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Overcoming Mobility Poverty
with Shared Autonomous Vehicles:
A Learning-Based Optimization
Approach for Rotterdam Zuid
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Abstract. Residents of cities’ most disadvantaged areas face significant
barriers to key life activities, such as employment, education, and health-
care, due to the lack of mobility options. Shared autonomous vehicles
(SAVs) create an opportunity to overcome this problem. By learning
user demand patterns, SAV providers can improve regional service levels
by applying anticipatory relocation strategies that take into consider-
ation when and where requests are more likely to appear. The nature
of transportation demand, however, invariably creates learning biases
towards servicing cities’ most affluent and densely populated areas, where
alternative mobility choices already abound. As a result, current dis-
advantaged regions may end up perpetually underserviced, therefore
preventing all city residents from enjoying the benefits of autonomous
mobility-on-demand (AMoD) systems equally. In this study, we propose
an anticipatory rebalancing policy based on an approximate dynamic
programming (ADP) formulation that processes historical demand data
to estimate value functions of future system states iteratively. We inves-
tigate to which extent manipulating cost settings, in terms of subsidies
and penalties, can adjust the demand patterns naturally incorporated
into value functions to improve service levels of disadvantaged areas. We
show for a case study in the city of Rotterdam, The Netherlands, that the
proposed method can harness these cost schemes to better cater to users
departing from these disadvantaged areas, substantially outperforming
myopic and reactive benchmark policies.

Keywords: Mobility poverty · Shared autonomous vehicles ·
Approximate dynamic programming

1 Introduction

Service levels of residents from different areas of a city can vary significantly
due to an uneven distribution of transport resources. Peripheral or low-income
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regions are typically more prone to suffer from accessibility poverty, that is, the
difficulty of reaching certain key activities (e.g., employment, education, health-
care) due to mobility poverty, which is concerned with the systemic lack of trans-
portation and mobility options [10]. Since low-income and mobility poverty are
strongly correlated, offering sufficient transportation choices to disadvantaged
areas can ultimately improve social equity.

Shared autonomous vehicles (SAVs) and, more generally, autonomous
mobility-on-demand (AMoD) systems, offer an opportunity to overcome mobil-
ity poverty. Sharing services reduce the cost of personal mobility once all
expenses of purchasing, maintaining, and insuring vehicles are distributed across
a large user-base [15]. Recent research has demonstrated that efficient SAV
fleet management can help AMoD providers fulfilling today’s transportation
demand using much fewer vehicles. However, typical performance measures fail
to account for differences in demographics appropriately, lacking nuanced equity
implications [5].

Due to natural demand patterns or deliberate profit-seeking policies, SAVs
can end up re-enforcing existing inequalities by frequently moving to regions that
are more prone to generate higher profits. Such a preference for affluent regions
can already be identified in the current transportation landscape, where mobility
options (e.g., ride-hailing, micro-mobility, ride-pooling, and transit) abound in
cities’ central areas.

In this study, we propose an approximate dynamic programming (ADP) algo-
rithm to schedule and rebalance a fleet of AVs to improve the mobility of targeted
disadvantaged areas. This algorithm uses demand data throughout an iterative
process to derive value function approximations (VFAs) that convey the expected
contribution of system states. These lookahead approximations are then consid-
ered in the optimization process to assess the future outcome of current decisions.
We illustrate our method using the case of Rotterdam, The Netherlands, where
the northern region (Rotterdam Noord) encompasses the entire city center, out-
performing the southern (Rotterdam Zuid) in a range of socio-geographical
factors, such as income and transport connectivity. To improve the mobility
of the residents in the Zuid region and ultimately their access to key activi-
ties, we investigate to which extent ride subsidization and rejection penalties
can contribute to overall fairness, adequately driving vehicles to underserviced
areas.

We consider a first-mile case study in which users request vehicles from a pri-
vate AMoD provider to access the closest train station (see Fig. 1). This setup
is particularly relevant for the deployment of mobility-as-a-service (MaaS) solu-
tions, which are based on the integration of different transport services. We
show that a proper cost scheme setup can overcompensate the rebalancing bias
towards densely populated and high-income areas improving mobility choices in
underserviced areas. Ultimately, our results help city managers to understand
the cost of laying out equitable transportation policies that balance providers’
profitability and the service levels of underserviced users.
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Fig. 1. Rotterdam regions (Noord and Zuid) and the seven train stations that are the
destinations of all first-mile trips.

