concepts. For example, the notion of concrete syntax

may be presented graphically in a modeling course, but textually

in a language theory course, both ultimately relying on an abstract

syntax.

This paper reports on a teaching experience of proposing a se-

ries of two projects that share a common theme, followed by a

larger development project that relies on the same technological

framework, in order to (i) provide a transversal understanding of

9

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-0831-7606
https://orcid.org/0000-0002-6987-1037
https://orcid.org/0000-0001-9752-0085
https://doi.org/10.1145/3472673.3473959
https://doi.org/10.1145/3472673.3473959
https://doi.org/10.1145/3472673.3473959
https://creativecommons.org/licenses/by/4.0/


EASEAI ’21, August 23, 2021, Athens, Greece Xavier Devroey, Moussa Amrani, and Benoît Vanderose

common notions seen in separate courses from different perspec-

tives, and (ii) introduce soft and project skills in a progressive way,

enabling students to iteratively experience and learn skills, and

ultimately ingrain practices that are required in professional life.

More specifically, the two first projects happen during the last year

of the Bachelor program in Computer Science of the University of

Namur in Belgium, as part of a Analysis and Modeling course, and

a Programming Languages Theory course. The larger development

project is spread over three months of the first year of the Master

program as part of the Software Engineering course.

For assessing the adequacy of our approach regarding the prac-

tical use and the (perceived) impact, we conducted interviews with

Bachelor students after the first project as well as during the sec-

ond project, and with Master students after the more significant

project, fromwhich we extract valuable lessons for reproducing this

scenario in different curricula. Our initial insights indicate that al-

though the transversal approach is not always obvious for students,

the improvements observed in the three courses and the positive

feedback denote a positive impact of the approach and motivate us

to pursue in the integration and alignments of the projects.

The rest of the paper is organized as follows: Section 2 details

the objectives of the courses our series of projects illustrate, in

terms of core Computer Science notions, as well as soft/project

skills they require. Section 3 describes the projects proposed in

each course, as well as their synergies and progressive structure.

Section 4 discusses the insights and lessons learned, and Section 5

concludes with final remarks.

2 CONTEXT

The ACM Computing Curricula (2020) [7] identifies the competen-

cies that should be developed by students during a Bachelor and

a Master in various Computer Science disciplines (e.g., software

engineering, data science, cybersecurity, etc.). It formally struc-

tures competencies by clarifying which knowledge (the know-what),

which skills (the know-how) and which dispositions (the know-why)

are observable for accomplishing a given task [7]. For each dis-

cipline, a curriculum defines the list of competencies that it will

develop with students.

The first, knowledge, includes elements both from computing

(such as systems modeling, software fundamentals, software de-

velopment, etc.), but also from foundational and professional per-

spectives (analytical and critical thinking, communication and pre-

sentation, problem solving, etc.). Those elements may be further

refined in subelements, whose discussion goes beyond this paper’s

scope. The second, skills, describes how knowledge is concretely

applied through six cumulative levels described in Table 1 (based on

the revised Bloom’s taxonomy of educational objectives [2]). The

last one, dispositions, covers habitual inclinations of an individual

to apply knowledge and use skills to perform a task (for instance,

being adaptable, collaborative, inventive, proactive, etc.)

Various knowledge elements can be addressed with different

levels of skills. Table 2 provides an overview of how the Analysis

and Modeling, the Programming Languages Theory, and the Soft-

ware Engineering courses cover the main elements for computing,

foundational and professional knowledge with the corresponding

skills level. Based on our experience and the curricula in Computer

Science and Software Engineering at the University of Namur , we

indicate the desired skill level for the corresponding knowledge

element, as well as the emphasis put by the projects on that element.

The next section details how we implemented those knowledge and

skills.

