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C
urrent ongoing industry revolution demands more 
flexible products, including robots in household 
environments and medium-scale factories. Such 
robots should be able to adapt to new conditions 
and environments and be programmed with 

ease. As an example, let us suppose that there are robot 

manipulators working on an industrial production line and 
that they need to perform a new task. If these robots were hard 
coded, it could take days to adapt them to the new settings, 
which would stop production at the factory. Robots that 
non-expert humans could easily program would speed up the 
process considerably. 

In this regard, we present a framework in which robots are 
capable of quickly learning new control policies and state rep-
resentations (SRs) by using occasional corrective human 
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feedback. To achieve this, we focus on robots interactively 
learning these policies from non-expert humans who act as 
teachers. We present a neural network (NN) architecture along 
with an interactive imitation learning (IIL) method that effi-
ciently learns spatiotemporal features and policies from raw 
high-dimensional observations (raw pixels from an image) for 
tasks in environments that are not fully temporally observable.

We denominate IIL as a branch of IL, where human teach-
ers provide different kinds of feedback to robots, such as new 
demonstrations triggered by robot queries [1], corrections [2], 
preferences [3], reinforcements [4], and so forth. Most IL 
methods work under the assumption of learning from perfect 
demonstrations; therefore, they fail when teachers have only 
partial insights about the task execution. Non-expert teachers 
could include all users who are neither machine learning/con-
trol experts nor skilled enough to fully show the desired 
behavior of the policy.

Interactive approaches, such as COACH (which is the 
short form of Corrective Advice Communicated by Humans) 
[5], and some interactive reinforcement learning (IRL) 
approaches [4], [6] are intended for non-expert teachers but 
are not completely deployable for end users. Sequential deci-
sion-making learning methods (IL, IIL, IRL, and so forth) rely 
on good SRs, which simplify the shaping of the policy land-
scape and provide suitable generalization properties. Howev-
er, this requirement means that experts on feature 
engineering must preprocess the states properly before run-
ning the learning algorithms.

The inclusion of deep learning (DL) in IL (given the popu-
larity DL has gained in the field of RL [7]) enables practitioners 
to skip preprocessing modules for inputting policies since some 
NN architectures endow the agents with intrinsic feature-
extraction capabilities. This has been exhaustively tested in end-
to-end settings [7]. In this regard, DL enables non-expert 
humans to shape policies based only on their feedback.

Nevertheless, in real-world problems, we commonly face 
tasks wherein the observations do not explain the complete 
state of the agent, due to the lack of temporal information (e.g., 
rates of change) or because the agent–environment interaction 
is non-Markovian (e.g., dealing with occlusions). For these 
cases, it is necessary to provide memory to the learning policy. 
Recurrent NNs (RNNs) can learn to model dependencies 
from past observations and map them to the current outputs. 
This recurrency has been used in RL and IL, mostly through 
long short-term memory (LSTM) networks [8].

Therefore, LSTMs are included in our NN architecture to 
learn temporal features, which contain relevant information from 
the past. However, DL algorithms require large amounts of data; 
as a way to tackle this shortcoming, SR learning (SRL) has been 
used to learn features more efficiently [9], [10]. Considering that 
real robots and human users have time limitations, as an SRL 
strategy, a model of the world is learned to obtain SRs that make 
the policy convergence possible within feasible training time 
intervals (see Figure 1). The combination of SRL and the teacher’s 
feedback is a powerful strategy for efficient learning of temporal 
features from raw observations in non-Markovian environments.

The experiments presented in this article show the impact 
of the proposed architecture in terms of data efficiency and 
the policy’s final performance within the deep COACH 
(D-COACH) IIL framework [11]. Additionally, the experi-
mental procedure demonstrates that the proposed architec-
ture could even be used with other IL methods, such as data 
aggregation (DAgger) [12]. The code used in this paper can 
be found at https://github.com/rperezdattari/Interactive 
-Learning-of-Temporal-Features-for-Control.

Background and Related Work
Our method combines elements from SRL, IL, and memory 
in NN models to build a framework that enables non-expert 
teachers to interactively shape policies in tasks with non-
Markovian environments. These elements are introduced in 
the following.