2 Related Work

AMoD systems rely on rebalancing strategies to find a reasonable compromise
between asset utilization and user satisfaction. Supply and demand mismatches
are typically addressed using ongoing imbalance cues (e.g., request rejections,
idle vehicles) and predicted demand information (based on historical data). For
example, Pavone et al. [12] propose an optimal transport problem in which loca-
tions with a surplus of idle vehicles continuously send empty vehicles to locations
with a shortage of idle vehicles. Similarly, Alonso-Mora et al. [2] present a reac-
tive rebalancing approach that sends idle vehicles to undersupplied areas, which
are identified by the occurrence of unsatisfied requests. Through a linear pro-
gram, vehicles are assigned to the departure locations of these requests, aiming
to minimize the total sum of travel times. Later, Alonso-Mora et al. [3] use past
historical data to compute a probability distribution over future demand and
proposes an assignment algorithm to match vehicles to future requests. Fag-
nant et al. [6] relies on a rule to overcome supply-demand imbalances using a
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block-based division operational map. For each block, they compare the supply
of idle stationary vehicles versus the share of currently waiting travelers plus
soon expected travelers in the near future (according to the block historical trip
rate).

Learning-based methods have also been successfully employed to enable
anticipatory rebalancing. Through a reinforcement learning (RL) framework,
Wen et al. [16] train a deep Q-network (DQN) using rewards based on wait-
ing time savings of users picked up due to rebalancing movements. Conversely,
penalties are applied when vehicles remain idle during the rebalancing period.
Considering a grid map, they model states using grid-wise idle-vehicle distribu-
tion, in-service vehicles, and predicted demand (based on a Poisson process) in
the surroundings. Guériau et al. [7] propose a decentralized RL approach based
on Q-learning. They show that agents (i.e., vehicles) can contribute to global
performance by learning how to optimize their own individual performance with
local information only. Lin et al. [9] also takes advantage of the RL framework
through a contextual multi-agent actor-critic (cA2C) algorithm. Their design
stands out due to two main features, (i) the adoption of centralized value func-
tions (shared by all agents), and (ii) context embedding that establishes explicit
coordination among agents. Iglesias et al. [8] design a model predictive control
(MPC) algorithm that leverages customer demand forecasts to rebalance vehi-
cles. The forecasting model is based on a long short-term memory (LSTM) neural
network. Al-Kanj et al. [1] use an ADP formulation that allows for anticipatory
rebalancing and recharging of electric vehicles. Their approach maximizes vehi-
cle contribution over time, using value function approximations to estimate the
impact of each decision in the future.

Similarly to [1], we enable anticipatory rebalancing by using value functions
to steer vehicles towards high-demand areas. In contrast with all proposed meth-
ods, however, we add nuance to service levels, acknowledging that users from dif-
ferent regions face distinct accessibility barriers to the transport system. Based
on Lucas et al. [11], we consider transport accessibility primarily in terms of
availability and affordability. Additionally, following Cohen et al. [5], our AMoD
rebalancing policy aims to complement public transit and redistribute trans-
port resources towards disadvantaged areas. Ultimately, from the user experience
perspective, related literature focus on decreasing total delays (pickup and/or
in-vehicle) whereas we focus on distributing service levels throughout regions.

3 Problem Formulation

We model the problem using the language of dynamic resource management (see
[1,14]), where AVs (resources) service a sequence of trip request batches (tasks)
dynamically revealed at discrete-time t ∈ {1, 2, . . . , T}.

We assume all requests arrive in batch intervals of five minutes, occurring
within the earliest time te = 6:00 and the latest time tl = 12:00. To ensure
the system has enough time to rebalance vehicles and deliver all users, we add
thirty-minute offsets before te and after tl, such that the total horizon T = 84
(i.e., 420/5).
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The state of a single resource is defined by the attribute a representing the
vehicle’s location in the node-set N of G = (N,E), a strongly connected graph
drawn from a section of Rotterdam, The Netherlands. The city comprises six
districts and 45 neighborhoods from which we select 40 to exclude the periph-
eries, such that node and edge sets have sizes |N | = 10, 364 and |E| = 23, 048,
respectively (see Fig. 1).

By including the temporal dimension to location a, we have at, or the location
of an SAV at time t. Let A be the set of all possible vehicle attributes. The state
of all vehicles with the same state attribute is modeled using

Rta = Number of vehicles with attribute a at time t,

Rt = (Rta)a∈A = The resource state vector at time t.