2.1 Analysis and Modeling Course

At the end of the course, students are expected (i) to develop ab-

straction capabilities sufficient for analysing expertise domains; and

(ii) to express the result of their analysis, i.e., to model their un-

derstanding, in an implementation-independent fashion, using the

industry standard Uml, covering both structural (through Class

and Object Diagrams as well as Ocl) and behavioural (with Use

Case, State Machine, Activity and Interaction Diagrams) concerns

[11, 12, 17]. A typical exercise consists, for instance, in analysing

the description, in natural language, of a reasonably large infor-

mation system specification. The course focuses on the ability to

distinguish which aspects of the domain are adequately covered by

which Uml diagram(s), while offering a lightweight methodology

to approach the analysis of the requirements, and translate into an

Uml specification.

After noticing that students considered this course difficult due

to the complexity of variety of diagrams, we introduced a modeling

project, whose purpose is to study more deeply the structural as-

pects of a domain on a more realistic system. The project’s theme

describes a Domain-Specific Language (Dsl): for the two first years,

we proposed a wristwatch product line with adaptable apps (in-

spired by [14]), before switching to a world game [5, 26] to better

catch the students’ interest. AllDsl case studies explicitly integrated

a structural, as well as a dynamic part describing transformations

on the domain (typically for the world games, a small strategy

language). The project’s evaluation relies on three criteria: (i) the

precision and accuracy of the diagram, tested using predefined,

representative witness instances; (ii) the consistency between dia-

grams (what is formally known as model conformance [4, 16]), and

constraints; and (iii) the overall quality of their solution.

Beyond learning the modeling tool (via tutorial videos and in-

ternet content), completing the project does not imply designing

large diagrams. Instead, it requires confronting the students’ un-

derstanding of the domain, and designing a good working strategy

to ensure that the different diagrams are consistent and allow to

model the situations adequately.

2.2 Programming Language Theory Course

The course covers the basics of language and compiler theory (reg-

ular expressions, context-free languages, static and dynamic se-

mantics, and code generation). Compiler projects [15, 19, 25] help

students to practice these concepts. In previous versions of the

course, our compiler project was following a software project strat-

egy [32] and consisted of a simple imperative program compiled in

P-Code [23] (executed using an abstract graphical P-Code Machine

[31]), implemented in C and using Flex and Bison to generate a

parser from an attributed grammar.

A test-driven approach allowed to ease (auto-)evaluation and

assess the progression of the students [18]: they submitted their

code to an automated script that ran the code against a series of test

10



Experience Report on Soft and Project Skills Building through Repetition EASEAI ’21, August 23, 2021, Athens, Greece

Table 1: Cumulative levels of skills based on Bloom’s taxonomy [7]

Remembering Understanding Applying Analyzing Evaluating Creating

Exhibit memory of pre-

viously learned materials

by recalling facts, terms,

basic concepts, and an-

swers.

Demonstrate understand-

ing of facts and ideas

by organizing, compar-

ing, translating, interpret-

ing, and giving descrip-

tions.

Solve problems in new sit-

uations by applying ac-

quired knowledge, facts,

techniques, and rules in a

different way.

Examine and break infor-

mation into parts by iden-

tifying motives or causes;

make inferences and find

evidence to support solu-

tions.

Present and defend opin-

ions by making judg-

ments about information,

validity of ideas, or qual-

ity of material.

Compile information to-

gether in a different way

by combining elements

in a new pattern or by

proposing alternative so-

lutions.

Table 2: Computing, foundational and professional knowledge [7] covered by the courses with the corresponding skill level.

A⋆ indicates that the knowledge element and skill level are emphasised in the course’s project.

Knowledge element Analysis and Modeling Programming Languages Theory Software Engineering

Users and Organizations

Social Issues and Professional Practice Understanding

Enterprise Architecture Understanding

Project Management Applying (⋆) Evaluating (⋆)

User Experience Design Applying (⋆)

Systems Modeling

Systems Analysis and Design Creating Evaluating (⋆) Evaluating (⋆)

Requirements Analysis and Specifications Evaluating Evaluating (⋆)

Data and Information Management Applying Evaluating (⋆)

Systems Architecture and Infrastructure

Parallel and Distributed Computing Evaluating (⋆)

Software Development

Software Quality, Verification and Validation Analyzing (⋆)

