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Article 
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Abstract: Real-time and accurate longitudinal rip detection of a conveyor belt is crucial for the 
safety and efficiency of an industrial haulage system. However, the existing longitudinal detection 
methods possess drawbacks, often resulting in false alarms caused by tiny scratches on the belt 
surface. A method of identifying the longitudinal rip through three-dimensional (3D) point cloud 
processing is proposed to solve this issue. Specifically, the spatial point data of the belt surface are 
acquired by a binocular line laser stereo vision camera. Within these data, the suspected points 
induced by the rips and scratches were extracted. Subsequently, a clustering and discrimination 
mechanism was employed to distinguish the rips and scratches, and only the rip information was 
used as alarm criterion. Finally, the direction and maximum width of the rip can be effectively 
characterized in 3D space using the principal component analysis (PCA) method. This method was 
tested in practical experiments, and the experimental results indicate that this method can identify 
the longitudinal rip accurately in real time and simultaneously characterize it. Thus, applying this 
method can provide a more effective and appropriate solution to the identification scenes of lon-
gitudinal rip and other similar defects. 

Keywords: longitudinal rip; 3D point cloud; clustering process; principal component analysis 
(PCA) 
 

1. Introduction 
A belt conveyor is widely used in the industrial field and is mainly used in material 

transportation equipment [1–5]. The longitudinal rip of the belt—along the running di-
rection caused by hard impurities’ puncture, penetration, and blocking—is one of the 
common faults of the belt conveyor. The identification of the longitudinal rip in real-time 
can avoid further extension of the rip, which may cause material leakage, conveyor 
damage, transport system paralysis, and even safety accidents [6–9]. As a result, many 
methods for identifying longitudinal rips have been proposed. 

The method first used to identify the longitudinal rip was the traditional mechanical 
method [10,11], which indirectly identifies the longitudinal rip by detecting materials or 
impurities leaking through the rip, but has the obvious shortcomings in identification 
time. Afterwards, the non-contact identification methods based on ultrasonic [12,13], 
radio frequency [14,15], and electromagnetic induction [16,17], are employed in the in-
dustrial field, and these methods have decreased the identification time to a sub-second. 
Nonetheless, there are still deficiencies in accuracy and reliability when using these 
methods. 

In recent years, identification methods based on image processing have been grad-
ually developed. A method was proposed to preliminarily identify the rip by the defect 
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information extracted from the pixels of images, such as area, slightness, and rectangle 
degree [18]. Another method based on infrared and visible light fusion was adopted to 
detect the longitudinal rip of conveyor belts [19], which improved the identification ac-
curacy. A monitoring system was designed to identify the longitudinal rip by extracting 
the laser stripe skeleton and distinguishing the jump distortion [20], which has a good 
performance in response time. However, in some harsh environments, due to the uneven 
illumination and the stains attached to the belt surface, image-processing methods for 
pixel color often fail. Furthermore, on the belt’s surface, there are many small scratches, 
which have no effect on the normal running of the conveyors, but based on image pro-
cessing, those scratches are often mistakenly identified as longitudinal rips, resulting 
false alarms and unplanned downtime to seriously affect production efficiency. Thus, an 
improved longitudinal rip detection method with higher accuracy, reliability, and re-
al-time still needs to be exploited. In contrast to the image processing method, which ex-
tracts characteristics from the color or brightness of pixels in the two-dimensional imag-
es, the method based on point cloud processing deals with a set of three-dimensional 
point coordinates [21,22]. It means that this method can achieve more accurate data ac-
quisition and three-dimensional measurement of object surface [23–25]. 