Each request, in turn, is modeled using an attribute vector b comprised of origin
and destination attributes b1, b2 ∈ N . Let B be the set of all possible request
attribute vectors. The state of all rides with the same state vector occurring at
time t is modeled using

Dtb = The number of requests with attribute vector b at time t,

Dt = (Dtb)b∈B = The request state vector at time t.

With the resource and request state vectors, we defined our system state
vector as St = (Rt, Dt). States St are measured before making decisions at each
epoch t ∈ {1, 2, 3, . . . , T}. In this study, we consider each vehicle can realize
three different types of decisions, namely, service a single user at a time, stay
parked in its current location waiting to pick up users, and rebalance to a
more promising location. Decisions are described using

dstay = Decision to stay parked in the current location,

DR = Set of all decisions d to rebalance (i.e., move empty)

to a set of neighboring locations,

DS = Set of all decisions d to service a user,

bd = Trip b ∈ B covered by decision d ∈ DS ,

D = DS ∪ DR ∪ dstay,

xtad = Number of times decision d is applied to a vehicle with attribute a at time t,

xt = (xtad)a∈A,d∈D.

The decision variables xtad must satisfy the following constraints:
∑

d∈D
xtad = Rta ∀ a ∈ A (1)

∑

a∈A
xtad ≤ Dtbd ∀ d ∈ DS (2)

ytb = Dtb −
∑

a∈A

∑

d∈DS

bd=b

xtad ∀b ∈ B (3)
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Constraints (1) and (2) guarantee flow conservation of vehicles and requests,
respectively, and equalities (3) define the number ytb of rejected trips b at time
t. Once we aim to distinguish regions in N , we define U(a) : N → L as a function
that maps each location a ∈ N to a discrete geographical area in L, with L =
{Noord, Zuid}. Applying a decision d to a resource with attribute a at time t
generates a contribution ctad, such that

ctad =

⎧
⎨

⎩

pa
base + ptimeδ (b1, b2) − ctime (δ (a, b1) + δ (b1, b2)) , (service),

− ctimeδ (a, r) , (rebalance),
0, (stay).

Contributions ctad of service, rebalance, and stay decisions are comprised of

pa
base = Base fare of trips departing from region U(a) ∈ L,

ptime = Time-dependent fare,
ctime = Vehicle time-dependent costs (e.g., fuel),

ca
penalty = Penalty for rejecting users from region U(a) ∈ L,

δ (a, b1) = Pickup duration,
δ (b1, b2) = Trip duration,

δ (a, r) = Rebalance duration (to neighboring location r).

Assuming contributions are linear, the contribution function for period t
discounted by rejection penalties is given by

Ct (St, xt) =
∑

a∈A

∑

d∈D
ctadxtad −

∑

b∈B

cb1
penaltyytb. (4)

Let Xπ
t (St) be a decision function that represents a policy π ∈ Π, which maps

a state St to a decision xt at time t. We aim to determine the optimal policy
π∗ that, starting from an initial state S0, maximizes the expected cumulative
contribution, over all the time periods:

F ∗
0 (S0) = max

π∈Π
E

{
T∑

t=0

Ct (St,X
π
t (St)) |S0

}
. (5)

4 Algorithmic Strategies

In principle, we can solve Eq. (5) by recursively computing (backward through
time) Bellman’s optimality equations, assigning to each state St at t, a value
Vt, such that an optimal policy can chose decisions xt that maximize expected
contributions over time:

X∗
t (St) = arg max

xt∈Xt

(Ct (St, xt) + E {Vt+1 (St+1) |St, xt}). (6)

Solving Eq. (6), however, requires computing the expectation, which is compu-
tationally intractable for our problem setting. Doing so would incur in all the
three “curses of dimensionality” (see [13]), since we would have to enumerate
the state, outcome, and decision spaces.
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4.1 An Approximate Dynamic Programming Algorithm

Once we cannot determine the true value Vt associated to each state St, we use
an approximate dynamic programming algorithm (see [13] for a comprehensive
treatment) to determine the value V

n

t , which is an statistical estimate of Vt

after n sample observations. First, at each time t in iteration n, applying the
decision vector xt to state Sn

t , before any new information has arrived, leads to
a deterministic post-decision state