Dealing With Non-Markovian Environments
There are different reasons why a process could be partially 
observable. One is when the state describes time-dependent 
phenomena, but the observation contains only partial infor-
mation about them. For instance, velocities cannot be estimat-
ed from camera images unless observations from different 
time steps are combined. Other examples of time-dependent 
phenomena are temporary occlusions and corrupted commu-
nication systems between the sensors and the agent.

For these environments, the temporal information needs 
to be implicitly obtained within the policy model. There are 
two well-known approaches for adding memory to agents in 
sequential decision-making problems when using NNs as 
function approximators:

World Model

Agent

Feedback ht

Observation ot

Teacher

Action at

Environment

Figure 1. Interactively shaping policies with agents that model 
the world. (Source: turkkub and Freepik from Flaticon.)
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1)  Observation stacking policies [7]: stacking the last N obser-
vations ( , , )o o ot t N1 f-  and using this stack as the input of 
the network

2)  Recurrent policies [13]: including RNN layers in the policy 
architecture.
One of the main issues with observation stacking is that 

the memory of these models is determined by the number of 
stacked observations. The overhead increases rapidly for larg-
er sequences in high-dimensional observation problems.

In contrast, RNNs can model information for an arbitrarily 
long period of time [14]. Also, they do not add input-related 
overheads because, when these models are evaluated, they use 
only the last observation. Therefore, RNNs have a lower com-
putational cost than observation stacking. Given the more 
practical usage of recurrent models and their capability of rep-
resenting arbitrarily long sequences, in this article, we use 
RNN-based policies (with LSTM layers) in the proposed NN 
architecture. Nevertheless, the use of LSTMs has a critical dis-
advantage since their training is more complex and requires 
more data, something very problematic when considering 
human teachers and real systems. We now introduce SRL, 
which helps to accelerate LSTM convergence. 

SRL
In most of the problems faced in robotics, the state ,st  which 
fully describes the situation of the environment at time step t, 
is not fully accessible from the robot’s observation .ot  As 
mentioned, in several problems these observations lack the 
temporal information required in the state description. More-
over, these observations tend to be raw sensor measurements 
that can be high-dimensional, highly redundant, and ambigu-
ous. A portion of this data may even be irrelevant.

As a consequence, to successfully solve these problems a 
policy needs to 1) find temporal correlations between several 
consecutive observations and 2) extract relevant features 
from observations that are hard to interpret. However, find-
ing relations among these large data structures with the 
underlying phenomena of the environment while also learn-
ing controllers can be extremely inefficient. Therefore, effi-
ciently building controllers on top of raw observations 
requires learning-informative, low-dimensional SRs [15]. 
The objective of SRL is to obtain an observer capable of gen-
erating such representations.

A compact representation of a state is considered suitable 
for control if the resulting SR

 ● is Markovian
 ● has good generalization to unseen states
 ●  is defined in low-dimensional space (considerably lower 

than the actual observation dimensionality) [9].
Along with the control objective function (e.g., reward 

function and imitation cost function), other objective func-
tions can be used for SRL [10]:

 ● observation reconstruction
 ● forward model or next observation prediction
 ● the inverse model
 ● the reward function
 ● the value function.

Interactive Learning Methods
This section briefly introduces two approaches for interac-
tively learning from human teachers while agents are exe-
cuting a task.

Data Aggregation: DAgger and Human-Gated DAgger
DAgger [12] is an IIL algorithm that aims to collect data 
through online sampling. To achieve this, trajectories are gen-
erated by combining the agent’s policy ri  and the expert’s 
policy. The observations ot  and the demonstrator’s corre-
sponding actions at

)  are paired and added to a database ,D  
which is used for training the policy’s parameters i  iteratively 
in a supervised learning manner to asymptotically approach 
the expert’s policy. At the beginning of the learning process, 
the demonstrator has all the influence over the trajectory 
made by the agent; then the probability of following the dem-
onstrator’s actions decays exponentially.