In this work, a novel longitudinal rip detection and characterization method based 
on 3D point cloud processing is proposed and demonstrated. To be specific, a binocular 
line laser stereo vision camera was used to obtain the point cloud data on the lower sur-
face of the belt by a line-scanning mode. Through the convenient threshold judgments, 
the suspected points induced by the rips or scratches within the point cloud data could be 
extracted. Then, these suspected points were clustered and the clusters of scratch points 
were eliminated by a distance recognition mechanism. Then only the clusters of the lon-
gitudinal rips were treated as the alarm criteria to achieve the identification operation. 
The method in this work has the following three advantages: first, it prevents the proba-
bility of false alarm by overcoming the interferences of the uneven illumination in harsh 
environment and the scratches on belt surface. The identification correct rate obtained 
from a large amount of tests is 99.2%. Second, it has exceptional advantages in real-time, 
and the identification time of longitudinal rip is less than 0.04 ms. Third, the direction 
and maximum width of the longitudinal rip in 3D space can be determined simultane-
ously with high precision. 

2. System Setup and Algorithm Flow in This Work 
The diagram of the system setup and belt surface data acquisition process are shown 

in Figure 1. A data acquisition system, including a binocular line laser stereo vision 
camera and a belt speed sensor, was mounted near the loading area of a conveyor where 
the longitudinal rip was most likely to occur (90%) [14]. In this system, the camera was 
installed between the upper and lower belts, on which, a laser source projected a line la-
ser with a certain fan angle on the lower surface of the upper belt (then a laser stripe 
could be generated on the belt surface along the belt’s width direction (the y direction)). 
The belt ran in the x direction and a belt speed sensor was used to measure its running 
speed in real time. To further explain, the operating principle of the camera was to collect 
spatial data by using binocular parallax theory [26]. The camera collected point data (ti, yj, 
zj) of about 2000 points on the laser stripe. ti was the timestamp to get these points on the 
i-th laser stripe; yj and zj, respectively, denote the coordinate values in the width and 
height directions of the j-th point on the laser stripe from left to right. Then, these point 
data were sent to the industrial personal computer (IPC). 
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Figure 1. System setup and data acquisition process; IPC, industrial personal computer. 

The x coordinate value of each point can be presented as: 

 ,   1, 2, 3, ,  2000j ix vt j= =   (1) 

where v presents the real-time belt speed, which can be derived from a belt speed sensor 
(A list of symbols in this paper with units and notes is created in Appendix A, please see 
Table A1). Thus, the 3D point cloud data on each laser stripe can be obtained: 

( ),  ,   ,  1, 2, 3, ,  2000j j j jP x y z j= =   (2) 

As the belt runs, its lower surface will be scanned by the camera so that the 3D point 
cloud data will be obtained line-by-line, and the data will be applied as the raw data. 

The flowchart of algorithm in this work is shown in Figure 2. The function realiza-
tion of the system is divided into two phases, before and after the occurrence of the lon-
gitudinal rip. The first one is the identification of the longitudinal rip. In this phase, we 
take the time interval of the 3D data input between the present stripe and next stripe as 
an identification cycle. In each cycle, the original data on the present stripe will be pro-
cessed through four steps: suspected points extraction, clustering process, cluster elimi-
nation, and empirical discrimination. Specifically, at the beginning, the suspected points 
induced by the rips or scratches are extracted by convenient threshold judgments. Then 
through the clustering process, these points are classified into different clusters. Subse-
quently, through the elimination of clusters, points induced by the scratches, which have 
been completely scanned, are eliminated. Finally, the empirical discrimination based on 
length detection is applied to identify the longitudinal rip. Once the longitudinal rip is 
identified, the intelligent decisions (alarm and automatic shutdown) will be implement-
ed. Then, the points in the rip clusters are used to further characterize the longitudinal rip 
in the second phase, so that the direction and maximum width of the longitudinal rip can 
be effectively characterized in 3D space. 
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Figure 2. Flowchart of algorithm in this work. 

3. Phase Ⅰ: Identification of the Longitudinal Rip 
As stated above, the real-time identification of the longitudinal rip includes four 

steps: suspected points extraction, clustering process, cluster elimination, and empirical 
discrimination. Each processing step will be explained in the following sections. 

3.1. Suspected Points Extraction 
Figure 3a shows the cross-section view with the line laser plane as the cutting plane, 

the blue dots in the zoom view are a set of 3D points collected by the camera, and the 
distribution of the 2000 original 3D points input in each cycle reflects the morphological 
information of the belt’s lower surface. Under normal circumstances, the points should 
be evenly distributed in y and z directions, but when there is a rip on the belt surface, the 
point distribution near the rip’s edges will induce abnormal jump fluctuations. Thus, by 
extracting the suspected points (point A and B in Figure 3a), which cause fluctuations, we 
can get the information of the rip edges. 