Sx,n
t = SM,x(Sn

t , xn
t ),

where SM,x(.) is a transition function (or “system model”) which describes how
the system evolves from Sn

t to Sx,n
t . As exogenous information is unveiled, we

can also use the post-decision state Sx,n
t and the transition function to compute

the subsequent pre-decision state

Sn
t+1 = SM,W (Sx,n

t ,Wt+1(ωn)),

where SM,W (.) is a transition function from Sx,n
t to St+1, and Wt+1(ωn) is the

exogenous information integrating a particular set of outcomes W1(ωn), . . . ,
WT (ωn) of the resource and demand vectors measured over all periods in itera-
tion n, following a sample path ωn .

We solve (6) by replacing the expected value of being in St+1 for V
n−1

t (Sx,n
t ),

which corresponds to an approximation of the value of being in the post-decision
state Sx,n

t considering the first n − 1 iterations. Then, we can make decisions at
time t by solving the optimization problem

Ft (Sn
t ) = max

xt ∈ Xn
t

(Ct (Sn
t , xt) + V

n−1

t (Sx,n
t )) , (7)

where we seek to determine the decision vector xt in the feasible region X n
t that

maximizes the sum of the current contribution and the pre-calculated expected
contribution V

n−1
associated with post-decision state Sx,n

t .

4.2 Value Function Updates

We use the approximate value iteration algorithm from [13] to update value
functions approximations using the solutions of (7) at each period t of iteration
n. To streamline the process of stepping forward in time, we assume that the
post-decision state is equivalent to the post-decision resource vector. Thus, after
decision time, the post-decision demand vector Dx,n

t is always empty, such that
V

n

t (Sx,n
t ) = V

n

t (Rx,n
t ). In practice, this assumption entails that requests are not

carried over periods. Consequently, users have to turn to alternative mobility
options upon being rejected.

Assuming V
n

t (Rx,n
t ) is linear in Rta, we have

V
n

t (Rx,n
t ) =

∑

a′∈A
vn

t′a′
∑

a∈A

∑

d∈D
δa′ (a, d) xtad,
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where vn
t′a′ is the marginal value of a vehicle with attribute a′ at time t′ at

iteration n. The transition function δa′ (a, d) is equal to 1 when aM (a, d) = a′,
and 0 otherwise, such that a′ represents the post-decision location of a, and t′ is
the arrival time at a′ of a vehicle departing from a at time t. When d = dstay,
t′ = t + 1 and when d ∈ DS ∪ DR, t′ accounts for the travel time τ (t, a, d) to
travel from a to a′, such that t′ = t + τ (t, a, d).

The marginal values vn
ta approximate the overall contribution (i.e., until the

end of the simulation horizon T ) of assigning an incremental vehicle to a certain
location at a certain time. Once costs depend on the region trips depart from
(Noord or Zuid), these values will also reflect the benefits of working within these
regions.

We update value functions vn
ta using the samples v̂n

ta drawn from attribute a
at time t and iteration n. New samples are smoothed using stepsizes αn which are
updated every iteration according to the McClain’s rule αn = αn−1

1+αn−1−α , where α

is a constant that is approached as n advances. Initially, we set α1 = 1 such that
value functions can start with the first sample value measured for each state.
Algorithm 1 compiles all the steps of our ADP approach.

Algorithm 1. Approximate dynamic programming
1: for n = 1, . . . , N do
2: Choose a sample path ωn.
3: for t = 0, 1, . . . , T do
4: Let xn

t be the solution of the optimization problem: xn
t = Ft (Sn

t ).
5: Let v̂n

ta be the dual corresponding to the resource conservation.
6: If Rta > 0, update the value function using: vn

ta = (1 − αn)vn−1
ta + αnv̂n

ta

7: Update the state: Sx,n
t = SM,x(Sn

t , xn
t ) and Sn

t+1 = SM,W (Sx,n
t , Wt+1(ω

n)).
8: end for
9: end for

10: Return the value functions, {vn
ta, t = 1, . . . , T, a ∈ A}.

4.3 Hierarchical Aggregation for Value Function Estimation

In order to estimate the value function of state attributes not yet observed, we
use hierarchical aggregation coupled with the weighting by inverse mean squared
errors (WIMSE) formula (see [14]). In this method, the state space is aggregated
into a sequence of increasingly coarser state spaces, each of which associated
with an aggregation level. By combining the values from superior levels through
weights, we can estimate states’ value functions without visiting them. We define
three hierarchical levels experimentally, namely, 1, 2, and 3, that aggregate states
both in space and time.

