

Delft University of Technology

Interactive Learning of Temporal Features for Control
Shaping Policies and State Representations From Human Feedback
Perez-Dattari, Rodrigo; Celemin, Carlos; Franzese, Giovanni; Ruiz-del-Solar, Javier; Kober, Jens

DOI
10.1109/MRA.2020.2983649
Publication date
2020
Document Version
Final published version
Published in
IEEE Robotics and Automation Magazine

Citation (APA)
Perez-Dattari, R., Celemin, C., Franzese, G., Ruiz-del-Solar, J., & Kober, J. (2020). Interactive Learning of
Temporal Features for Control: Shaping Policies and State Representations From Human Feedback. IEEE
Robotics and Automation Magazine, 27(2), 46-54. https://doi.org/10.1109/MRA.2020.2983649

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MRA.2020.2983649
https://doi.org/10.1109/MRA.2020.2983649

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

46 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020 1070-9932/20©2020IEEE

C
urrent ongoing industry revolution demands more
flexible products, including robots in household
environments and medium-scale factories. Such
robots should be able to adapt to new conditions
and environments and be programmed with

ease. As an example, let us suppose that there are robot

manipulators working on an industrial production line and
that they need to perform a new task. If these robots were hard
coded, it could take days to adapt them to the new settings,
which would stop production at the factory. Robots that
non-expert humans could easily program would speed up the
process considerably.

In this regard, we present a framework in which robots are
capable of quickly learning new control policies and state rep-
resentations (SRs) by using occasional corrective human

©
IS

TO
C

K
P

H
O

TO
.C

O
M

/B
LA

C
K

LI
G

H
T

_T
R

A
C

E
,

O
R

A
N

G
E

—
IM

A
G

E
 L

IC
E

N
S

E
D

 B
Y

 IN
G

R
A

M
 P

U
B

LI
S

H
IN

G

Interactive Learning Interactive Learning Interactive Learning Interactive Learning Interactive Learning Interactive Learning
of Temporal Features of Temporal Features of Temporal Features of Temporal Features of Temporal Features of Temporal Features of Temporal Features of Temporal Features of Temporal Features of Temporal Features of Temporal Features of Temporal Features
Interactive Learning
of Temporal Features
Interactive Learning Interactive Learning Interactive Learning
of Temporal Features
Interactive Learning
of Temporal Features
Interactive Learning
of Temporal Features
Interactive Learning Interactive Learning Interactive Learning
of Temporal Features
Interactive Learning

for Controlfor Controlfor Control
of Temporal Features

for Control
of Temporal Features of Temporal Features of Temporal Features

for Control
of Temporal Features

for Control
of Temporal Features

for Control
of Temporal Features of Temporal Features of Temporal Features

for Control
of Temporal Features

By Rodrigo Pérez-Dattari, Carlos Celemin, Giovanni Franzese,
Javier Ruiz-del-Solar, and Jens Kober

Digital Object Identifier 10.1109/MRA.2020.2983649

Date of current version: 22 April 2020

Shaping Policies and
State Representations
From Human Feedback

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 12:46:10 UTC from IEEE Xplore. Restrictions apply.

47JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

feedback. To achieve this, we focus on robots interactively
learning these policies from non-expert humans who act as
teachers. We present a neural network (NN) architecture along
with an interactive imitation learning (IIL) method that effi-
ciently learns spatiotemporal features and policies from raw
high-dimensional observations (raw pixels from an image) for
tasks in environments that are not fully temporally observable.

We denominate IIL as a branch of IL, where human teach-
ers provide different kinds of feedback to robots, such as new
demonstrations triggered by robot queries [1], corrections [2],
preferences [3], reinforcements [4], and so forth. Most IL
methods work under the assumption of learning from perfect
demonstrations; therefore, they fail when teachers have only
partial insights about the task execution. Non-expert teachers
could include all users who are neither machine learning/con-
trol experts nor skilled enough to fully show the desired
behavior of the policy.

Interactive approaches, such as COACH (which is the
short form of Corrective Advice Communicated by Humans)
[5], and some interactive reinforcement learning (IRL)
approaches [4], [6] are intended for non-expert teachers but
are not completely deployable for end users. Sequential deci-
sion-making learning methods (IL, IIL, IRL, and so forth) rely
on good SRs, which simplify the shaping of the policy land-
scape and provide suitable generalization properties. Howev-
er, this requirement means that experts on feature
engineering must preprocess the states properly before run-
ning the learning algorithms.

The inclusion of deep learning (DL) in IL (given the popu-
larity DL has gained in the field of RL [7]) enables practitioners
to skip preprocessing modules for inputting policies since some
NN architectures endow the agents with intrinsic feature-
extraction capabilities. This has been exhaustively tested in end-
to-end settings [7]. In this regard, DL enables non-expert
humans to shape policies based only on their feedback.