Software Process Applying (⋆) Evaluating

Software Modeling and Analysis Creating Applying (⋆) Evaluating

Software Design Evaluating Applying (⋆) Evaluating (⋆)

Software Fundamentals

Data Structures, Algorithms and Complexity Analyzing (⋆)

Programming Languages Evaluating

Programming Fundamentals Evaluating

Computing Systems Fundamentals Analyzing (⋆)

Foundational and Professional

Analytical and Critical Thinking Applying Applying Applying

Collaboration and Teamwork Applying (⋆) Applying (⋆) Applying (⋆)

Multi-Task Prioritization and Management Applying (⋆) Applying (⋆) Evaluating (⋆)

Oral Communication and Presentation Applying (⋆)

Problem Solving and Trouble Shooting Applying (⋆) Applying (⋆)

Project and Task Organization and Planning Applying (⋆) Applying (⋆) Applying (⋆)

Quality Assurance and Control Applying (⋆) Evaluating (⋆)

Relationship Management Applying (⋆)

Research and Self-Starter/Learner Applying (⋆) Applying (⋆)

Time Management Applying (⋆) Applying (⋆) Applying (⋆)

Written Communication Applying (⋆) Applying (⋆) Applying (⋆)

sets (unknown from the students) and produced a report notifying

the number of passed and failed tests in each set. Each test set

was a milestone that students had to pass before a given deadline.

Students were encouraged to design their own tests and to share

them with their fellows.

More recently, we decided to make the project more directly

relevant for students and their future professional life [9] as well as

the core curriculum [10], by emphasizing the practice of soft and

project skills. We kept the test-driven approach and updated the

technological infrastructure to Java, using ANTLR 4 [21, 22] as a

parser generator, Git for version control, and Maven and Jenkins

for building and continuous integration.

We also aligned the theme of the project with the one proposed in

the modeling project [33]. In the modeling project, students model

the domain’s structure and constraints (known as static semantics

in the compiler project) using Uml. In the compiler project, they

generate working code for the Dsl, starting from a given EBNF

grammar description of the structural aspects. This flattens the

starting point for all students and preserve independence of both

courses.

2.3 Software Engineering Course

During the first year of the Master, this course confronts students

to a sizable software development project and put them in a quasi-

realistic development context in order to illustrate the challenges

facing professional software engineers [6, 13, 24]. It is designed as

a capstone course, building upon the knowledge acquired during

the Bachelor’s years (programming, modeling, etc.) and introducing

new challenges (requirements engineering, project management,

rapid delivery, etc.).

This course settings intentionally broaden soft and project skills

by facing students with high levels of uncertainty and freedom

of choice, which are inherent to real-life software development.

It is instrumental in teaching, among others, the importance of

communication within teams and the importance of a rigorous

rational process to inform the many choices presenting themselves

during the course of the development.

11



EASEAI ’21, August 23, 2021, Athens, Greece Xavier Devroey, Moussa Amrani, and Benoît Vanderose

Figure 1: View of the playing grid from one player (extend-

ing the 2D Roguelike Unity tutorial [28])

declare and retain

[...]

when your turn

when life < 20 do

next use soda

done

by default declare local

b as boolean;

do set b to f()

next move east

done

Figure 2: Example of B314 program

3 PROJECTS DESCRIPTION

The modeling project and the compiler project, both part of the

third year of Bachelor at the University of Namur , share a common

theme: it consists of specifying, during the modeling project, a

Dsl describing a turn-by-turn world game entitled Live Long and

Die Hard! (LLaDH) through a model, expressed as a Uml class

diagram with Ocl constraints. This modeling specification is later

on compiled, during the compiler project, into an executable code

that allows effectively playing. LLaDH is plotted as follows: two

explorers, Steve Intacks and Scipion-Edouard Mantics, compete on

different maps where they must retrieve a Grail to progress to the

next level (see Figure 1 for instance).