The threshold judgments are used to extract the suspected points and the two cases 
of belt with and without materials cover are discussed separately as follow. 

(1) Belt covered with materials. 
When there is a rip on the belt surface, the line laser will pass through the rip and 

project on materials. In the vicinity of the longitudinal rip, there will be a sudden change 
in the z direction between two adjacent points. We define the change rate of point 
Pj(xj,yj,zj) as: 

( ) ( )1 1/ = /  ,  Δ 2, 3, 4, , 2Δ 000j j jj j jz z y y jz y − −− − =   (3) 

As shown in Figure 3b, the black dots represent the change rate in z direction of 
each 3D point. The change rate of point B is much smaller than the conventional value 
and the change rate of the adjacent point on the right side of point A is much larger than 
this value. Hence, point Pj(xj, yj, zj) is considered a suspected point, if it meets one of the 
following conditions: 



Sensors 2021, 21, 6650 5 of 17 
 

 

1az 1 az/  or  Δ Δ Δ Δ/j j j jz y z yT T+ +< − >  (4) 

where Taz is the threshold of the change rate in z direction and determined by the fol-
lowing formula: 

max min
az a a/ , 0.3 ~ 0.7

2000
y y

T s b s
 −

= = 
 

 (5) 

where b presents the thickness of the belt, ymax and ymin represent the largest and the 
smallest y coordinate values among the 2000 points, separately. sa between 0.3 and 0.7 is 
an empirical coefficient that is obtained through a large number of experiments. 

(2) Belt covered without materials. 
Under the circumstance of belt covered without materials, the line laser will pass 

through the rip and no point will be collected in the rip area. It means that the laser 
stripe is interrupted by the longitudinal rip and a few 3D points are lost. In this case, we 
define the space in y direction between two adjacent points Pj-1(xj-1,yj-1,zj-1) and Pj(xj,yj,zj) 
as: 

1=  ,   2, 3, 4, , ,  2 00Δ 0j jj y y j ny n−− = <  (6) 

As shown in Figure 3b, the red dots represent the space in y direction between two 
3D adjacent points Pj-1(xj-1, yj-1, zj-1) and Pj(xj, yj, zj). We can also see that the space in the y 
direction between point A and B is much wider than the conventional value. Thus, point 
Pj-1 and Pj are considered to be a pair of suspected points, if the following condition is 
met: 

ayΔ jy T>  (7) 

where Tay is the threshold of space in y direction and determined by the following em-
pirical formula: 

( )ay max min6 / 2000T y y= −  (8) 

 

  
(a) (b) 

Figure 3. Point distribution near the rip. (a) The cross-section view with the line laser plane as the cutting plane, the bot-
tom illustration is the zoom view of the middle rectangle box near the rip. (b) The data analysis chart for finding the 
suspected points (point A and B shown in (a)), the black dots correspond to the values of Δz/Δy of the points when the 
belt upper surface covered with materials, while the red dots correspond to the values of Δy of the points when the belt 
upper surface covered with no materials. 

Combining the extraction methods proposed in case (1) and (2), the suspected points 
can be found in all possible application scenarios. 

Figure 4 shows the result of the suspected point extraction process. Figure 4a shows 
a piece of belt where there is an obvious longitudinal rip and a tiny scratch on its surface. 
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Figure 4b is the in-situ result image of Figure 4a. White dots are the suspected points ex-
tracted in each processing cycle. It can be seen that, not only the suspected points induced 
by the longitudinal rip, but also the scratches all have been extracted. Note that scratches 
in Figure 4a are common for the industrial conveyor belts, especially on the old belt sur-
faces. Therefore, in order to differentiate the rips from the scratches, we need to eliminate 
the interferences entailed by the scratches through the steps, which will be explained in 
the following two sections (Sections 3.2 and 3.3). Moreover, for the convenience of the 
following description, we mark the suspected points corresponding to the edges of the 
rip and scratch (see rip_L, rip_R, scratch_L, and scratch_R in Figure 4b). 