Nevertheless, in real-world problems, we commonly face
tasks wherein the observations do not explain the complete
state of the agent, due to the lack of temporal information (e.g.,
rates of change) or because the agent–environment interaction
is non-Markovian (e.g., dealing with occlusions). For these
cases, it is necessary to provide memory to the learning policy.
Recurrent NNs (RNNs) can learn to model dependencies
from past observations and map them to the current outputs.
This recurrency has been used in RL and IL, mostly through
long short-term memory (LSTM) networks [8].

Therefore, LSTMs are included in our NN architecture to
learn temporal features, which contain relevant information from
the past. However, DL algorithms require large amounts of data;
as a way to tackle this shortcoming, SR learning (SRL) has been
used to learn features more efficiently [9], [10]. Considering that
real robots and human users have time limitations, as an SRL
strategy, a model of the world is learned to obtain SRs that make
the policy convergence possible within feasible training time
intervals (see Figure 1). The combination of SRL and the teacher’s
feedback is a powerful strategy for efficient learning of temporal
features from raw observations in non-Markovian environments.

The experiments presented in this article show the impact
of the proposed architecture in terms of data efficiency and
the policy’s final performance within the deep COACH
(D-COACH) IIL framework [11]. Additionally, the experi-
mental procedure demonstrates that the proposed architec-
ture could even be used with other IL methods, such as data
aggregation (DAgger) [12]. The code used in this paper can
be found at https://github.com/rperezdattari/Interactive
-Learning-of-Temporal-Features-for-Control.

Background and Related Work
Our method combines elements from SRL, IL, and memory
in NN models to build a framework that enables non-expert
teachers to interactively shape policies in tasks with non-
Markovian environments. These elements are introduced in
the following.

Dealing With Non-Markovian Environments
There are different reasons why a process could be partially
observable. One is when the state describes time-dependent
phenomena, but the observation contains only partial infor-
mation about them. For instance, velocities cannot be estimat-
ed from camera images unless observations from different
time steps are combined. Other examples of time-dependent
phenomena are temporary occlusions and corrupted commu-
nication systems between the sensors and the agent.

For these environments, the temporal information needs
to be implicitly obtained within the policy model. There are
two well-known approaches for adding memory to agents in
sequential decision-making problems when using NNs as
function approximators:

World Model

Agent

Feedback ht

Observation ot

Teacher

Action at

Environment

Figure 1. Interactively shaping policies with agents that model
the world. (Source: turkkub and Freepik from Flaticon.)

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 12:46:10 UTC from IEEE Xplore. Restrictions apply.

48 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

1) Observation stacking policies [7]: stacking the last N obser-
vations (, ,)o o ot t N1 f- and using this stack as the input of
the network

2) Recurrent policies [13]: including RNN layers in the policy
architecture.
One of the main issues with observation stacking is that

the memory of these models is determined by the number of
stacked observations. The overhead increases rapidly for larg-
er sequences in high-dimensional observation problems.

In contrast, RNNs can model information for an arbitrarily
long period of time [14]. Also, they do not add input-related
overheads because, when these models are evaluated, they use
only the last observation. Therefore, RNNs have a lower com-
putational cost than observation stacking. Given the more
practical usage of recurrent models and their capability of rep-
resenting arbitrarily long sequences, in this article, we use
RNN-based policies (with LSTM layers) in the proposed NN
architecture. Nevertheless, the use of LSTMs has a critical dis-
advantage since their training is more complex and requires
more data, something very problematic when considering
human teachers and real systems. We now introduce SRL,
which helps to accelerate LSTM convergence.

SRL
In most of the problems faced in robotics, the state ,st which
fully describes the situation of the environment at time step t,
is not fully accessible from the robot’s observation .ot As
mentioned, in several problems these observations lack the
temporal information required in the state description. More-
over, these observations tend to be raw sensor measurements
that can be high-dimensional, highly redundant, and ambigu-
ous. A portion of this data may even be irrelevant.

As a consequence, to successfully solve these problems a
policy needs to 1) find temporal correlations between several
consecutive observations and 2) extract relevant features
from observations that are hard to interpret. However, find-
ing relations among these large data structures with the
underlying phenomena of the environment while also learn-
ing controllers can be extremely inefficient. Therefore, effi-
ciently building controllers on top of raw observations
requires learning-informative, low-dimensional SRs [15].
The objective of SRL is to obtain an observer capable of gen-
erating such representations.