LLaDH is conceptually built on two small languages: the first

describes the world and its components (the maps, collectable items,

the Grail, and the persona representing the explorers); the second

describes the behavior of the explorers and their strategy to collect

the Grail while avoiding attacks from other players. The explorers

have a number of primitive actions at disposal to scan the environ-

ment on the nearby cells (e.g., is there enemies or items around)

and to decide which actions may be taken (e.g., use an item; fight

an opponent). To memorize information, the strategy Dsl allows

defining global, as well as local variables, that can be assigned, and

use iterative blocks defined by loops. Figure 2 shows a possible

(simple) strategy using the textual representation of the Dsl.

3.1 Modeling Project

The project is made available after one month of class during which

the course and practicals covers the necessary theory. Students

work in pair using MagicDraw (and later on, Modelio), and are

encouraged to discuss their understanding in an online forumwhere

teachers may give precisions about the project. The project has

non-compulsory milestones to help students assess their progress.

The project description explicitly includes questions to guide the

students’ work towards an adequate solution, without loosing too

much time with the details of the specification. Witness instances,

as well as specific constraints, are provided so that students can

test that their diagrams cover what is required.

The grading is realized in a classical way: from an ideal solu-

tion designed by the teaching team, we assess deviations, missing

points as well as correct solutions. Due to time restrictions, detailed

feedback to students is provided only after the final evaluation.

3.2 Compiler Project

The project runs in parallel with the course, and starts with a half-

day training where we present the Dsl describing the behavior

of a player, and introduce the different technologies used during

the project. We illustrate the different steps required by a compiler

(encoding a grammar, validating candidate programs with a typing

system, and producing code) through a demo compiler [30] that

handles simple arithmetic expressions with variable assignment.

Students then work in trios to develop their compiler, based

on a provided specification. To ease the learning progression, the

project is divided into milestones, each being associated to a set of

compiler functionalities, and a set of corresponding (hidden) test

cases. Students have to reach different milestones at given deadlines

by passing all the tests associated to the milestone: to pass a test, the

compiler shall reject invalid programs, and produce code for valid

programs producing the expected output values when executed.

The assessment is automated using a continuous integration

server: it provides feedback to students each time they push their

code on aGit server. We choose to have each milestone as a separate

Jenkins job, plus a global job that builds, and computes test coverage

and code quality metrics of the students’ code. After a push, each

student group can check which milestones are validated by looking

at which jobs succeeded or failed. Grading is based on the succeeded

milestones and the quality of the compiler code and tests, and an

individual oral exam to assess the global understanding of the

different concepts.

3.3 Software Engineering Project

During the 14 weeks of the course, students are randomly divided

in teams of around 5 members in charge of a software development

project. Each team starts from a loose elevator pitch as a project

description, and has to elicit the appropriate (non-)functional re-

quirements through interviews with the customers role-played by

the teaching team, starting from an initial undisclosed set of precise

requirements. All teams follow a customized Agile development

method (sometimes referred to asWater-Scrum-fall [29]) and are

supported by Jira Agile tools. The exact business case targeted by

the project varies each year but always centers around a distributed

application with multiple types of users interacting concurrently.

12



Experience Report on Soft and Project Skills Building through Repetition EASEAI ’21, August 23, 2021, Athens, Greece

Except from Jira and SonarQube for quality control, little to no

constraints are put on the development technologies and tools the

students have to rely on to achieve their goals. The teaching team

is also available as a resource for students when technological or

methodological problems arise.

Students are graded, based on the delivered product and its com-

pliance with the requirements. At the end of the semester, they

showcase their solution in front of the other groups and members

of the faculty, including the teaching team playing customers, and

professors with different areas of expertise. During this session,

functional and non-functional requirements are demonstrated, fol-

lowed by a discussion about their relevance as well as the relevance

of the architectural and technological choices taken by the teams.

4 LESSONS LEARNED

In April 2018, after all projects in the academic year ended, we eval-

uated the recent changes introduced in the modeling and program-

ming language theory projects and their reception and helpfulness

for the software engineering project, by using two different eval-

uations. First, we sent an online questionnaire to former students

who did the projects in the 2015–2018 period. Although asking

students two years later seems to represent a threat to validity, we

considered this gave them time to reflect on what those projects

bring them in their professional life. We received 60 answers total:

with 11 (18.3%) from 2015-2016, 20 (33.3%) from 2016-2017 and 29

(48.3%) from 2017-2018.