For working in real-world systems with humans as dem-
onstrators, a variation of DAgger, human-gated DAgger 
(HG-DAgger) [2], was introduced. In this approach, the 
demonstrator is not expected to give labels across every action 
of the agent but only in places where she/he considers that the 
agent’s policy needs improvement. Only these labels are 
aggregated to the database and used for updating the policy. 
Additionally, every time feedback is given by the human, the 
policy will follow the provided action. As a safety measure, 
in HG-Dagger, the uncertainty of the policy across the 
observation space is estimated; that element is omitted in 
this article. Algorithm 1 shows the general structure of 
DAgger and HG-DAgger.

D-COACH
In this framework, humans shape policies, giving occasional 
corrective feedback for actions executed by the agents [11]. 
The human indicates agent actions that she/he considers to be 
erroneous through a binary signal ,ht  the direction in which 
the action should be modified. This feedback is used to gener-
ate an error signal for updating the policy parameters .i  It is 
performed in a supervised learning manner, with the cost 
function J and using the mean squared error and stochastic 
gradient descent. Hence, the update rule is

Algorithm 1: (HG-)DAgger

1:  Require: demonstrations database D  with initial 
 demonstrations, policy update frequency b

2:  for , ,1 2t f=  do
3:   if mod(t, b) is 0 then
4:    update ri  from D
5:   observe state ot

6:   select action from agent or expert
7:   execute action
8:   feedback provide label at

)  for ,ot  if necessary
9:   aggregate ( , )o at t

)  to D
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 ( ).J! $ di i a i- i  (1)

The feedback given by the human indicates only the sign of 
the policy error. Its magnitude is supposed to be unknown 
since the algorithm works under the assumption that the user 
is non-expert; therefore, she/he does not know the magnitude 
of the proper action. Instead, the error magnitude is defined as 
the hyperparameter e that must be defined before starting the 
learning process. Thus, the policy errort  is defined by .h et $

To compute a gradient in the parameter space of the poli-
cy, the error needs to be a function of .i  This is achieved by 
observing that

 ( ) ( ),error a ot t
target

t i r= - i  (2)

where at
target  is the incremental objective generated by the 

feedback of the human ,a a errort t t
target = +  and at  is the 

current output of the policy .ri  From (1), (2), and the deriv-
ative of the mean squared error, we can get the COACH 
update step:

 .errort! $ $ di i a r+ i i  (3)

To be more data efficient and avoid locally overfitting to the 
most recent corrections, D-COACH has a memory buffer that 
stores the tuple ( , )o at t

target  and replays this information during 
learning. Additionally, when working in problems with high-
dimensional observations, an autoencoding cost is incorporat-
ed in D-COACH as an observation reconstruction SRL 
strategy. In the D-COACH pseudocode (Algorithm 2), this 
SRL step is omitted. D-COACH learns everything from 
scratch through only one interactive phase, unlike other deep 
interactive RL approaches [4], [6], which split the learning 
process into two sequential learning phases: first, recording 
samples of the environment for training a dimensionality 
reduction model (e.g., an autoencoder) and, second, using that 
model for the input of the policy network during the actual 
interactive learning process.

Learning Temporal Features Based on 
Interactive Teaching and World Modeling
In this section, the SRL NN architecture is described along 
with the interactive algorithm for policy shaping.

Network Architecture for Extracting 
Temporal Features
When approaching problems that lack temporal information 
in the observations, the most common solution is to model 
the policy with RNNs, as discussed in the “Dealing With 
Non-Markovian Environments” section; therefore, we pro-
pose to shape policies that are built on top of RNNs, with 
occasional human feedback. In this article, we use the terms 
world model and transition model interchangeably.

IIL methods can take advantage of SRL for training with 
other objective functions by 1) making use of all of the experi-
ence collected in every time step and 2) boosting the process of 

finding compact Markovian embeddings. We propose a neural 
architecture separated into two parts: 1) the transition model 
and 2) the policy. The transition model is in charge of learning 
the dynamics of the environment in a supervised manner, 
using samples collected by the agent. The policy part is shaped 
using only corrective feedback. Figure 2 shows this architecture.

Learning to predict the next observation ot 1+  forces a 
Markovian SR. This has been successfully applied in RL [16]. 
RNNs can encode information from past observations in 
their hidden state .ht

LSTM  Thus, the objective of the first part of 
the NN is to learn ( , , ) ,o a h oM t t t t1 1

LSTM =- +u  which, as a con-
sequence, learns to embed past observations in .ht

LSTM  Addi-
tionally, when the observations are high-dimensional (raw 
images), the agents also need to learn to compress spatial 
information. To achieve this, a common approach is to com-
press this information in the latent space of an autoencoder.