A compact representation of a state is considered suitable
for control if the resulting SR

 ● is Markovian
 ● has good generalization to unseen states
 ● is defined in low-dimensional space (considerably lower

than the actual observation dimensionality) [9].
Along with the control objective function (e.g., reward

function and imitation cost function), other objective func-
tions can be used for SRL [10]:

 ● observation reconstruction
 ● forward model or next observation prediction
 ● the inverse model
 ● the reward function
 ● the value function.

Interactive Learning Methods
This section briefly introduces two approaches for interac-
tively learning from human teachers while agents are exe-
cuting a task.

Data Aggregation: DAgger and Human-Gated DAgger
DAgger [12] is an IIL algorithm that aims to collect data
through online sampling. To achieve this, trajectories are gen-
erated by combining the agent’s policy ri and the expert’s
policy. The observations ot and the demonstrator’s corre-
sponding actions at

) are paired and added to a database ,D
which is used for training the policy’s parameters i iteratively
in a supervised learning manner to asymptotically approach
the expert’s policy. At the beginning of the learning process,
the demonstrator has all the influence over the trajectory
made by the agent; then the probability of following the dem-
onstrator’s actions decays exponentially.

For working in real-world systems with humans as dem-
onstrators, a variation of DAgger, human-gated DAgger
(HG-DAgger) [2], was introduced. In this approach, the
demonstrator is not expected to give labels across every action
of the agent but only in places where she/he considers that the
agent’s policy needs improvement. Only these labels are
aggregated to the database and used for updating the policy.
Additionally, every time feedback is given by the human, the
policy will follow the provided action. As a safety measure,
in HG-Dagger, the uncertainty of the policy across the
observation space is estimated; that element is omitted in
this article. Algorithm 1 shows the general structure of
DAgger and HG-DAgger.

D-COACH
In this framework, humans shape policies, giving occasional
corrective feedback for actions executed by the agents [11].
The human indicates agent actions that she/he considers to be
erroneous through a binary signal ,ht the direction in which
the action should be modified. This feedback is used to gener-
ate an error signal for updating the policy parameters .i It is
performed in a supervised learning manner, with the cost
function J and using the mean squared error and stochastic
gradient descent. Hence, the update rule is

Algorithm 1: (HG-)DAgger

1: Require: demonstrations database D with initial
 demonstrations, policy update frequency b

2: for , ,1 2t f= do
3: if mod(t, b) is 0 then
4: update ri from D
5: observe state ot

6: select action from agent or expert
7: execute action
8: feedback provide label at

) for ,ot if necessary
9: aggregate (,)o at t

) to D

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 12:46:10 UTC from IEEE Xplore. Restrictions apply.

49JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

 ().J! $ di i a i- i (1)

The feedback given by the human indicates only the sign of
the policy error. Its magnitude is supposed to be unknown
since the algorithm works under the assumption that the user
is non-expert; therefore, she/he does not know the magnitude
of the proper action. Instead, the error magnitude is defined as
the hyperparameter e that must be defined before starting the
learning process. Thus, the policy errort is defined by .h et $

To compute a gradient in the parameter space of the poli-
cy, the error needs to be a function of .i This is achieved by
observing that

 () (),error a ot t
target

t i r= - i (2)

where at
target is the incremental objective generated by the

feedback of the human ,a a errort t t
target = + and at is the

current output of the policy .ri From (1), (2), and the deriv-
ative of the mean squared error, we can get the COACH
update step:

 .errort! $ $ di i a r+ i i (3)

To be more data efficient and avoid locally overfitting to the
most recent corrections, D-COACH has a memory buffer that
stores the tuple (,)o at t

target and replays this information during
learning. Additionally, when working in problems with high-
dimensional observations, an autoencoding cost is incorporat-
ed in D-COACH as an observation reconstruction SRL
strategy. In the D-COACH pseudocode (Algorithm 2), this
SRL step is omitted. D-COACH learns everything from
scratch through only one interactive phase, unlike other deep
interactive RL approaches [4], [6], which split the learning
process into two sequential learning phases: first, recording
samples of the environment for training a dimensionality
reduction model (e.g., an autoencoder) and, second, using that
model for the input of the policy network during the actual
interactive learning process.

Learning Temporal Features Based on
Interactive Teaching and World Modeling
In this section, the SRL NN architecture is described along
with the interactive algorithm for policy shaping.

Network Architecture for Extracting
Temporal Features
When approaching problems that lack temporal information
in the observations, the most common solution is to model
the policy with RNNs, as discussed in the “Dealing With
Non-Markovian Environments” section; therefore, we pro-
pose to shape policies that are built on top of RNNs, with
occasional human feedback. In this article, we use the terms
world model and transition model interchangeably.