Second, we conducted semi-directed interviews: we screened

students over the whole spectrum of grades (low-grades, average-

grades, and high-grades) in the Bachelor after the compiler project

was over, and in the master after the the software engineering

project finished. Six students in each category were chosen to en-

sure obtaining at least one interview per group. We had between

two and four students in each category except in high-grade bache-

lor students and in average and low-grademaster students, resulting

in a total of 13 interviews.

Both evaluations questioned the difficulty and the utility of the

project w.r.t. the associated course, and its practical organization.

We reflect here on the perception of the transversality and the

practice of soft and project skills.

4.1 On the Transversality of the Projects

55% of the respondents perceived the modeling and compiler pro-

jects as challenging, while 80% indicated finding them interest-

ing/very interesting, and 45% thought the projects helped/were

essential to understanding the theoretical lectures. For the Model-

ing project, more than half the respondents suggested that projects

on other diagrams would be useful (which is unfortunately impos-

sible for a one-semester course). However, other Uml diagrams are

put in practice later on in the software engineering project. For

the Compiler project, a few students suggested developing a tool

like ANTLR “to put theoretical concepts into practice.” It would be

interesting, but hard to integrate with a transversal approach, and

potentially less motivating.

Among students that passed both the Modeling and Compiler

projects (representing 56 respondents and 7 interviewees), 30%

considered that having a common theme did not help them start

quicker on the compiler project (since it is presented differently:

with a metamodel in the Modeling project; and with an EBNF

grammar in the Compiler project), while the shared content helped

46% of them better understand the topic and the work expected from

them. However, interviews indicate that students still in Bachelor

do not see how the Modeling project would help them for other

courses.

4.2 On the Soft and Project Skills Perception

52% of the respondents (from a total of 27 answers) indicated that

the Analysis and Modeling course and its project prepared them

for the Software Engineering project (since they use various Uml

diagrams studied in the Analysis and Modeling course), while 30%

of the students also indicated that the Compiler project prepared

them to the technical aspects of coding for the Software Engineering

project, and 48% for the testing aspects. Since the proposed witness

diagrams were not presented as tests, students often submitted

work that was not sufficient to handle the object diagrams or the

constraints proposed.

Regarding the usage of new technologies in the compiler project,

respondents pointed that (compared to the C compiler) “a DSL with

ANTLR is way more interesting and suited to the current state of

practice” and “it opens more lines of thought in a professional context.”

Other respondents pointed out that the “technologies are aligned

with the professional market” and “used daily in my professional

context.”

4.3 Improvements of the Projects and Future

Work

From the answers, we observe that the transversal approach is not

obvious for the students and that it could be improved on several

aspects. However, the positive feedback in the open questions and

the improvements observed in the three courses encourage us to

continue the efforts for aligning the projects and their topics. This

is also underlined by respondents who wish “a stronger link [with

the Modeling project and] with the Compiler project.” Emphasizing

the transversality could be possible by explaining how to bridge

(meta-)models and grammars [33] as an exercise during practicals,

and by enforcing the link through the use of a tool that automates

the bridging (e.g., Xtext [3]).

For the compiler project, test coverage and code quality became

part of the final grade after the first year to encourage the students

to add tests. We want to continue that effort by providing themwith

finer grained feedback through the continuous integration server

to suggest potential sources of bugs using static analysis tools. It

would improve their project skills with minimal effort by merely

exposing them to new development tools without requiring heavy

training, and better prepare them for the software engineering

course.

Following the same idea, development of other skills, like project

management or continuous integration, may also be pushed one

step further by using GitHub, instead of an local Git server instal-

lation, and benefit from its project management capabilities like

milestones definition, scrum boards, etc. This approach may be

easily turned into practice at a low cost for students.