 

  
(a) (b) 

Figure 4. The result of suspected point extraction process. (a) The physical picture, the upper illustration is the zoom view 
of the lower rectangle box. (b) The in-situ result image of (a). 

3.2. Clustering Process 
In this step, we separate the suspected points induced by different scratches or rips 

into different clusters in real time and represent the points in different clusters by color-
ing them differently in Figure 5. 

  
(a) (b) 
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(c) 

Figure 5. Clustering process and cluster elimination process: (a) the result of clustering process at time Ⅰ. (b) The subse-
quent clustering result of (a) after several processing cycles at time Ⅱ, coloring the points with different colors means the 
points are clustered in different clusters; (c) the result of cluster elimination process at time III, the red points are the in-
valid data that can be eliminated. In each subfigure, the middle illustrations are the zoom views of the lower little rec-
tangle boxes. 

As shown in Figure 5a, there are four suspected points extracted on the present 
stripe (denoted by Psus_i, i = 1–4) at time Ⅰ. Moreover, two clusters (denoted by Cj, j = 1,2) 
already exist before time Ⅰ and the latest point added in cluster Cj is denoted as Cj_last. 

In each processing cycle, three-dimensional Euclidean distance from Psus_i to every 
Cj_last (denoted by ρ(Psus_i,Cj_last)) is calculated. 

(1) If there is a cluster Cj that makes ρ(Psus_i,Cj_last) ≤ Tb, where Tb is the clustering 
threshold, then Psus_i will be added into Cj. Hence, in Figure 5a, Psus_3 and Psus_4 are added 
to clusters C1 and C2, respectively. It is worth noting that if there are more than two clus-
ters meeting the condition that ρ(Psus_i,Cj_last) ≤ Tb, then Psus_i will be added into the one 
with the smallest Euclidean distance. 

(2) If there is no cluster Cj that makes ρ(Psus_i,Cj_last) ≤ Tb, then a new cluster will be 
created and Psus_i will be added to it. Thus, we can see that in Figure 5a, new clusters C3 
and C4 are created and Psus_1 and Psus_2 added into them, respectively. 

In the next processing cycle, the suspected point Psus_i that were just added into Cj in 
present cycle will be treated as new Cj_last, then this point will be traversed and neighbor 
searched by the newly suspected points extracted on the next stripe. 

Figure 5b is the subsequent clustering result of Figure 5a after several processing 
cycles. It can be seen that the suspected points on scratch_L, scratch_R, rip_L, and rip_R 
(see Figure 4b) have been successfully placed into different clusters C3, C4, C1, and C2 at 
time Ⅱ. 

The value of the clustering threshold Tb is determined by the following formula: 

2 2 2
b x y z

x max

y

z

/
=1.2~1.5
=1.5~2  

T S S S

S v f
S
S

 = + +

 =





 (9) 

where Sx, Sy, and Sz represent the clustering distances in the x, y, and z directions, re-
spectively. vmax is the maximum belt speed. f is the framerate, namely the number of 
stripes of input data per second. Sx denotes the x-coordinate difference of the points be-
tween two adjacent frames at the maximum belt speed. The values of Sy and Sz are de-
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termined by analyzing the fluctuation of the points along the rip edges in the y and z di-
rections, respectively. 

3.3. Cluster Elimination 
In order to ensure the real-time and efficiency of identification, the invalid clusters 

induced by scratches should be eliminated in time. 
It is found that, once the longitudinal rip occurs, the rip will extend infinitely along 

the x direction, and there will be continuous suspected points added into the corre-
sponding clusters. Whereas for the scratches, due to their limited lengths, their edges are 
scanned in a limited number of processing cycles. Therefore, if no newly suspected points 
were added to a cluster in recent processing cycles, it indicates that the cluster cannot 
correspond to a rip, but to a scratch that has been completely scanned, and should be 
eliminated. 