IIL methods can take advantage of SRL for training with
other objective functions by 1) making use of all of the experi-
ence collected in every time step and 2) boosting the process of

finding compact Markovian embeddings. We propose a neural
architecture separated into two parts: 1) the transition model
and 2) the policy. The transition model is in charge of learning
the dynamics of the environment in a supervised manner,
using samples collected by the agent. The policy part is shaped
using only corrective feedback. Figure 2 shows this architecture.

Learning to predict the next observation ot 1+ forces a
Markovian SR. This has been successfully applied in RL [16].
RNNs can encode information from past observations in
their hidden state .ht

LSTM Thus, the objective of the first part of
the NN is to learn (, ,) ,o a h oM t t t t1 1

LSTM =- +u which, as a con-
sequence, learns to embed past observations in .ht

LSTM Addi-
tionally, when the observations are high-dimensional (raw
images), the agents also need to learn to compress spatial
information. To achieve this, a common approach is to com-
press this information in the latent space of an autoencoder.

For the first part of the architecture, we propose a combi-
nation of an autoencoder with an LSTM to compute the

ot ot+1
~

st

"

at

at

ht–1
LSTM ht

LSTM

Transition
Model

Policy

Figure 2. The general structure of the transition model and
policy.

Algorithm 2: D-COACH

 1: Require: error magnitude e, buffer update interval b
 2: Init: []B = # initialize memory buffer
 3: for , ,1 2t f= do
 4: observe state ot

 5: execute action ()a ot tr= i

 6: feedback human corrective advice ht

 7: if ht is not 0 then
 8: error h et t $=

 9: a a errort tt()target = +

 10: update r using SGD with pair (,)o at t
target

 11: update r using SGD with a minibatch sampled
from B

 12: append (,)o at t
target to B

 13: if mod(t, b) is 0 then
 14: update ri using SGD with a minibatch sampled

from B

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 12:46:10 UTC from IEEE Xplore. Restrictions apply.

50 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

transition function, i.e., predicting the next high-dimension-
al observation. A detailed diagram of this architecture can
be seen in Figure 3. In the second part of the architecture,
the policy takes as input a representation of the state ,stt
which is generated inside the transition model network.
This representation is obtained at the output of a fully con-
nected layer (FC3) that combines the information of ht 1

LSTM
-

with the encoder compression of the current observation
().e ot This is achieved by adding a skipping connection

between the output of the encoder and that of the LSTM.

Interactive Algorithm for Policy and
World-Model Learning
Algorithm 3 presents the pseudocode of the SRL strategy.
The hidden state of the LSTM is denoted as hLSTM and the
human corrective feedback as h. In every time step, a buffer
D stores the samples of the transitions with sequences of
length x (line 5). The agent executes an action based on its

last observation and the current hidden state of the LSTM
(line 6). This hidden state is updated using its previous
value and the most recent observation and action (line 7).
Line 8 captures the occasional feedback of the teacher,
which could be a relative correction when using D-COACH
or a corrective demonstration when using HG-DAgger.
Also, depending on the learning algorithm, the policy is
updated in different ways (line 9). D replays past transi-
tions of the environment to update the transition function
model (line 11). This is done following the bootstrapped
random updates [13] strategy. This model is updated every
d time steps.

Experiments and Results
In this section, we present experiments for validating the
proposed NN architecture and the interactive training
algorithm. To obtain a thorough evaluation, different
experiments are carried out to compare and measure the
performance (the return, i.e., the sum of the rewards) of
the proposed components. Initially, the network archi-
tecture based on SRL is evaluated in an ablation study
aiming to quantify the data efficiency improvement
added by the network architecture’s different compo-
nents. Then, using the proposed architecture, D-COACH
is compared with HG-DAgger using simulated tasks
and simulated teachers (oracles). The third set of experi-
ments is performed with human teachers in simulated
environments, again comparing different learning meth-
ods. Finally, a fourth set of validation experiments is
conducted in real systems with human teachers. Most of
the results are presented in this article; however, some
are in the supplementary material, which can be found
in IEEE Xplore along with more detailed information
about the experiments.