13



EASEAI ’21, August 23, 2021, Athens, Greece Xavier Devroey, Moussa Amrani, and Benoît Vanderose

5 CONCLUSION

At the University of Namur , we designed two projects illustrat-

ing both the Analysis and Modeling, and the Programming Lan-

guage Theory courses, with a shared topic: students need to analyse,

model, and later generate full code for a Domain-Specific Language

representing a world game. Although the transversal dimension of

both projects is not immediately perceived, students benefit from

working on an already modelled Dsl. Introducing soft (commu-

nication, team management) and project (version control, testing,

continuous integration, etc.) skills early better prepares the students

to handle a more realistic project in a Software Engineering course

realised in larger teams.

Our initial insights are encouraging and motivate us to pursue

our efforts for integrating and aligning the topics and teaching

requirements of those projects. Future work includes the monitor-

ing of the students and the approach in a more systematic way:

using evaluation forms and data collected by the development tools

(like the continuous integration server) to initiate a iterative im-

provement of the projects definitions. Furthermore, since the Dsl

provides a visual representation, it may be interesting to further en-

force transversality by integrating knowledge and skills developed

in the Human-Computer Interactions course.

ACKNOWLEDGMENTS

We would like to thank Fenia Aivaloglou for her valuable feedback

on an earlier version of the paper, and Fanny Boraita Amador

for handling the interviews with the students. Xavier Devroey is

partially funded by the EU Project STAMP ICT-16-10 No.731529

and the Vici “TestShift” project (No. VI.C.182.032) from the Dutch

Science Foundation NWO. Moussa Amrani is partially funded by

the D-Dams SkyWin Competitivity Cluster Project of the Walloon

Region.

REFERENCES

[1] Faheem Ahmed, Luiz Fernando Capretz, and Piers Campbell. 2012. Evaluating

the demand for soft skills in software development. IT Professional 14, 1 (2012),

44–49. https://doi.org/10.1109/MITP.2012.7

[2] Lorin W Anderson, Benjamin Samuel Bloom, and Others. 2001. A taxonomy for

learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational

objectives. Longman.

[3] Lorenzo Bettini. 2016. Implementing Domain-Specific Languages with Xtext and

Xtend. Packt Publishing.

[4] Jean Bézivin. 2005. On The Unification Power of Models. Software And Systems

Modeling 5 (2005), 171–188.

[5] Nergiz Ercil Cagiltay. 2007. Teaching software engineering bymeans of computer-

game development: Challenges and opportunities. British Journal of Educational

Technology 38, 3 (2007), 405–415. https://doi.org/10.1111/j.1467-8535.2007.00705.

x

[6] Dale Callahan and Bob Pedigo. 2002. Educating experienced IT professionals by

addressing industry’s needs. IEEE Software 19, 5 (2002), 57–62. https://doi.org/

10.1109/MS.2002.1032855

[7] Alison Clear, Allen S. Parrish, John Impagliazzo, and Ming Zhang. 2019. Com-

puting Curricula 2020. In Proceedings of the 50th ACM Technical Symposium

on Computer Science Education. ACM, New York, NY, USA, 653–654. https:

//doi.org/10.1145/3287324.3287517

[8] Thomas B. Corcoran, Frederic A. Mosher, and Aaron Rogat. 2009. Learning

Progressions in Science: An Evidence-Based Approach to Reform. Technical Report.

Consortium for Policy Research in Education (CPRE). 82 pages. https://doi.org/

10.1007/978-94-6091-824-7

[9] Saumya Debray. 2002. Making compiler design relevant for students who will

(most likely) never design a compiler. ACM SIGCSE Bulletin 34, 1 (mar 2002), 341.

https://doi.org/10.1145/563517.563473

[10] Akim Demaille. 2005. Making compiler construction projects relevant to core

curriculums. ACM SIGCSE Bulletin 37, 3 (2005), 266. https://doi.org/10.1145/

1151954.1067518

[11] Gregor Engels, Jan Hendrik Hausmann, Marc Lohmann, and Stefan Sauer. 2006.

Teaching UML Is Teaching Software Engineering Is Teaching Abstraction. In

Satellite Events at the MoDELS 2005 Conference. MODELS 2005. LNCS, Vol. 3844.