For the first part of the architecture, we propose a combi-
nation of an autoencoder with an LSTM to compute the 

ot ot+1
~

st

"

at

at

ht–1
LSTM ht

LSTM

Transition
Model

Policy

Figure 2. The general structure of the transition model and 
policy. 

Algorithm 2: D-COACH 

 1:  Require: error magnitude e, buffer update interval b
 2:  Init: []B =  # initialize memory buffer
 3:  for , ,1 2t f=  do
 4:   observe state ot

 5:   execute action ( )a ot tr= i

 6:   feedback human corrective advice ht

 7:   if ht  is not 0 then
 8:    error h et t $=

 9:    a a errort tt( )target = +

 10:    update r  using SGD with pair ( , )o at t
target

 11:    update r  using SGD with a minibatch sampled 
from B

 12:    append ( , )o at t
target  to B

 13:   if mod(t, b) is 0 then
 14:    update ri  using SGD with a minibatch sampled 

from B
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transition function, i.e., predicting the next high-dimension-
al observation. A detailed diagram of this architecture can 
be seen in Figure 3. In the second part of the architecture, 
the policy takes as input a representation of the state ,stt  
which is generated inside the transition model network. 
This representation is obtained at the output of a fully con-
nected layer (FC3) that combines the information of ht 1

LSTM
-  

with the encoder compression of the current observation 
( ).e ot  This is achieved by adding a skipping connection 

between the output of the encoder and that of the LSTM.

Interactive Algorithm for Policy and 
World-Model Learning
Algorithm 3 presents the pseudocode of the SRL strategy. 
The hidden state of the LSTM is denoted as hLSTM and the 
human corrective feedback as h. In every time step, a buffer 
D  stores the samples of the transitions with sequences of 
length x  (line 5). The agent executes an action based on its 

last observation and the current hidden state of the LSTM 
(line 6). This hidden state is updated using its previous 
value and the most recent observation and action (line 7). 
Line 8 captures the occasional feedback of the teacher, 
which could be a relative correction when using D-COACH 
or a corrective demonstration when using HG-DAgger. 
Also, depending on the learning algorithm, the policy is 
updated in different ways (line 9). D  replays past transi-
tions of the environment to update the transition function 
model (line 11). This is done following the bootstrapped 
random updates [13] strategy. This model is updated every 
d time steps.

Experiments and Results
In this section, we present experiments for validating the 
proposed NN architecture and the interactive training 
algorithm. To obtain a thorough evaluation, different 
experiments are carried out to compare and measure the 
performance (the return, i.e., the sum of the rewards) of 
the proposed components. Initially, the network archi-
tecture based on SRL is evaluated in an ablation study 
aiming to quantify the data efficiency improvement 
added by the network architecture’s different compo-
nents. Then, using the proposed architecture, D-COACH 
is compared with HG-DAgger using simulated tasks 
and simulated teachers (oracles). The third set of experi-
ments is performed with human teachers in simulated 
environments, again comparing different learning meth-
ods. Finally, a fourth set of validation experiments is 
conducted in real systems with human teachers. Most of 
the results are presented in this article; however, some 
are in the supplementary material, which can be found 
in IEEE Xplore along with more detailed information 
about the experiments.

Algorithm 3: Online temporal feature learning 

 1:  Require: Policy update algorithm ,updater  training 
 sequence length ,x  model update rate d

 2:  Init: []D =

 3:  for , ,1 2t f=  do
 4:   observe observation ot

 5:   append ( , , , , , , )o a a oot t t t t1 1f fx x- - - -  to D
 6:   execute action ( , )a o ht t t 1

LSTMr= i -

 7:   compute ht
LSTM  from ( , , )o a hM t t t 1

LSTM
-

 8:   feedback human feedback ht

 9:   call ( , , )o a ht t t
updater

 10:   if mod(t, d) is 0 then
 11:    update M  using SGD with minibatches of 

 sequences sampled from D

ot

Transition Model

Encoder

C1 N1 N2C2 C3

CC1
CC2

FC1

FC2
R1

e (ot)

ht–1
LSTM

ht
LSTM

FC3

FC5
FC6 FC7

FC4

Memory Decoder

DC1 DC2 DC3N4N3

ot+1
~

at

at

Policy

st

"