Algorithm 3: Online temporal feature learning

 1: Require: Policy update algorithm ,updater training
 sequence length ,x model update rate d

 2: Init: []D =

 3: for , ,1 2t f= do
 4: observe observation ot

 5: append (, , , , , ,)o a a oot t t t t1 1f fx x- - - - to D
 6: execute action (,)a o ht t t 1

LSTMr= i -

 7: compute ht
LSTM from (, ,)o a hM t t t 1

LSTM
-

 8: feedback human feedback ht

 9: call (, ,)o a ht t t
updater

 10: if mod(t, d) is 0 then
 11: update M using SGD with minibatches of

 sequences sampled from D

ot

Transition Model

Encoder

C1 N1 N2C2 C3

CC1
CC2

FC1

FC2
R1

e (ot)

ht–1
LSTM

ht
LSTM

FC3

FC5
FC6 FC7

FC4

Memory Decoder

DC1 DC2 DC3N4N3

ot+1
~

at

at

Policy

st

"

Convolution:
Deconvolution:
Reshape:

Normalization:

Recurrent:

Identify:

Concatenate:

Fully Connected:

Figure 3. The proposed NN architecture. Convolutional and recurrent (LSTM) layers are included in the transition model for learning
of spatiotemporal SRs. The estimated state stt is used as input to the policy, which is a fully-connected NN. C: convolution;
N: normalization; FC: fully connected; CC: concatenate; R: recurrent; DC: deconvolution. (Source: Vectors Market, Smashicons,
Freepik, and Smalllikeart from Flaticon.)

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 12:46:10 UTC from IEEE Xplore. Restrictions apply.

51JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

Two real and three simulated environments with differ-
ent complexity levels are used, all employing raw images as
observations. The simulated environments are mountain–
car, swing-up pendulum, and car racing, the implementa-
tions of which are taken from OpenAI Gym [17]. These
simulations provide rendered image frames as observa-
tions of the environment. The frames visually describe the
position of the system but not its velocity, which is neces-
sary to control the system. The experiments on the real
physical systems consist of a swing-up pendulum and a
setup for picking oranges on a conveyor belt with a three
degrees of freedom (3 DoF) robot arm. The metrics used
for the comparisons are the achieved final policy perfor-
mance and the speed of convergence, which is very rele-
vant when dealing with real systems and human teachers.
A video showing most of these experiments can be found
at https://youtu.be/4kWGfNdm21A.

Ablation Study
In this ablation study, the architecture of the network is the
independent variable. Three independent comparisons were
carried out using DAgger, HG-DAgger, and D-COACH.
The training sessions were run using a simulated teacher to
avoid any influence from human factors. Three different
architectures were tested for learning the policy from
an oracle. The structure of the networks is introduced in
the following:
1) Full network: the proposed architecture
2) Memoryless SRL (M-Less SRL): similar to the full network

but without using recurrence between the encoder and
decoder (the autoencoder is trained using the reconstruc-
tion error of the observation)

3) Direct policy learning (DPL): the same architecture as in the
full network but without using SRL, i.e., not training the
transition model (the encoding, recurrent layers, and poli-
cy are trained using only the cost of the policy).
The ablation study is done on a modified version of the car

racing environment. Normally, this environment provides an
upper view of a car on a race track. In this case, we occluded
the bottom half of the observation such that the agent was not
able to precisely know its position on the track. This position
can be estimated if past observations are taken into account.
As a consequence, this is an appropriate setting for making a
comparison of different NN architectures. Table 1 gives the
various performances obtained by the learning algorithms
when modifying the structure of the network. The results
show a normalized averaged return through 10 repetitions for
each experiment, in which five evaluations were carried out
for each of the repetitions.

As expected, DAgger with the full architecture obtained
the best performance, and, given that it received new samples
every time step, it was robust against changes in the architec-
ture, even when it did not have memory. On the other hand,
D-COACH was very sensitive to changes in the architecture,
especially the DPL architecture. This shows how the full
model is able to enhance the performance of the agents in

problems where temporal information is required. It even
makes D-COACH perform almost as well as DAgger, despite
the fact that the former does not require constant and perfect
teacher feedback. Finally, HG-DAgger was more robust than
D-COACH in the DPL case, but its performance with the full
model was not as good.

Simulated Tasks With Simulated Teachers
In the second set of experiments, we performed a com-
parison among the DAgger, HG-DAgger, and D-COACH
algorithms using the proposed full network architecture.
To keep the experiments free of human-factor effects, the
teaching process was, once again, performed with simu-
lated teachers. The methods were tested in the mountain–
car (in the supplementary material) and swing-up
pendulum simulated problems. A mean of the return
obtained through 20 repetitions is presented for these
experiments, along with the maximum and minimum val-
ues of these distributions.

Swing-Up Pendulum
In the case of the swing-up pendulum, the results are very
different for both DAgger agents (see Figure 4), which
have a higher rate of improvement than D-COACH during
the first minutes, when the policy is learning the swinging
behavior. Since the swinging part requires large actions,
the improvement with D-COACH is slower. However,
once the policy is able to swing the pendulum up, the sec-
ond part of the task is to keep the balance in the upright
position, which requires fine actions. It is at this point that
learning becomes easier for the D-COACH agent, which
obtains a constant and faster improvement than the HG-
DAgger agent, even reaching a higher performance. In
Figure 4, the expected performance upper bound is indi-
cated by a black dashed line, which is the return obtained
by the simulated teacher. The purple dashed line shows
the performance of a random policy, which is the expected
lower bound.