Spatially, the node set is aggregated in hexagon bins of 0.17 km2, 0.46 km2,
and 5.16 km2, resulting in 1, 016, 198, and 38 bins, respectively (see Fig. 2). Valid
bins cover at least one node of Rotterdam’s street network and are identified by
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the closest node to their geographical center. As such, we assume that the travel
time between two bins is based on the shortest path between their corresponding
center nodes at 20 km/h speed. We aggregate temporally by increasing the length
of the periods. We assume level 1 is the disaggregate five-minute period, whereas
levels 2 and 3 correspond to ten- and fifteen-minute periods, therefore totaling
42, and 38 periods, respectively.

In practice, marginal values will aggregate up to the same value function, for
example, at the third level, if they are within the same 5.16 km2 hexagon and
occur throughout the same fifteen-minute bin. Ultimately, the state-space size
for each aggregation level declines from 85,344 to 8,316, and then to 1,444.

1     2    3

Fig. 2. The three spatial aggregation levels set up for the Rotterdam area encompassing
the street network G. Starting from level 1, hexagon bins cover an increasingly higher
number of locations of the node-set N .

4.4 Rebalancing Strategies

Slicing the area of network G using a hierarchy of geometric shapes allows us to
infer a relation of proximity between nodes within the same region. We exploit
this relation by assuming vehicles are allowed to rebalance to the center of the
surrounding hexagon neighbors across all three hierarchical levels, totaling up to
eighteen rebalancing options. This way, vehicles can explore increasingly farther
neighborhoods, insofar as rebalancing targets become hexagon centers up in the
spatial hierarchy. To prevent vehicles from flooding high demand locations, we
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bound the number of vehicles they can accommodate to vmax. Then, we consider
that rebalancing trips can take place only when vit ≤ vmax, where vmax is the
cumulative number of vehicles that are either inbound to or staying at each
location i ∈ N (g) for g = 1 from current time period t onward. By doing so, we
avoid both methodological and practical problems.

First, although we assume V
n

t (Rx,n
t ) is linear in Rta, we acknowledge this

assumption is prone to result in an oversupply of vehicles in regions associated
with high marginal values. However, instead of dampening these values as the
number of vehicles increases (using, for example, piecewise-linear approxima-
tions), we prefer to tune the value of constant vmax.

Second, from a practical perspective, a real-world application has to account
for road capacity and curbside space before rebalancing vehicles. The maximum
number of cars across regions can also depend on city regulations and vary
according to local restrictions, for example, to avoid inconveniencing residents
or businesses of a determined area.

5 Experimental Study

Spatial Demand Patters: To generate r request departure points, we use
a weighted random process to select an origin neighborhood according to its
relative population density using the Dutch census [4]. Next, we use a regular
random process to select a street node within this origin neighborhood. We use
this process to select 3,000 request origins, from which about one-third end up
within the Zuid region. Figure 3 presents the probability distribution of selecting
request origins across Rotterdam neighborhoods. Since we investigate first-mile
trips, destination points correspond to the closest train stations of each origin
point.

Temporal Demand Patters: Regarding the time the requests arrive at the
system, we propose five scenarios in which we vary the demand patterns of
residents departing from Noord and Zuid regions. We consider that the number of
requests always peaks at 8:00 for the residents of Rotterdam Noord, whereas the
number of requests originated in Rotterdam Zuid peak at 6:00, 7:00, 8:00, 9:00,
and 10:00, leading to five request arrival scenarios labeled N8Z6, N8Z7, N8Z8,
N8Z9, and N8Z10. By varying the demand peaks in Zuid, we can investigate
how well the algorithm can distribute vehicles in the light of different levels of
competition with the Noord demand. Moreover, the relative position between
Noord and Zuid peaks allows us to assess the efficacy to which vehicles can
move between regions in anticipation to demand. For instance, the earlier the
demand peak in Zuid, the more time vehicles will have to move from Zuid to
Noord. Conversely, the later the demand peak, the more time vehicles will have
to move from Noord to Zuid. All these scenarios are modeled using a normal
distribution truncated by te and tl, with a standard deviation of one hour and
means equal to the demand peaks entailed by each region.