Convolution:
Deconvolution:
Reshape:

Normalization:

Recurrent:

Identify:

Concatenate:

Fully Connected:

Figure 3. The proposed NN architecture. Convolutional and recurrent (LSTM) layers are included in the transition model for learning  
of spatiotemporal SRs. The estimated state stt  is used as input to the policy, which is a fully-connected NN. C: convolution;  
N: normalization; FC: fully connected; CC: concatenate; R: recurrent; DC: deconvolution. (Source: Vectors Market, Smashicons,  
Freepik, and Smalllikeart from Flaticon.)
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Two real and three simulated environments with differ-
ent complexity levels are used, all employing raw images as 
observations. The simulated environments are mountain–
car, swing-up pendulum, and car racing, the implementa-
tions of which are taken from OpenAI Gym [17]. These 
simulations provide rendered image frames as observa-
tions of the environment. The frames visually describe the 
position of the system but not its velocity, which is neces-
sary to control the system. The experiments on the real 
physical systems consist of a swing-up pendulum and a 
setup for picking oranges on a conveyor belt with a three 
degrees of freedom (3 DoF) robot arm. The metrics used 
for the comparisons are the achieved final policy perfor-
mance and the speed of convergence, which is very rele-
vant when dealing with real systems and human teachers. 
A video showing most of these experiments can be found 
at https://youtu.be/4kWGfNdm21A.

Ablation Study
In this ablation study, the architecture of the network is the 
independent variable. Three independent comparisons were 
carried out using DAgger, HG-DAgger, and D-COACH. 
The training sessions were run using a simulated teacher to 
avoid any influence from human factors. Three different 
architectures were tested for learning the policy from 
an oracle. The structure of the networks is introduced in 
the following:
1) Full network: the proposed architecture
2)  Memoryless SRL (M-Less SRL): similar to the full network 

but without using recurrence between the encoder and 
decoder (the autoencoder is trained using the reconstruc-
tion error of the observation)

3)  Direct policy learning (DPL): the same architecture as in the 
full network but without using SRL, i.e., not training the 
transition model (the encoding, recurrent layers, and poli-
cy are trained using only the cost of the policy).
The ablation study is done on a modified version of the car 

racing environment. Normally, this environment provides an 
upper view of a car on a race track. In this case, we occluded 
the bottom half of the observation such that the agent was not 
able to precisely know its position on the track. This position 
can be estimated if past observations are taken into account. 
As a consequence, this is an appropriate setting for making a 
comparison of different NN architectures. Table 1 gives the 
various performances obtained by the learning algorithms 
when modifying the structure of the network. The results 
show a normalized averaged return through 10 repetitions for 
each experiment, in which five evaluations were carried out 
for each of the repetitions.

As expected, DAgger with the full architecture obtained 
the best performance, and, given that it received new samples 
every time step, it was robust against changes in the architec-
ture, even when it did not have memory. On the other hand, 
D-COACH was very sensitive to changes in the architecture, 
especially the DPL architecture. This shows how the full 
model is able to enhance the performance of the agents in 

problems where temporal information is required. It even 
makes D-COACH perform almost as well as DAgger, despite 
the fact that the former does not require constant and perfect 
teacher feedback. Finally, HG-DAgger was more robust than 
D-COACH in the DPL case, but its performance with the full 
model was not as good.

Simulated Tasks With Simulated Teachers
In the second set of experiments, we performed a com-
parison among the DAgger, HG-DAgger, and D-COACH 
algorithms using the proposed full network architecture. 
To keep the experiments free of human-factor effects, the 
teaching process was, once again, performed with simu-
lated teachers. The methods were tested in the mountain–
car (in the supplementary material) and swing-up 
pendulum simulated problems. A mean of the return 
obtained through 20 repetitions is presented for these 
experiments, along with the maximum and minimum val-
ues of these distributions.