Simulated Tasks With Human Teachers
The previous experiments give insights into how the policy
architectures and/or the learning methods perform when imi-
tating an oracle. Most IL methods are intended for learning

Table 1. A comparison of the performance
(return) of different learning methods in the
car racing problem.

Full M-Less SRL DPL

D-COACH 0.97 0.76 0.68

DAgger 1 0.87 0.96

HG-DAgger 0.89 0.69 0.9

The returns were normalized with respect to the best performance
(DAgger full).

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 12:46:10 UTC from IEEE Xplore. Restrictions apply.

52 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

from any source of expert demonstrations. The source does
not necessarily have to be a human; it can be any type of
agent. However, the focus of this article is on learning from
non-expert human teachers, who are complex to model and
simulate. Therefore, conclusions have to be based on results
that also include validation with real users.

Experiments with the mountain–car (in the supplementa-
ry material) and swing-up pendulum were run with eight
human teachers. In this case, the classical DAgger approach
was not employed since, as discussed in the “Interactive
Learning Methods” section, it is not specifically designed for
human users. Instead, HG-DAgger was validated.

Swing-Up Pendulum
This task is relatively simple from a control theory point
of view. Nevertheless, it is quite challenging for humans

to teleoperate the pendulum due to its fast dynamics.
Indeed, participants were not able to successfully tele-
operate the agent; therefore, unlike the mountain–car
task, we could consider the participants as non-experts
in the undertaking.

Figure 5 displays the results of this experiment, which are
similar to the ones presented in Figure 4. At the beginning,
D-COACH has a slower improvement when learning to
swing up; however, it learns faster than HG-DAgger when the
policy needs to learn the accurate task of balancing the pen-
dulum. For users, it is more intuitive and easier to improve
the balancing with the relative corrections of D-COACH than
with the perfect corrective demonstrations of HG-DAgger, as
users do not need to know the right action but, rather, just the
direction of the correction. Unlike the performance of the
simulated teacher depicted in Figure 4, the plot in Figure 5
shows the performance of the best human teacher teleoperat-
ing the pendulum with the same interface used for the teach-
ing process. It can be seen that using both agents facilitated
obtaining policies that outperformed the non-expert
human teachers. All policies trained with D-COACH were
able to balance the pendulum, whereas, with HG-DAgger,
the success rate was half as high. Additionally, after the
experiment, the participants were queried about which
learning strategy they preferred. Seven out of eight
expressed a preference for D-COACH.

Validation on Physical Systems
With Human Teachers
The previous experiments performed comparison studies of
the NN architectures and learning methods under con-
trolled conditions in simulated environments. In this
section, D-COACH is validated with human teachers and

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
Time Step

−3,500

−3,000

−2,500

−2,000

−1,500

−1,000

−500

R
et

ur
n

Oracle Random Policy D-COACH
DAgger HG-DAgger

0 1 2 3 4 5 6 7 8 9 10 11
Time (min)

Figure 4. The D-COACH and HG-DAgger comparison in the
swing-up pendulum problem using a simulated teacher.

0 2,000 4,000 6,000 8,000 10,000

Time Step

−3,500

−3,000

−2,500

−2,000

−1,500

−1,000

−500

R
et

ur
n

Human (Teleoperation) Random Policy
D-COACH HG-DAgger

0 1 2 3 4 5 6 7 8 9 10111213141516
Time (min)

Figure 5. The simulated swing-up pendulum learning curve with
human teachers.

4

5

3

1
2

Figure 6. The orange-selector experimental setup. The 1:
conveyor belt; 2: orange samples; 3: frame observed by the
camera; 4: RGB camera; and 5: 3-DoF robot arm.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 12:46:10 UTC from IEEE Xplore. Restrictions apply.

53JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

real systems through two different tasks: 1) a real swing-up
pendulum and 2) a fruit-classifier robot arm. The real
swing-up pendulum is a very complex system for a human
to teleoperate. Its dynamics are faster than that of the Ope-
nAI Gym simulated one used in the previous experiments.
The supplementary material provides more details of this
environment along with the learning curve of the agents
trained by the participants of this validation experiment.
Those results as well as the video show that non-expert
teachers can manage to teach good policies.