Waiting Times: Upon receiving a five-minute request batch, the system sets
up available trip decisions taking into account a pickup radius wpk = 10 min.
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Fig. 3. Probabilities of choosing a departure location within each Rotterdam neigh-
borhood based on the part-to-whole ratio of the number or residents.

If users cannot be accessed by any vehicle within wpk, they are immediately
rejected, having to resort to another transportation means. Since we assume the
AMoD system integrates a broader MaaS ecosystem, a rejection means that the
users will have to rely on alternative modes to fulfill their trips. Hence, in the
worst-case scenario, serviced users wait at most fifteen minutes to be picked up.

Cost Schemes: We investigate the influence of six cost schemes on Zuid riders’
service levels by manipulating both base fares and penalties. We refer to these
schemes using the labels B1R0, B4R0, B8R0, B1R1, B1R4, B1R8, where B and
R correspond to the pbase and cpenalty constants, and the digits represent scaling
factors. For instance, B1R0, B4R0, and B8R0 represent cost schemes in which the
base fare pbase of Zuid users is one, four, and eight times higher. Regarding the
values adopted, we consider pbase = cpenalty =e2.5, time-dependent fare ptime =
1e/km, and time-dependent operational costs ctime = 0.1 e/km. Finally, we
assume B1R0 is our reference cost scheme and use it for all Noord users.

Fleet Configuration: We determine the fleet size following the model predic-
tive control (MPC) algorithm proposed by [8]. Their approach assumes perfect
information throughout the whole horizon and does not allow for delays, such
that, at the end of each time step, there is a sufficient number of vehicles to
pick up all requests at each location. To decrease computation times, we assume
that all trip origins and destinations are associated with their respective third-
level hexagon centers (38 in total). We have found that the average fleet sizes
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achieved using the optimal MPC formulation across ten demand realizations
for each demand pattern scenario range from 382.8 (N8Z10) to 499.9 (N8Z8).
The results also indicated that the closer the demand peaks of Noord and Zuid
regions are, the higher is the fleet size required. To deliberately create a scarcity
scenario that splits the vehicle workforce between the two regions, we carry out
all experiments using a 300-SAV fleet. At the beginning of each ADP iteration,
we randomly distribute these vehicles throughout level-one hexagon locations.
Consequently, since Noord is broader and more populated than Zuid, a service
bias towards Noord will naturally emerge.

Benchmark: We benchmark our ADP πV FA policy against two alternative
policies, namely, πmyopic and πreactive, in which no information about the future
is available. Both policies aim to maximize the cost function in Eq. (4), but
while πmyopic seeks only to determine the optimal vehicle-request assignment
represented by Eqs. (1) and (2), the πreactive policy relies on an additional vehicle
rebalancing phase. The rebalancing is based on the state-of-the-art algorithm
proposed by Alonso-Mora et al. [2], which consists of a linear program where
idle vehicles are optimally rebalanced to under-supplied locations. Ultimately,
this program aims to minimize the total travel distance of reaching the pickup
locations of unassigned requests while guaranteeing that either all vehicles or all
requests are assigned.

6 Results

We implemented our approach using Python 3.6 and Gurobi 8.1. Test cases were
executed on a 2.60 GHz Intel Core i7 with 32 GB RAM. For all case studies,
we run our ADP algorithm throughout 1,000 iterations, considering stepsizes
α = 0.1, and maximum vehicle count vmax = 5, which have been found to show
good performance experimentally.

Since we aim to improve mobility for Zuid users, our analysis focuses mainly
on the service levels (i.e., the ratio of serviced requests) achieved for each region.
Still, provided that users can be picked up timely, delays are already bound to
wpk. Table 1 presents the average service levels (across ten demand realizations)
for each policy π and cost scheme configuration. We separate the service levels
between users departing from each region to evaluate the effect of the proposed
cost schemes on driving vehicles towards Zuid. The results are subsumed under
three categories, namely, “Baseline”, “Base fare,” and “Rejection penalty.” The
“Baseline” category comprises the averages achieved using the myopic and reac-
tive policies, which we use to benchmark the performance of our learning-based
method. As hypothesized, when equity concerns are disregarded, service levels
differ markedly between regions, being consistently higher in Noord.