Swing-Up Pendulum
In the case of the swing-up pendulum, the results are very 
different for both DAgger agents (see Figure 4), which 
have a higher rate of improvement than D-COACH during 
the first minutes, when the policy is learning the swinging 
behavior. Since the swinging part requires large actions, 
the improvement with D-COACH is slower. However, 
once the policy is able to swing the pendulum up, the sec-
ond part of the task is to keep the balance in the upright 
position, which requires fine actions. It is at this point that 
learning becomes easier for the D-COACH agent, which 
obtains a constant and faster improvement than the HG-
DAgger agent, even reaching a higher performance. In 
Figure 4, the expected performance upper bound is indi-
cated by a black dashed line, which is the return obtained 
by the simulated teacher. The purple dashed line shows 
the performance of a random policy, which is the expected 
lower bound.

Simulated Tasks With Human Teachers
The previous experiments give insights into how the policy 
architectures and/or the learning methods perform when imi-
tating an oracle. Most IL methods are intended for learning 

Table 1. A comparison of the performance  
(return) of different learning methods in the  
car racing problem.

Full M-Less SRL DPL

D-COACH 0.97 0.76 0.68

DAgger 1 0.87 0.96

HG-DAgger 0.89 0.69 0.9

The returns were normalized with respect to the best performance 
(DAgger full).
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from any source of expert demonstrations. The source does 
not necessarily have to be a human; it can be any type of 
agent. However, the focus of this article is on learning from 
non-expert human teachers, who are complex to model and 
simulate. Therefore, conclusions have to be based on results 
that also include validation with real users.

Experiments with the mountain–car (in the supplementa-
ry material) and swing-up pendulum were run with eight 
human teachers. In this case, the classical DAgger approach 
was not employed since, as discussed in the “Interactive 
Learning Methods” section, it is not specifically designed for 
human users. Instead, HG-DAgger was validated.

Swing-Up Pendulum
This task is relatively simple from a control theory point 
of view. Nevertheless, it is quite challenging for humans 

to teleoperate the pendulum due to its fast dynamics. 
Indeed, participants were not able to successfully tele-
operate the agent; therefore, unlike the mountain–car 
task, we could consider the participants as non-experts 
in the undertaking.

Figure 5 displays the results of this experiment, which are 
similar to the ones presented in Figure 4. At the beginning, 
D-COACH has a slower improvement when learning to 
swing up; however, it learns faster than HG-DAgger when the 
policy needs to learn the accurate task of balancing the pen-
dulum. For users, it is more intuitive and easier to improve 
the balancing with the relative corrections of D-COACH than 
with the perfect corrective demonstrations of HG-DAgger, as 
users do not need to know the right action but, rather, just the 
direction of the correction. Unlike the performance of the 
simulated teacher depicted in Figure 4, the plot in Figure 5   
shows the performance of the best human teacher teleoperat-
ing the pendulum with the same interface used for the teach-
ing process. It can be seen that using both agents facilitated 
obtaining policies that outperformed the non-expert 
human teachers. All policies trained with D-COACH were 
able to balance the pendulum, whereas, with HG-DAgger, 
the success rate was half as high. Additionally, after the 
experiment, the participants were queried about which 
learning strategy they preferred. Seven out of eight 
expressed a preference for D-COACH.

Validation on Physical Systems  
With Human Teachers
The previous experiments performed comparison studies of 
the NN architectures and learning methods under con-
trolled conditions in simulated environments. In this 
section, D-COACH is validated with human teachers and 
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Figure 4. The D-COACH and HG-DAgger comparison in the 
swing-up pendulum problem using a simulated teacher.
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Figure 5. The simulated swing-up pendulum learning curve with 
human teachers.
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Figure 6. The orange-selector experimental setup. The 1: 
conveyor belt; 2: orange samples; 3: frame observed by the 
camera; 4: RGB camera; and 5: 3-DoF robot arm.
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real systems through two different tasks: 1) a real swing-up 
pendulum and 2) a fruit-classifier robot arm. The real 
swing-up pendulum is a very complex system for a human 
to teleoperate. Its dynamics are faster than that of the Ope-
nAI Gym simulated one used in the previous experiments. 
The supplementary material provides more details of this 
environment along with the learning curve of the agents 
trained by the participants of this validation experiment. 
Those results as well as the video show that non-expert 
teachers can manage to teach good policies.