Figure 5c shows that a scratch has been fully scanned at time Ⅲ and the corre-
sponding suspected points are in C3 and C4. The distance from each Cj_last to present stripe 
is calculated by 

( )p _ last_ p _ last_,  j x j xd x C x C= −  (10) 

where xp is the x-coordinate value of all points on present stripe and C j_last_x is the 
x-coordinate value of point Cj_last. 

Then the cluster Cj and all the points in it will be eliminated, if 

( )p _ last_ c,  j xd x C T>  (11) 

where Tc is the distance threshold, which is determined by: 

c c max= /T s v f⋅  (12) 

where vmax is the maximum belt speed, f is the framerate and coefficient sc > 1. 
After this step, C3 and C4 are automatically eliminated because the distances from 

C3_last and C4_last to present stripe is more than Tc. By contrary, C1 and C2 are retained. 
By eliminating the useless clusters, the number of clusters always stays small rather 

than increasing indefinitely, thus ensuring that the computational time and space costs 
are relatively low during each processing cycle. 

Additionally, the event will be logged when the cluster is eliminated to get the fre-
quency of the scratches. When the frequency of these scratches, which have been 
scanned, is increased sharply, it indicates that there may be some abnormal situations on 
the belt. This can be used as a reference for safety inspection, but it does not trigger a 
longitudinal rip alarm. 

3.4. Empirical Discrimination 
In this step, we realize the real-time identification of the longitudinal rip through an 

empirical mechanism. As shown in Figure 5c, at time III, the suspected points on rip_L 
and rip_R have been clustered in C1 and C2, respectively. Cj_first and Cj_last represent the 
suspected points that firstly and lastly added into the cluster Cj. The longitudinal rip is 
infinitely extended along the running direction of the belt (the x direction) while the size 
of the scratch is limited in this direction. Thus, longitudinal rip is identified when a 
cluster grows to a certain size through clustering. We quantify the size of the cluster as 

( ) _ last _ _ first _j j x j xg C C C= −  (13) 

where Cj_first_x and Cj_last_x denote the x-coordinate of point Cj_first and Cj_last, respectively. 
Then if g(Cj)>Td, it indicates that the edge corresponding to Cj has been scanned long 

enough in the x direction to be considered as an edge of a longitudinal rip. Td is an em-
pirical discrimination threshold, which can be taken as 100 mm, since no scratch is over 
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100 mm long according to our experimental statistics and survey [3]. On the contrary, 
once longitudinal rip occurs, the rip length will be far more than 100mm. 

As the belt continues move in the x direction, once g(C1) > Td and g(C2) > Td, it can be 
concluded that C1 and C2 correspond to the two edges of the longitudinal rip respectively 
and the longitudinal rip has occurred. Then the system will make intelligent decisions 
such as alarm and automatic shutdown. 

4. Phase Ⅱ: Characterization of the Rip 
After the longitudinal rip is identified, we need to make corresponding characteri-

zation of the rip to provide intuitive reference information for maintenance staff. There-
fore, an effective characterization method used to determine the direction and maximum 
width of longitudinal rip by PCA (principal component analysis) [27,28] is proposed. 

4.1. Determination of Rip Direction 
As shown in Figure 6, it is supposed that there are m points in cluster C1 (which 

correspond to rip_L) and n points in cluster C2 (which correspond to rip_R). All the m + n 
rip edge points will be taken out and then form a 3D point cloud matrix P of 3 × (m + n), 
i.e. 

1 1 1 _ 1 1 _ 2 _ 1 2 _

1 _ 1 _ 1 _ _ 2 _ 1 _ 2 _ _

1 _ 1 _ 1 _ _ 2 _ 1 _ 2 _ _

1 _ 1 _ 1 _ _ 2 _ 1 _ 2 _ _ 3 ( )

[ , , , , , ] [ , , , , , ]

             

m m m n m n

x m x x n x

y m y y n y

z m z z n z m n

C C C C
C C C C
C C C C

+ +

× +

= =

 
 

=  
 
  

P p p p p C C C C   

 
 (14) 

 
Figure 6. The visualization of the direction of the rip; the color bar corresponds to the z coordinate 
values. 