Orange Selector With a Robot Arm
This setup consists of a conveyor belt transporting “pears”
and “oranges,” a 3-DoF robot arm located over the belt, and a
red–green–blue (RGB) camera with a view of the belt from
above (Figure 6). The image of the camera does not capture
the robot arm. The robot has to select oranges with the end
effector and avoid pears. The robot does not have any tool,
such as a gripper or vacuum gripper, to pick up the oranges.
Therefore, in this context, we consider a successful selection
of an orange when the end effector intersects the object. The
performance of the learning policy is measured using two
indices: 1) the orange selection success rate and 2) the pear
rejection success rate.

The observations obtained by the camera are from a dif-
ferent region of the conveyor belt than where the robot is
acting. Therefore, observations cannot be used to compen-
sate for the robot position in the current time step; rather,
they are meaningful for future decisions. In other words,
the current action must be based on past observations.
Indeed, the delay between the observations and their influ-
ence on the actions is roughly 1.5 s. This delay is given by
the difference between the time when the object leaves the
camera range and the time when it reaches the robot’s oper-
ating range, which is why this task requires learning tempo-
ral features for the policy.

The problem is solved by splitting it into two subtasks that
are trained separately:
1) Orange selection: The robot must intercept the orange coor-

dinate with the end effector exactly when the orange coor-
dinate passes beneath the robot.

2) Pear rejection: The robot must classify between oranges and
pears, so, when a pear is approaching, the end effector should
lift far from the belt plane; otherwise, it should get close.
These two subtasks can be trained sequentially. The

orange selection is initially trained through a procedure
in which there are some oranges being transported at a
fixed position on the belt while some others are placed
randomly. This is to avoid overfitting the policy to specif-
ic sequences. When the robot is able to track the oranges
within its reach, the pear rejection learning starts. For
that, pears are placed randomly throughout the sequenc-
es of oranges, and the human teacher provides correc-
tions to the robot movement to make the end effector
move away from the pears when they are in the operation
region of the robot.

Figure 7 depicts the average learning curves for this task
after five runs of the teaching process. It is possible to see that
the pear rejection subtask is learned within 20 min with 100%
success, while the orange selection is a harder subtask that
only reaches roughly 80% success after 50 min. Effectively,
combining the two subtasks, the performance of the learned
policies is given only by the success of the orange selection
since the pear rejection was perfectly attained in all runs exe-
cuted for this experiment.

Conclusions
This article introduced and validated an SRL strategy for
interactively learning policies from human teachers in
environments that are not fully temporally observable.
Results show that, when meaningful spatiotemporal fea-
tures are extracted, it is possible to teach complex end-to-
end policies to agents using just occasional relative and
binary corrective signals. Moreover, these policies can be
learned from teachers who are not skilled at executing
the task.

The evaluations with the DAgger approaches and
D-COACH depict the potential of this kind of architecture to
work with different IIL methods, especially those based on
occasional feedback, which are intended to reduce the
human workload. The comparative results between
HG-DAgger and D-COACH with non-expert teachers
showed that, with the former, the policy remains biased,
with mistaken samples even if the teacher makes sure not to
provide more wrong corrections (given that HG-DAgger
works with the assumption of expert demonstrations), thus
making the policy harder to refine. On the other hand,
D-COACH proved to be more robust against mistaken cor-
rections since all non-expert users were able to teach tasks
they were not able to demonstrate.

The previously discussed shortcoming of DAgger algo-
rithms opens possibilities for future works intended to
study how to deal with databases that have mistaken exam-
ples. Another field of study is data-efficient movement
generation in animation [19], which, combined with our
method, would make it possible to learn (non)periodic

0 2,000 4,000 6,000 8,000 10,00012,00014,000
Time Step

0

0.2

0.4

0.6

0.8

1

S
el

ec
tio

n/
R

ej
ec

tio
n

S
uc

ce
ss

 R
at

e

Orange Selection
Pear Rejection

0 5 10 15 20 25 30 35 40 45 50
Time (min)

Figure 7. The orange selection/pear rejection learning curve.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 12:46:10 UTC from IEEE Xplore. Restrictions apply.

54 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

movements using spatiotemporal features and IIL. Chal-
lenges such as the generation of smooth, precise, and stylis-
tic movements (i.e., dealing with high-frequency details
[20]) could be also addressed.

Acknowledgments
This research is funded by the Netherlands Organization for
Scientific Research project Cognitive Robots for Flexible
Agro-Food Technology, grant P17-01; European Research
Council Starting Grant Teaching Robots Interactively, project
reference 804907; Chile’s National Fund for Scientific and
Technological Development project (FONDECYT) 1201170;
and Chile’s Associative Research Program of the National
Research and Development Agency (ANID/PIA) project
AFB180004.