Orange Selector With a Robot Arm
This setup consists of a conveyor belt transporting “pears” 
and “oranges,” a 3-DoF robot arm located over the belt, and a 
red–green–blue (RGB) camera with a view of the belt from 
above (Figure 6). The image of the camera does not capture 
the robot arm. The robot has to select oranges with the end 
effector and avoid pears. The robot does not have any tool, 
such as a gripper or vacuum gripper, to pick up the oranges. 
Therefore, in this context, we consider a successful selection 
of an orange when the end effector intersects the object. The 
performance of the learning policy is measured using two 
indices: 1) the orange selection success rate and 2) the pear 
rejection success rate.

The observations obtained by the camera are from a dif-
ferent region of the conveyor belt than where the robot is 
acting. Therefore, observations cannot be used to compen-
sate for the robot position in the current time step; rather, 
they are meaningful for future decisions. In other words, 
the current action must be based on past observations. 
Indeed, the delay between the observations and their influ-
ence on the actions is roughly 1.5 s. This delay is given by 
the difference between the time when the object leaves the 
camera range and the time when it reaches the robot’s oper-
ating range, which is why this task requires learning tempo-
ral features for the policy. 

The problem is solved by splitting it into two subtasks that 
are trained separately:
1)  Orange selection: The robot must intercept the orange coor-

dinate with the end effector exactly when the orange coor-
dinate passes beneath the robot.

2)  Pear rejection: The robot must classify between oranges and 
pears, so, when a pear is approaching, the end effector should 
lift far from the belt plane; otherwise, it should get close. 
These two subtasks can be trained sequentially. The 

orange selection is initially trained through a procedure 
in which there are some oranges being transported at a 
fixed position on the belt while some others are placed 
randomly. This is to avoid overfitting the policy to specif-
ic sequences. When the robot is able to track the oranges 
within its reach, the pear rejection learning starts. For 
that, pears are placed randomly throughout the sequenc-
es of oranges, and the human teacher provides correc-
tions to the robot movement to make the end effector 
move away from the pears when they are in the operation 
region of the robot.

Figure 7 depicts the average learning curves for this task 
after five runs of the teaching process. It is possible to see that 
the pear rejection subtask is learned within 20 min with 100% 
success, while the orange selection is a harder subtask that 
only reaches roughly 80% success after 50 min. Effectively, 
combining the two subtasks, the performance of the learned 
policies is given only by the success of the orange selection 
since the pear rejection was perfectly attained in all runs exe-
cuted for this experiment.

Conclusions
This article introduced and validated an SRL strategy for 
interactively learning policies from human teachers in 
environments that are not fully temporally observable. 
Results show that, when meaningful spatiotemporal fea-
tures are extracted, it is possible to teach complex end-to-
end policies to agents using just occasional relative and 
binary corrective signals. Moreover, these policies can be 
learned from teachers who are not skilled at executing 
the task.

The evaluations with the DAgger approaches and 
D-COACH depict the potential of this kind of architecture to 
work with different IIL methods, especially those based on 
occasional feedback, which are intended to reduce the 
human workload. The comparative results between  
HG-DAgger and D-COACH with non-expert teachers 
showed that, with the former, the policy remains biased, 
with mistaken samples even if the teacher makes sure not to 
provide more wrong corrections (given that HG-DAgger 
works with the assumption of expert demonstrations), thus 
making the policy harder to refine. On the other hand, 
D-COACH proved to be more robust against mistaken cor-
rections since all non-expert users were able to teach tasks 
they were not able to demonstrate.

The previously discussed shortcoming of DAgger algo-
rithms opens possibilities for future works intended to 
study how to deal with databases that have mistaken exam-
ples.  Another field of study is data-efficient movement 
generation in animation [19], which, combined with our 
method, would make it possible to learn (non)periodic 
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Figure 7. The orange selection/pear rejection learning curve.
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movements using spatiotemporal features and IIL. Chal-
lenges such as the generation of smooth, precise, and stylis-
tic movements (i.e., dealing with high-frequency details 
[20]) could be also addressed.
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