Next, the PCA algorithm is used to determine the principal component vectors (e1st 
and e2nd) of the distribution of P: 

(1) Firstly, P is normalized by the center to get P , i.e., 

1

1

[ , , ]
,   1, ,

1

m n

i i

m n
ii

i m n

m n

+

+

=


 =


= − = +

 =

+ 

P p p
p p p

p p

  
 

 

(15) 

(2) Then the covariance matrix H is decomposed by singular value decomposition 
(SVD) [29,30]. 
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2 T
1 1

T 2 T 2 T
1 2 3 2 2

2 T
3 3

[ , , ]
σ

σ
σ

   
   

= = =    
   
   

u
H PP UΣ U u u u u

u

   (16) 

(3) The principal vectors are the columns of U, i.e., u1, u2 and u3. The first principal 
vector e1st is the eigenvector with the largest eigenvalue in Σ2. Namely, if σ2 

i  = max{σ2 
1 , σ2 

2 , 
σ2 

3 }, then e1st = ui. Similarly, the second principal vector e2nd is the eigenvector with the 
second largest eigenvalue in Σ2. 

The first principal vector e1st calculated by the PCA can represent the length direc-
tion of the distribution of the point cloud; therefore, the direction of longitudinal rip can 
also be represented by e1st. 

4.2. Maximum Width of the Rip 
The measurement of the maximum width of the longitudinal rip is necessary since it 

directly reflects the severity of the current tearing situation. However, the measuring 
method of obtaining the width of the rip by simply calculating the Euclidean distances 
between the points on the left and right edges of the rip may easily lead to inexact results. 
As the conveyor belts used in factories and mines (to transport materials) are usually 
arched, and the rip may occur in any area of the arc. In addition, the direction of the rip is 
not always parallel to the belt running directions (the x direction). Thus, in order to get 
the more accurate measuring result, we propose a novel characterization model (see 
Figure 7) to calculate the rip width. 
1. Similar to Section 4.1, PCA is employed to get e1st and e2nd, which, respectively, rep-

resent the length direction and width direction of the 3D point cloud distribution (P) 
of the rip. 

2. The 3D points in P are projected onto plane Π, which is determined by e1st and e2nd. 
The two-dimensional matrix P’ of the projection points on Π is calculated by: 

T
' ' ' ' ' 1st

1 1 T
2nd

1 _ 1 _ 1 _ _ 2 _ 1 _ 2 _ _T
1st

1 _ 1 _ 1 _ _ 2 _ 1 _ 2 _ _T
2nd

1 _ 1 _ 1 _ _ 2 _ 1 _ 2 _ _ 3 ( )

[ , , , , , ]

               

m m m n

x m x x n x

y m y y n y

z m z z n z m n

C C C C
C C C C
C C C C

+ +

× +

 
= =  

  
 

   
=    
    

  

e
P p p p p P

e

e
e

 

 

 (17) 

where p' 
1 ,…, p' 

m are 2D points transformed from the left edge points (rip_L) of the rip and 
p' 

m+1 ,…, p' 
m+n are from the right edge (rip_R). 

3. Then the adjacent points among p' 
m+1 - p' 

m+n are connected to form a polyline L. Points 
p' 

1 - p' 
m are taken as the starting points and vector e2nd is taken as the direction to 

make half-lines. These half-lines will intersect the polyline L, and the distance be-
tween each intersection point and the starting point is calculated. Then the maxi-
mum width Wmax of the rip can be represented by the maximum distance. 
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Figure 7. Schematic diagram of rip’s width measurement; the color bar corresponds to the z coor-
dinate values; plane Π is the projection plane; Wmax is the maximum width of the rip. 

5. Experiment Validation 
5.1. Experiment System Building 

As shown in Figure 8, we built a simulation experimental platform in the laboratory. 
The trough conveyor widely used in factories and mines [31] is selected as the experi-
mental conveyor, which adds the practical value of this study and also makes the result 
more representative. The trough angle is 20° and the belt width is 1 m. Moreover, we 
make 1 × 1 m belt sections into a replaceable form by installing belt fasteners at both ends 
of them so that different experiment data can be collected by replacing the replaceable 
belt sections rather than the whole belt. 