Springer, 306–319. https://doi.org/10.1007/11663430_32

[12] Daniela Giordano and Francesco Maiorana. 2014. Teaching “design first” inter-

leaved with object-oriented programming in a software engineering course. In

IEEE Global Engineering Education Conference (EDUCON) (2014). IEEE, 1085–1088.

https://doi.org/10.1109/EDUCON.2014.6826243

[13] Daniel Gonzalez-Morales, Luz Marina Moreno de Antonio, and Jose Luis Roda

Garcia. 2011. Teaching "soft" skills in Software Engineering. In IEEE Global

Engineering Education Conference (EDUCON) (2011). IEEE, 630–637. https://doi.

org/10.1109/EDUCON.2011.5773204

[14] Steven Kelly and Juha-Pekka Tolvanen. 2008. Domain-Specific Modeling: Enabling

Full Code Generation. Wiley-IEEE Computer Society.

[15] Stefan Kögel, Michael Stegmaier, Raffaela Groner, Stefan Götz, Sascha Rechen-

berger, and Matthias Tichy. 2018. Developing an Optimizing Compiler for the

Game Boy as a Software Engineering Project. In Proceedings of the 40th Interna-

tional Conference on Software Engineering Software Engineering Education and

Training - ICSE-SEET ’18. ACM, 9–12.

[16] Thomas Kühne. 2006. Matters of (Meta-)Modeling. Software and SystemsModeling

(SoSyM) 5 (July 2006), 369–385. Issue 4. http://dx.doi.org/10.1007/s10270-006-

0017-9

[17] Grischa Liebel, Rogardt Heldal, and Jan Philipp Steghofer. 2016. Impact of the use

of industrial modelling tools on modelling education. In Conference on Software

Engineering Education and Training (2016). IEEE, 18–27. https://doi.org/10.1109/

CSEET.2016.18

[18] Isabelle Linden, Hubert Toussaint, Andreas Classen, and Pierre-Yves Schobbens.

2008. Automatic Student Coaching and Monitoring Thanks to AUTOMATON:

The Case of Writing a Compiler. In European Conference on e-Learning (2008),

Roy Williams (Ed.). Academic Conferences Ltd, Cyprus, 109–117.

[19] M. Mernik and V. Zumer. 2003. An educational tool for teaching compiler

construction. IEEE Transactions on Education 46, 1 (feb 2003), 61–68. https:

//doi.org/10.1109/TE.2002.808277

[20] Julie E Mills and David F Treagust. 2003. Engineering education - Is problem-

based or project-based learning the answer. Australasian journal of engineering

education 3, 2 (2003), 2–16.

[21] Terence Parr. 2010. Language Implementation Patterns: Create Your Own Domain-

Specific and General Programming Languages. Pragmatic Bookshelf.

[22] Terence Parr. 2013. The Definitive ANTLR 4 Reference: Building Domain-Specific

Languages. Pragmatic Bookshelf.

[23] Steven Pemberton and Martin Daniels. 1982. Pascal Implementation. Ellis Hor-

wood Ltd.

[24] Dragutin Petkovic, Rainer Todtenhoefer, and Gary Thompson. 2006. Teaching

Practical Software Engineering and Global Software Engineering: Case Study

and Recommendations, In Frontiers in Education Conference (2006). Proceedings.

Frontiers in Education. 36th Annual Conference, 19–24. https://doi.org/10.1109/

FIE.2006.322377

[25] Derek Rayside. 2014. A compiler project with learning progressions. In Compan-

ion Proceedings of the 36th International Conference on Software Engineering - ICSE

Companion 2014. ACM Press, 392–399. https://doi.org/10.1145/2591062.2591168

[26] G Sindre, S Line, and O.V. Valvag. 2003. Positive experiences with an open

project assignment in an introductory programming course. In 25th International

Conference on Software Engineering, 2003. Proceedings. IEEE, 608–613. https:

//doi.org/10.1109/ICSE.2003.1201244

[27] Deborah H. Stevenson and Jo Ann Starkweather. 2010. PM critical competency

index: IT execs prefer soft skills. International Journal of Project Management 28,

7 (2010), 663–671. https://doi.org/10.1016/j.ijproman.2009.11.008

[28] Unity Technologies. 2015. 2D Roguelike. Unity Technologies. Retrieved

July 2, 2021 from https://assetstore.unity.com/packages/templates/tutorials/2d-

roguelike-29825

[29] Georgios Theocharis, Marco Kuhrmann, JürgenMünch, and Philipp Diebold. 2015.