It can be seen from Table 1 that πreactive can already significantly improve the
service levels of Zuid users, servicing about 10% more requests than πmyopic in
all demand scenarios. Since the reactive rebalancing policy relies on trip rejection
stimuli to move vehicles to undersupplied areas, the fleet is disproportionately
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Table 1. Average ratio of serviced users departing from Noord and Zuid regions for
each policy, demand scenario, and cost scheme. Figures correspond to the mean average
of ten demand distributions over 3,000 requests.

driven to Zuid. However, πreactive still leads to a moderate service bias towards
the Noord region, regardless of the demand scenario.

We separate the results of our proposed πV FA policy according to the main
feature entailed by each cost scheme. Hence, the figures subsumed under the
“Base fare” and “Rejection penalty” categories, highlight the effect of scaling
up fares and penalties, respectively. It is worth noting that our πV FA policy
performs better than the baseline policies, even for cost scheme B1R0, in which
no scaling is considered. The performance improvement is especially remarkable
when demand peaks from Noord and Zuid are far apart, for example, in scenarios
N8Z6 and N8Z10. These scenarios provide enough time for vehicles to rebalance
in anticipation from one region to the other instead of reacting to imbalances in
short notice. Moreover, during the thirty-minute rebalancing offset previous to
the requests’ arrival, vehicles also can harness the value functions to reach areas
where users are more prone to appear. This explains how even the competitive
scenario N8Z8 could benefit from using the πV FA policy.

To investigate the trade-off between profits and Zuid service levels, we average
the results of our VFA policy for each cost scheme over all the demand scenarios.
Then, we compare the schemes’ averages against the averages obtained for the
reference cost scheme B1R0. Average profits are determined in terms of base fare
accumulation, considering the number of requests departing from each region and
the ratios of serviced users in Table 1. Cost schemes B4R0 and B8R0, lead to
104.8% and 249.6% higher profits to service about 4.9% and 6.9% more Zuid
users over B1R0. In contrast, cost schemes B1R1, B1R4, and B1R8 incur 3.8%,
9.3%, and 16.7% losses compared to B1R0 average profit, to service about 2.6%,
5.8%, and 6.8% more Zuid users. For both cost scheme categories, the results
indicate that further scaling up incentives or penalties is prone to diminishing
returns, once less and less service level gains in the Zuid region can be seen.
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Throughout all instances considered, scenario N8Z6 has consistently pre-
sented the lowest service levels. Since Noord starts with more vehicles than Zuid,
and the demand peak in Zuid occurs earlier, this scenario necessarily demands
that vehicles move from Noord to Zuid. With most requests happening at 6:00,
most rebalancing operations have to be performed within the rebalancing offset.
Considering that vehicles can start from remote parts of Noord, the results indi-
cate that the thirty-minute offset is insufficient to rebalance all necessary vehicles
to Zuid adequately. As the demand peak in Zuid is pushed forward (e.g., N8Z7),
vehicles have more time to access Zuid user origins, and service levels increase.

7 Conclusion

In this study, we present a learning-based fleet rebalancing method that deter-
mines a compromise between company revenues and social equity between two
distinct regions of Rotterdam, The Netherlands. Our anticipatory rebalancing
strategy caters to the needs of targeted regions, compensates for biases towards
more affluent and densely populated regions, and mitigates mobility poverty in
disadvantaged areas. Based on a range of cost schemes, we show the tipping point
at which cost manipulation can affect value function approximations enough to
influence the rebalancing process. Ultimately, our approximate dynamic pro-
gramming algorithm achieves superior service levels compared to myopic and
reactive strategies, regardless of cost scheme and demand scenarios considered.

With respect to public polices, our results indicate that the public sector can
work in tandem with private providers to guarantee that new mobility solutions
consider the patterns of disadvantaged populations. In this way, as mobility
technologies develop, private market innovation can be steered to achieve social
equity goals, such as preventing mobility poverty. It is worth noting, however,
that adequately fulfilling such goals depends on further policy-making. Since
the private sector is at the forefront of new mobility systems, such as AMoDs,
the public sector has to invest in incentives for the use of these systems in the
broader scheme of city transportation. For instance, new services could integrate
existing MaaS frameworks, complementing other transportation options (e.g.,
transit, walking, and cycling).

Future research will focus on designing equity-aware rebalancing strategies
to increase user service levels based on alternative information (e.g., age, gender,
income), rather than the departure location alone. Additionally, to improve the
effectiveness of location-based equity policies, regional transport accessibility can
be further investigated, for example, in terms of transit infrastructure, delays,
and availability.
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