 
Figure 8. The simulation experiment platform in laboratory; only the replaceable belt section needs 
to be replaced rather than the whole belt in each experiment. 

The camera used in the experiment is a binocular line laser stereo vision camera 
(VZ-XJGY-1300G) produced by Vizum corporation (Beijing, China). This camera can 
uniformly collect 2000 3D point coordinates on each laser stripe and acquire the data 
from 1000 stripes per second. An IPC with Core i7 6700 CPU, NVIDA GTX 1050Ti 
Graphics card, 8GB memory, and a Windows 10 operating system were used in this ex-
periment to process data. The IPC communicates with the camera through a 1000 M 
network cable. We programed the experiment procedure using Visual C++ to verify the 
proposed algorithm and the parameters were set as follows: the extraction threshold in z 
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Taz = 12, the extraction threshold in y Tay = 3 mm, the clustering threshold Tb = 3.67 mm, the 
distance threshold Tc = 3 mm, the discrimination threshold Td = 100 mm. 

Twenty belt sections were selected as the experimental samples, and 10 of them 
were taken from the new belts and the other 10 were taken from the old belts. On these 20 
belt sections, the rips were artificially created. These belt sections were replaced on the 
conveyor one-by-one to test the identification and characterization method in this work. 

5.2. Experimental Results 
By using the identification algorithm proposed in Section 3, we performed 50 tests 

on each belt section at different speeds (10 tests at 0.5, 1.0, 1.5, 2.0, and 2.5 m/s, respec-
tively) and obtained good identification results. The correct rate was 99.2% and the iden-
tification times (from the time when the 100 mm rip length in x direction was scanned to 
the time when the identification result was obtained) were less than 0.04 ms. Further-
more, the calculation results of the rip’s maximum width Wmax were obtained by the 
characterization method proposed in Section 4 and the relative errors are within ±5%. 

To further demonstrate the effectiveness of the method, Figure 9 shows the experi-
mental results of three representative cases. Case 1 is a general case where the rip is lo-
cated in the center of the belt and its direction is almost parallel to the running direction 
(the x direction). Case 2 and Case 3 are two extreme cases; one is that the rip direction and 
the running direction are at a relatively large angle; the other is that the rip is close to the 
side of the belt. In each case, when a certain length (100 mm in this work) of the rip was 
scanned (see the red rectangle boxes in Column Ⅰ), the identification result would be ob-
tained within 0.04 ms. In Column Ⅱ, we can see that these rips are accurately identified 
and the longitudinal rip edge points are accurately extracted. Using the characterization 
method, the max width of each rip is obtained in the 2D coordinate system determined 
by the principal vectors e1st and e2nd (see Column Ⅲ). This indicates that the identification 
and characterization method proposed in this work is suitable for different situations. 
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Figure 9. The experimental results; column Ⅰ: physical pictures; column Ⅱ: the 3D visualization of 
the rip edge points, the color bar corresponds to the z coordinate values; column Ⅲ: the calculation 
result visualization of max width of each rip. 

To further test the proposed method, we set up the identification system on a belt 
conveyor, located at Shandong Energy Reshipment Group Co., Ltd in China (see Figure 
10). 
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Figure 10. The experiment in industrial scene. 

The site environment was dim and dusty. The conveyor belt width was 1.4 m and 
the conveyor would vibrate when running. During the 48 hours of the system’s operation 
in the industrial scene, no longitudinal rip occurred. Nevertheless, we found many dif-
ferent scratches on the lower surface of the belt. As shown in Figure 11, there were five 
scratches in Figure 11a, three in Figure 11b, and two in Figure 11c. 