Is Water-Scrum-Fall Reality? On the Use of Agile and Traditional Development

Practices. In Product-Focused Software Process Improvement. PROFES 2015. (LNCS,

Vol. 9459), Pekka Abrahamsson, Luis Corral, Markku Oivo, and Barbara Russo

(Eds.). Springer International Publishing, 149–166. https://doi.org/10.1007/978-

3-319-26844-6_11

[30] Hubert Toussaint, Xavier Devroey, and Yves Bontemps. 2014. DEMO, un langage

d’exemple.

[31] Hubert Toussaint, Xavier Devroey, Yves Bontemps, and Andrew Khvalenski.

2008. GPMachine: a virtual machine interpreting P-Code. https://doi.org/10.5281/

zenodo.5059924

[32] William M Waite. 2006. The compiler course in today’s curriculum: three strate-

gies. ACM SIGCSE Bulletin 38, 1 (mar 2006), 87. https://doi.org/10.1145/1124706.

1121371

[33] Manuel Wimmer and Gerhard Kramler. 2005. Bridging Grammarware and Mod-

elware. In Workshop in Software Model Engineering (WiSME). Springer, 159–168.

14

https://doi.org/10.1109/MITP.2012.7
https://doi.org/10.1111/j.1467-8535.2007.00705.x
https://doi.org/10.1111/j.1467-8535.2007.00705.x
https://doi.org/10.1109/MS.2002.1032855
https://doi.org/10.1109/MS.2002.1032855
https://doi.org/10.1145/3287324.3287517
https://doi.org/10.1145/3287324.3287517
https://doi.org/10.1007/978-94-6091-824-7
https://doi.org/10.1007/978-94-6091-824-7
https://doi.org/10.1145/563517.563473
https://doi.org/10.1145/1151954.1067518
https://doi.org/10.1145/1151954.1067518
https://doi.org/10.1007/11663430_32
https://doi.org/10.1109/EDUCON.2014.6826243
https://doi.org/10.1109/EDUCON.2011.5773204
https://doi.org/10.1109/EDUCON.2011.5773204
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1109/CSEET.2016.18
https://doi.org/10.1109/CSEET.2016.18
https://doi.org/10.1109/TE.2002.808277
https://doi.org/10.1109/TE.2002.808277
https://doi.org/10.1109/FIE.2006.322377
https://doi.org/10.1109/FIE.2006.322377
https://doi.org/10.1145/2591062.2591168
https://doi.org/10.1109/ICSE.2003.1201244
https://doi.org/10.1109/ICSE.2003.1201244
https://doi.org/10.1016/j.ijproman.2009.11.008
https://assetstore.unity.com/packages/templates/tutorials/2d-roguelike-29825
https://assetstore.unity.com/packages/templates/tutorials/2d-roguelike-29825
https://doi.org/10.1007/978-3-319-26844-6_11
https://doi.org/10.1007/978-3-319-26844-6_11
https://doi.org/10.5281/zenodo.5059924
https://doi.org/10.5281/zenodo.5059924
https://doi.org/10.1145/1124706.1121371
https://doi.org/10.1145/1124706.1121371

	Abstract
	1 Introduction
	2 Context
	2.1 Analysis and Modeling Course
	2.2 Programming Language Theory Course
	2.3 Software Engineering Course

	3 Projects Description
	3.1 Modeling Project
	3.2 Compiler Project
	3.3 Software Engineering Project

	4 Lessons Learned
	4.1 On the Transversality of the Projects
	4.2 On the Soft and Project Skills Perception
	4.3 Improvements of the Projects and Future Work

	5 Conclusion
	Acknowledgments
	References