References
[1] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” J. Artificial Intell. Res., vol. 34, pp. 1–25,
Jan. 2009. doi: 10.1613/jair.2584.
[2] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. Kochenderfer,
“HG-DAgger: Interactive imitation learning with human experts,” in
Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2019, pp. 8077–
8083. doi: 10.1109/ICRA.2019.8793698.
[3] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D.
Amodei, “Deep reinforcement learning from human preferences,”
in Proc. Advances Neural Information Processing Systems, 2017, pp.
4299–4307.
[4] W. B. Knox and P. Stone, “Interactively shaping agents via
human reinforcement: The TAMER framework,” in Proc. 5th ACM
Int. Conf. Knowledge Capture, 2009, pp. 9–16. doi: 10.1145/1597735.
1597738.
[5] C. Celemin and J. Ruiz-del Solar, “An interactive framework for
learning continuous actions policies based on corrective feedback,” J.
Intell. Robotic Syst., vol. 95, pp. 77–97, July 2019. doi: 10.1007/s10846-018-
0839-z.
[6] J. MacGlashan et al., “Interactive learning from policy-dependent
human feedback,” in Proc. 34th Int. Conf. Machine Learning, 2017,
vol. 70, pp. 2285–2294.
[7] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015. doi: 10.1038/
nature14236.
[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neu-
ral Comput., vol. 9, no. 8, pp. 1735–1780, 1997. doi: 10.1162/neco.
1997.9.8.1735.
[9] W. Böhmer, J. T. Springenberg, J. Boedecker, M. Riedmiller, and K.
Obermayer, “Autonomous learning of state representations for control:
An emerging field aims to autonomously learn state representations
for reinforcement learning agents from their real-world sensor obser-
vations,” KI-Künstliche Intelligenz, vol. 29, no. 4, pp. 353–362, 2015. doi:
10.1007/s13218-015-0356-1.
[10] T. Lesort, N. Díaz-Rodríguez, J.-F. Goudou, and D. Fil liat,
“State representation learning for control: An overview,” Neural

Netw., vol. 108, pp. 379–392, Dec. 2018. doi: 10.1016/j.neunet.2018.
07.006.
[11] R. Pérez-Dattari, C. Celemin, J. Ruiz-del Solar, and J. Kober, “Con-
tinuous control for high-dimensional state spaces: An interactive
learning approach,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), 2019, pp. 7611–7617. doi: 10.1109/ICRA.2019.8793675.
[12] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” in
Proc. 14th Int. Conf. Artificial Intelligence and Statistics, 2011, pp.
627–635.
[13] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for par-
tially observable MDPs,” in Proc. AAAI Fall Symp. Sequential Decision
Making for Intelligent Agents (AAAI-SDMIA15) Arlington, VA, Nov.
2015.
[14] G. Lample and D. S. Chaplot, “Playing FPS games with deep rein-
forcement learning,” in Proc. 31st AAAI Conf. Artificial Intelligence,
2017, pp. 2140–2146.
[15] D. Ha and J. Schmidhuber, “Recurrent world models facilitate poli-
cy evolution,” in Proc. Advances Neural Information Processing Systems,
2018, pp. 2450–2462.
[16] A. Zhang, H. Satija, and J. Pineau, Decoupling dynamics and
reward for transfer learning. 2018. [Online]. Available: arXiv:1804.
10689
[17] G. Brockman et al., OpenAI gym. 2016. [Online]. Available:
arXiv:1606.01540
[18] I. Mason, S. Starke, H. Zhang, H. Bilen, and T. Komura, “Few-
shot learning of homogeneous human locomotion styles,” Com-
put. Graph. Forum, vol. 37, no. 7, pp. 143–153, 2018. doi: 10.1111/
cgf.13555.
[19] H. Zhang, S. Starke, T. Komura, and J. Saito, “Mode-adaptive neural
networks for quadruped motion control,” ACM Trans. Graph. (TOG),
vol. 37, no. 4, pp. 1–11, 2018. doi: 10.1145/3197517.3201366.

Rodrigo Pérez-Dattari, Department of Cognitive Robotics,
Delft University of Technology, The Netherlands. Email:
r.j.perezdattari@tudelft.nl.

Carlos Celemin, Department of Cognitive Robotics, Delft Uni -
versity of Technology, The Netherlands. Email: c.e.celeminpaez
@tudelft.nl.

Giovanni Franzese, Department of Cognitive Robotics, Delft
University of Technology, The Netherlands. Email: g.franzese@
tudelft.nl.

Javier Ruiz-del-Solar, Department of Electrical Engineering
and the Advanced Mining Technology Center, Universidad
de Chile, Santiago. Email: jruizd@ing.uchile.cl.

Jens Kober, Department of Cognitive Robotics, Delft Universi-
ty of Technology, The Netherlands. Email: j.kober@tudelft.nl.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 12:46:10 UTC from IEEE Xplore. Restrictions apply.