 
(a) 

 
(b) 

 
(c) 

Figure 11. The scratches on the lower surface of the belt. There are five scratches in (a), three in (b), 
and two in (c). 
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Using the traditional methods based on image processing, these scratches can easily 
be confused with longitudinal rips. However, using the method in this work based on 3D 
point cloud processing, the effects of lighting conditions and stains on the belt surface 
will be eliminated. In addition, since the scanned length of all the scratches would not 
exceed 100 mm, the scratches in the experiment would not trigger the condition men-
tioned in Section 3.4: the length of a defect scanned along the x direction being longer 
than the distance threshold Td (100 mm in this work). Therefore, the identifying system 
herein makes it possible to effectively differentiate rips from scratches, which avoids the 
false alarm and unplanned downtime. Meanwhile, the information of the scratches was 
recorded, which can be further used as a reference for safety inspection. 

6. Conclusions 
To summarize, to the best of our knowledge, this is the first time a belt longitudinal 

rip detection and characterization method based on 3D point cloud processing was pro-
posed; it could work in a harsh environment. Using a binocular line laser stereo vision 
camera, the 3D point cloud data on the lower surface of the belt was collected in a 
line-scanning mode. The proposed identification algorithm was used in each processing 
cycle to process the 3D point cloud data and identify the longitudinal rip in real time. The 
experimental results show that the proposed method is effective at identifying longitu-
dinal rips whose widths are more than 3 mm. The issue of a false alarm caused by the 
scratches was solved perfectly by using this method and the identification correct rate 
was 99.2% in all experiments we performed. Meanwhile, compared with the time re-
quired by image processing methods for longitudinal rip detection (about 18–50 ms) 
[19,32,33], the identification time of this method was greatly shorter (0.01–0.04 ms). Fur-
thermore, the PCA algorithm was employed to realize the effective characterization of 
the identified rip, and the relative error of the calculation result of the rip’s maximum 
width was within ±5%. Compared with the characterization method based on 2D image 
processing [18], the proposed method realized 3D characterization for the longitudinal 
rips; hence, it is more applicable and has higher precision. This method is suitable for 
trough belt conveyors with belt widths of less than 1.4 m, and can be used in mines, 
ports, power plants, and other occasions. In order to make the proposed method in this 
work have higher application value and reliability, we will perform more long-term tests 
in a variety of industrial scenes and multiform conveyors (e.g., pipe conveyors) to further 
verify the method. In addition, it should be noted that the method in this work could not 
only could be used for the identification and characterization of the belt longitudinal rip, 
but it also has broad application prospects in solving other defect detection problems, 
such as defect detection for mechanical parts, buildings, roads, tracks, etc. 
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Appendix A 

Table A1. List of symbols in this paper 

Symbol Notes 
b/mm The thickness of the belt 

Cj The j-th cluster 
Cj_first The firstly suspected point added in cluster Cj 
Cj_last The latest suspected point added in cluster Cj 

C j_last_x/mm The x-coordinate value of point Cj_last 
e1st The first principal vector of P 
e2nd The second principal vector of P 

f Framerate, the number of stripes of input data per second 
P The 3D point cloud matrix of the rip edge points 

Psus_i The i-th suspected point extracted on the present stripe 
sa The empirical coefficient to determine Taz 
sc The coefficient to determine Tc 

Sx/mm, Sy/mm, Sz/mm The coefficient to determine Tb 
Tay/mm The extraction threshold of space in y direction 

Taz The extraction threshold of change rate in z direction 
Tb/mm The clustering threshold 
Tc/mm The distance threshold 
Td/mm The empirical discrimination threshold 

ti/s The timestamp to get points on the i-th laser stripe 
v/(mm/s) The real-time belt speed 

vmax/(mm/s) The maximum belt speed 
Wmax/mm The maximum width of the rip 

xj/mm The coordinate value in the belt running direction of the j-th point on 
the laser stripe from left to right 

xp/mm The x-coordinate value of all points on present stripe 

yj/mm 
The coordinate value in the width direction of the j-th point on the laser 

stripe from left to right 
ymax/mm The largest y coordinate value among all points on each laser stripe 
ymin/mm The smallest y coordinate value among all points on each laser stripe 

zj/mm The coordinate value in the height direction of the j-th point on the laser 
stripe from left to right 
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